Design and Development of Electrostatic Charge Tester for Textile Yarns

Size: px
Start display at page:

Download "Design and Development of Electrostatic Charge Tester for Textile Yarns"

Transcription

1 JOURNAL OF APPLIED SCIENCES RESEARCH ISSN: X Published BY AENSI Publication EISSN: X March; 12(3): pages Open Access Journal Design and Development of Electrostatic Charge Tester for Textile Yarns 1 P. Mageshkumar and 2 Dr.T.Ramachandran 1 Assistant Professor, Department of Textile Technology, K.S.Rangasamy College of Technology, India 2 Principal, Karpagam Institute of Technology, India Received 2 February 2016; Accepted 29 February 2016; Published 25 March 2016 Address For Correspondence: P. Mageshkumar, Assistant Professor, Department of Textile Technology, K.S.Rangasamy College of Technology, India mages.kumar@gmail.com Copyright 2016 by authors and American-Eurasian Network for Scientific Information (AENSI Publication). This work is licensed under the Creative Commons Attribution International License (CC BY). ABSTRACT Static problems in textile industry have become more serious as synthetic fibers and higher processing speeds became possible nowadays. A number of instruments are available for measuring static charge accumulation in textile materials. But these can be used to measure in web, fabric, and flat surface forms. Very few instruments are available for measuring staple yarn form. An electrostatic charge tester has been designed to measure the electrostatic charge in the yarn in terms of Volt. The measurements were carried out for nylon, polyester and acrylic yarns with two different relative humidity level, surface speed. It has been found that the measured values for Polyester, Nylon and Acrylic have the decreasing order of static charge accumulation. KEYWORDS: Capacitance loading, Charge tester, hydrophobic fibre, explosion, charge decay, corona charging, static charge, tribocharging, INTRODUCTION Static charge measurements are needed in every stage of textile material manufacturing to show electrostatic conditions that are present, to understand why these conditions are present, to initiate control, and to select or develop suitable yarns. A number of instruments are available for measuring static charge accumulation in textile materials. But these can be used to measure in web, fabric, and flat surface forms. Very few instruments are available for measuring staple yarn form. If it is measured in the yarn formation stage, the problems in downstream processes like weaving; processing, garmenting etc can either be controlled or avoided. But the measurement in yarn stage has following difficulties: The surface area of yarn is very small, which requires very small probe and gives lesser reading The possibility to reach the surface of yarn is difficult because of the mechanical parts of the spinning machine. To alleviate these problems a non contact instrument is developed with easily available, low cost materials Static charge: Generation of static charge in textiles can be explained as tribo electricity which is caused by contact or rubbing operation between two surfaces. Materials can be divided into two types in terms of flow of electric current, conductors and insulators. When two surfaces come into contact, they exchange electrons and get electrically charged. Due to their low surface resistance, conductive materials have high probability of charge exchange, while insulative materials tend to keep electrons because they possess high surface resistance [1]. To Cite This Article: P. Mageshkumar and Dr.T.Ramachandran., Design and Development of Electrostatic Charge Tester for Textile Yarns, Journal of Applied Sciences Research. 12(3); Pages: 14-18

2 15 P. Mageshkumar and Dr.T.Ramachandran 2016/ Journal of Applied Sciences Research. 12(3) March 2016, Pages: Metal and ceramic are good examples of conductor and insulator, respectively. Textile materials are usually defined as semiconductors. They can transfer the electricity like conductors and also can hold electricity like insulators [3].There are two main types of static electricity, volumetric and surface. Volumetric static charges are charge imbalances within the body of a material whereas surface static electricity is only present on the very outer surface of a material. In practice nearly all the static electricity problems found in industry relate to surface charges. Whilst there miss no way of neutralizing volumetric static charges they rarely cause a problem and their effects are normally minimal when compare to surface static charges[7] Static creation: There are three main causes of static electricity. They are friction, separation, and induction. If two materials are rubbed together the electrons associated with the surface atoms on each material come into very close proximity with each other. These surface electrons can be moved from one material to another. A harder the two materials are pressed together the exchange of electrons and hence a higher charge is generated [2]. The method of charging by separation is similar to that of friction. When two materials are in contact the surface electrons are in close proximity to each other and upon separation have a tendency to adhere to one material or the other dependent upon their relative positions on the Turboelectric series. The faster the separation of the materials, the higher charge generated and conversely, the slower the separation the lower the charge [6]. A common example is of a PVC web moving over a Teflon coated roller, as the materials separate the electrons will tend to adhere to the Teflon, generating a net negative charge on the Teflon and a net positive charge on the PVC. Induction does not play a significant role in static charge accumulation. Static charges can be generated when materials are in the presence of a strong electric field. The surface of a material in close proximity to a high positive voltage will tend to become positively charged. Because of the charging caused by ionization of the air between the surface of the material and the voltage source which carried surface electrons away from the material to the source [4] Problems by static charge: In the textile industry, static electricity may cause many problems if it is not kept under control. The problems may be: Uneven Yarn Movement, Yarn Jams, Floating Fibre Stacks, Contamination Problems, Uneven drafting, Dust accumulation, Fly, fluff generation and accumulation, Overloading of electronic equipment and break down Static discharge in an operating room may lead to an explosion risk of shock. Increased production time: in some areas very long textile materials are produced. Because of the static charge on it, roll should be used for some time to allow static charge dissipation. Fibre breakage and decreased fabric strength: spun bond machine during production, before transferring the web to calendar bonding, the fabric sticks to the belt. This may cause fabric breaks during production and higher process time. MATERIALS AND METHODS Extensive research has been done in this field. However, there are still questions not answered, and drawback. For example, the accuracy of the measurement is questionable due to the manual transfer of samples to the measuring unit, the devices and procedures are complicated and the results are not reproducible in electrostatic charge Electrostatic Sensor: Double-layer film sensor for the measurement of forces is presented. The sensor is a thin film (thickness below 1 mm) based on a sandwich structure composed of two sensing elements glued together: one layer is a capacitive film and the other is a piezoelectric film. Both the layers are sensitive to compression loads, but they are suitable for working in different frequency ranges. In fact, while the capacitive element is capable of measuring DC up to about 400 Hz, on the contrary, the piezoelectric film works in the high frequency range. The output signals of both the sensors are acquired and then filtered and processed in order to achieve a single output signal. The piezo capacitive sensor has been developed in order to synthesize, in a small and cheap device, the capability to measure compression forces in a wide range of frequencies. In particular, the very small

3 16 P. Mageshkumar and Dr.T.Ramachandran 2016/ Journal of Applied Sciences Research. 12(3) March 2016, Pages: thickness allows inserting it into a composite material to measure actual loads and excitations, as well as on the surface or between different components of a more complex system in order to obtain a smart structure Block Diagram for Electrostatic Charge Tester: 2.3. Operational Amplifier: It consists of two independent, high gain, internally frequency compensated operational amplifiers which were designed specifically to operate from a single power supply over a wide range of voltage. Operation from split power supplies is also possible and the low power supply current drain is independent of the magnitude of the power supply voltage Ananlog To Digital Converters: Modern high resolution analog-to-digital converters (ADCs) usually require input buffer amplifiers (ADC drivers), because they often present a dc load of several hundred ohms or more and a high frequency dynamic load to the source that is driving them. If the source is a transducer or a typical low frequency preamplifier, significant errors may occur.the ADC driver is a high performance fast-settling op amp with input impedance of (at least) several mega ohms and a low impedance output circuit which is capable of driving dynamic loads with minimal errors. In addition to buffering, the driver can also provide input scaling (gain) and low-pass filtering to reduce system noise. Some designs can also translate from single-ended sources to differential-input ADCs.In order for the ADC driver to maintain system accuracy, its settling time, noise, and total harmonic distortion (THD) must be considerably better than that of the ADC itself. This is a significant challenge for the designer in systems employing fast 16 - or 18-bit successive approximation (SAR-type) A/D converters Microcontroller: A microcontroller is a small computer on a single integrated circuit containing a processor core, memory, and programmable input/output peripherals.program memory in the form of NOR flash or OTP ROM is also often included on chip, as well as a typically small amount of RAM. Liquid Crystal Display A liquid crystal display (LCD) is a thin, flat electronic display which uses light modulating properties of liquid crystals (LCs). LCs used do not emit light directly. LCD is more energy efficient and offer better disposal than CRTs. Its low electrical power consumption enables it to be used in battery-powered electronic equipments Aluminum foil: The aluminum foil has been used as shied against stray charges around sensor probe and circuits. The static charge built up in the area surrounding to yarn and measuring part will induce stray emf on the area surrounding to yarn and measuring part will induce stray emf on the electronic cirucits. By providing aluminum shield other than the probe will act as a filter and shield to the elctronic circits, there the stray effect will be nullified and the exact measurmet is achievable. To make proper shielding the following materials can also be used: Silver foil or mesh- very costly-very good shield Copper foil or mesh- costly- very good shield- oxidation will be more with ambient conditions Aluminum foild and mes- low cost- easy to get- moderate sheld In this instrument, aluminum foil cover by polyethylen layer is used and it is grounded with commn ground of measuring unit 2.7. Circuit Diagram:

4 17 P. Mageshkumar and Dr.T.Ramachandran 2016/ Journal of Applied Sciences Research. 12(3) March 2016, Pages: The above parts are connected as per the cirucit plan. RESULTS AND DISCUSSIONS The designed instrument is used to measure the static volt in yarn at ring frame. The tests were conducted with the following variables viz. Linear density-ne 40 S, Temperature- 30ºC, RH- 45% The results obtained are as follows. Table 1: Effect of surface speed on static charge generation in yarns at 45% RH. Surface speed (m/min) Nylon yarn (Volt) Polyester yarn (Volt) Acrylic yarn (Volt) Fig. 1: Effect of surface speed on static charge generation in yarns at 45% RH. Another measurement was taken with same parameters but a different RH% Linear density-ne 40 S, Temperature- 30ºC, RH- 65% The results obtained are as follows. Table 2: Effect of speed on static charge generation in yarns at 60% RH. Surface speed (m/min) Nylon yarn (Volt) Polyester yarn (Volt) Acrylic yarn (Volt) Acrylic yarn (Volt) Polyester yarn (Volt) Nylon yarn (Volt)

5 18 P. Mageshkumar and Dr.T.Ramachandran 2016/ Journal of Applied Sciences Research. 12(3) March 2016, Pages: Fig. 2: Effect of speed on static charge generation in yarns at 60% RH. Influence of surface speed on potential values at temperature 30ºC with two Relative Humidity 45% and 65% is shown in table 3.1 and 3.2. It is found that the speed had significantly influenced the electrostatic charge. When speed is at 30 mpm the charges produced are less for all three different yarn. If speed increases the charge produced also increases at both RH levels. This may be due to the higher rate of friction and seperation. The static charge accumulation is high for polyester yarn among the selected three yarn. It is may be due to polyester has very less moisture regain value of 0.4%, and it s high crystalininty also paves higher resistance for the charge flow. Nylon has the second highest charge accmulation among the selected three yarns. This is because it s moisture regain value is 4.5% and it has relatively less compact strucure than the polyester. Acrylic yarn shows a peculiar staic charge accumulation, though it has the low moisture regain value of 1.5% it has less chareg accumulation than the nylon. It may be polarity nature of the charge generation. Subsequently at relative humidity is 65% the least static charge values was produced. This may be due to the impact of RH on the moisture content of the fibre. IV. Conclusion: The instrument was designed for measuring static charge accumulation at staple yarn stage, and the static values for three types of yarn Acrylic, Polyester, and Nylon were measured. It is found that the measured static electricity values carry a resemblence with filament yarn values of the same type.the surface speed has the linear relationship with the static charge accumulation and RH% has inverse effect on the same. The measured values for Polyester, Nylon and Acrylic have the decreasing order of static charge accumulation. REFERENCES 1. Seyam, A.F., W. Oxenham, P. Castle, Y. Cai, L. Liu, Static Generation and Control in Textile Systems. Journal of Electrostatics, 40(41): Bailey, A.G., The charging of insulator surfaces. Journal of Electrostatics, 51: Steiger, F.H., Evaluating Antistatic Finishes. Textile Research Journal, 28(9): Chubb, J., New approaches for electrostatic testing of materials.journal of Electrostatics, 54(3): Chubb, J.N., Instrumentation and standards for testing static control materials. Industry Applications, IEEE Transactions on, 26(6): Kacprzyk, R., C. Stec, Measurements of the surface charge density on moving webs. Journal of electrostatics, 40: Slade, P.E., Antistats. Handbook of Fiber Finish Technology, New York, USA, Marcel Dekker, Zaukelies, D.A., An instrument for study of friction and static electrification of yarns. Textile Research Journal, 29(10): Bal, K., V.K. Kothari, Measurement of dielectric properties of textile materials and their applications. Indian Journal of Fibre & Textile Research, 34: Gniotek, K., P. Tokarski, New Methods of Assessing Static and Dynamic Flow Characteristics of Textiles. Textile Research Journal, 70(1): Buhler, C., C. Calle, S. Clements, M. Ritz, J. Starnes, Test methodology to evaluate the safety of materials using spark incendivity.journal of electrostatics, 64(11): Onogi, Y., N. Sugiura, C. Matsuda, Temperature effect on dissipation of triboelectric charge into air from textile surfaces. Textile research journal, 67(1):

STATIC GENERATION/DISSIPATION MEASUREMENTS ON POLYMERIC FILMS SURFACES Lu Liu, Yiyun Cai, Abdel-Fattah Seyam, and William Oxenham

STATIC GENERATION/DISSIPATION MEASUREMENTS ON POLYMERIC FILMS SURFACES Lu Liu, Yiyun Cai, Abdel-Fattah Seyam, and William Oxenham STATIC GENERATION/DISSIPATION MEASUREMENTS ON POLYMERIC FILMS SURFACES Lu Liu, Yiyun Cai, Abdel-Fattah Seyam, and William Oxenham ABSTRACT Static charge and dissipation is of great importance when considering

More information

"Can cleanroom garments create electrostatic risks?"

Can cleanroom garments create electrostatic risks? "Can cleanroom garments create electrostatic risks?" J. N. Chubb (John Chubb Instrumentation,UK) P. Holdstock (British Textile Technology Group, UK) M. Dyer (William Barnet and Son Inc, US) Measurements

More information

Contact electrification of polymeric surfaces

Contact electrification of polymeric surfaces Indian Journal of Fibre & Textile Research Vol. 38, September 2013, pp. 265-269 Contact electrification of polymeric surfaces Lu Liu, William Oxenham & Abdel-Fattah M Seyam a College of Textiles, North

More information

TEST METHOD TO MEASURE SURFACE VOLTAGES CREATED ON TRIBOCHARGING INHABITED GARMENTS

TEST METHOD TO MEASURE SURFACE VOLTAGES CREATED ON TRIBOCHARGING INHABITED GARMENTS TEST METHOD TO MEASURE SURFACE VOLTAGES CREATED ON TRIBOCHARGING INHABITED GARMENTS Foreword: Many of the risks and problems that arise with garments from static electricity relate to the surface voltages

More information

Test method to assess the suitability of materials and surfaces to avoid problems from static electricity by measurement of capacitance loading

Test method to assess the suitability of materials and surfaces to avoid problems from static electricity by measurement of capacitance loading 1 of 15 JCI 12 October 2001 Test method to assess the suitability of materials and surfaces to avoid problems from static electricity by measurement of capacitance loading 1 Introduction This document

More information

ESD: Another kind of lethal contaminant?

ESD: Another kind of lethal contaminant? DATA STORAGE February 1997 ESD: Another kind of lethal contaminant? Drive Makers Have to Stand Guard Against a New Enemy: Static Electricity Douglas Cooper and Rob Linke, The Texwipe Company As recently

More information

John Chubb Infostatic, 2 Monica Drive, Pittville, Cheltenham, GL50 4NQ, UK Website:

John Chubb Infostatic, 2 Monica Drive, Pittville, Cheltenham, GL50 4NQ, UK   Website: AN ALTERNATIVE APPROACH FOR CHARGE DECAY MEASUREMENT TO ASSESS THE SUITABILITY OF MATERIALS John Chubb Infostatic, 2 Monica Drive, Pittville, Cheltenham, GL50 4NQ, UK email: jchubb@infostatic.co.uk Website:

More information

Measurement of tribo and corona charging features of materials for assessment of risks from static electricity *

Measurement of tribo and corona charging features of materials for assessment of risks from static electricity * Measurement of tribo and corona charging features of materials for assessment of risks from static electricity * John Chubb John Chubb Instrumentation, Unit 30, Lansdown Industrial Estate, Gloucester Road,

More information

MAS.836 PROBLEM SET THREE

MAS.836 PROBLEM SET THREE MAS.836 PROBLEM SET THREE FSR, Strain Gauge, and Piezo Circuits: The purpose of this problem set is to familiarize yourself with the most common forms of pressure and force measurement. The circuits you

More information

Evaluation and Prevention of Electrostatic Hazards in Chemical Plants

Evaluation and Prevention of Electrostatic Hazards in Chemical Plants Evaluation and Prevention of Electrostatic Hazards in Chemical Plants Sumitomo Chemical Co., Ltd. Technology Nowadays, electrostatic theories are usefully applied to various industries. On the other hand

More information

1. Electrostatic Lab [1]

1. Electrostatic Lab [1] 1. Electrostatic Lab [1] Purpose: To determine the charge and charge distribution on insulators charged by the triboelectric effects and conductors charged by an Electrostatic Voltage Source. Equipment:

More information

Electricity MR. BANKS 8 TH GRADE SCIENCE

Electricity MR. BANKS 8 TH GRADE SCIENCE Electricity MR. BANKS 8 TH GRADE SCIENCE Electric charges Atoms and molecules can have electrical charges. These are caused by electrons and protons. Electrons are negatively charged. Protons are positively

More information

Electrostatic Properties and Characterization of Textile Materials Affected by Ion Flux

Electrostatic Properties and Characterization of Textile Materials Affected by Ion Flux ISSN 1392 1320 MATERIALS SCIENCE (MEDŽIAGOTYRA). Vol. 19, No. 1. 2013 Electrostatic Properties and Characterization of Textile Materials Affected by Ion Flux Pranas Juozas ŽILINSKAS 1, Tadeuš LOZOVSKI

More information

Sealeze TM SSG515AT2D Static Dissipation Brush Performance in an Operational Environment

Sealeze TM SSG515AT2D Static Dissipation Brush Performance in an Operational Environment A White Paper: Sealeze TM SSG515AT2D Static Dissipation Brush Performance in an Operational Environment The following white paper was developed to document the performance of Sealeze SSD515AT2D static

More information

Conceptual Physical Science 6 th Edition

Conceptual Physical Science 6 th Edition Conceptual Physical Science 6 th Edition Chapter 8: STATIC AND CURRENT ELECTRICITY 1 Chapter 8: STATIC AND CURRENT ELECTRICITY Chapter 8: Read: All Homework: Four problems from the following set: 4, 6,

More information

Basic Electricity. Chapter 2. Al Penney VO1NO

Basic Electricity. Chapter 2. Al Penney VO1NO Basic Electricity Chapter 2 The Structure of Matter All matter is composed of Atoms. Atoms consist of: Neutrons; Protons; and Electrons Over 100 different atoms. These are called Elements. Atoms Electrostatic

More information

Mitigating Electrostatic Effects on Measurement Accuracy

Mitigating Electrostatic Effects on Measurement Accuracy Mitigating Electrostatic Effects on Measurement Accuracy Author: Greg Gumkowski NRD LLC 2937 Alt Boulevard Grand Island, NY 14072-0310 USA Phone: (716)773-7635, FAX: (716)773-7744, Email: ggumkowski@nrdinc.com

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-214 29 An Experimental Analysis of Stress Relaxation in Nonwoven Fabrics Sajid Ahmed Qureshi ABSTRACT - The current

More information

Abstract. Ercan, Erkmen. Method for Measuring Static Potential on Moving Fabrics (under

Abstract. Ercan, Erkmen. Method for Measuring Static Potential on Moving Fabrics (under Abstract Ercan, Erkmen. Method for Measuring Static Potential on Moving Fabrics (under the direction of Dr. Perry L. Grady, Dr. Donald Shiffler and Dr. Behnam Pourdeyhimi) There is no clear explanation

More information

Electric charges. Basics of Electricity

Electric charges. Basics of Electricity Electric charges Basics of Electricity Electron has a negative charge Neutron has a no charge Proton has a positive charge But what is a charge? Electric charge, like mass, is a fundamental property of

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor(SJIF): 3.134 International Journal of Advance Engineering and Research Development Volume 2,Issue 11, November -2015 e-issn(o): 2348-4470 p-issn(p): 2348-6406 Analysis

More information

EMBEDDED-PROBE FLOATING POTENTIAL CHARGE-DISCHARGE MONITOR

EMBEDDED-PROBE FLOATING POTENTIAL CHARGE-DISCHARGE MONITOR EMBEDDED-PROBE FLOATING POTENTIAL CHARGE-DISCHARGE MONITOR Keith G. Balmain University of Toronto Department of Electrical and Computer Engineering 10 King s College Rd Toronto, Ontario M5S 3G4, Canada

More information

Electricity & Magnetism

Electricity & Magnetism Electricity & Magnetism Unit 7 Recall that Atoms l Have neutrons, protons, and electrons. l Protons are positively charged l Electrons are negatively charged l Opposite charges attract l Same charges repel

More information

Electricity & Magnetism. Unit 6

Electricity & Magnetism. Unit 6 Electricity & Magnetism Unit 6 Recall that Atoms l Have neutrons, protons, and electrons. l Protons are positively charged l Electrons are negatively charged l Opposite charges attract l Same charges repel

More information

Electricity. Year 10 Science

Electricity. Year 10 Science Electricity Year 10 Science What is electricity? The collection or flow of electrons in the form of an electric charge What is static electricity? A stationary electrical charge that is built up on the

More information

Section 1 Electric Charge and Force

Section 1 Electric Charge and Force CHAPTER OUTLINE Section 1 Electric Charge and Force Key Idea questions > What are the different kinds of electric charge? > How do materials become charged when rubbed together? > What force is responsible

More information

ELECTRICAL AND THERMAL DESIGN OF UMBILICAL CABLE

ELECTRICAL AND THERMAL DESIGN OF UMBILICAL CABLE ELECTRICAL AND THERMAL DESIGN OF UMBILICAL CABLE Derek SHACKLETON, Oceaneering Multiflex UK, (Scotland), DShackleton@oceaneering.com Luciana ABIB, Marine Production Systems do Brasil, (Brazil), LAbib@oceaneering.com

More information

Bridge Measurement 2.1 INTRODUCTION Advantages of Bridge Circuit

Bridge Measurement 2.1 INTRODUCTION Advantages of Bridge Circuit 2 Bridge Measurement 2.1 INTRODUCTION Bridges are often used for the precision measurement of component values, like resistance, inductance, capacitance, etc. The simplest form of a bridge circuit consists

More information

The Basic Capacitor. Water Tower / Capacitor Analogy. "Partnering With Our Clients for Combined Success"

The Basic Capacitor. Water Tower / Capacitor Analogy. Partnering With Our Clients for Combined Success CAPACITOR BASICS I How s Work The Basic A capacitor is an electrical device which serves to store up electrical energy for release at a predetermined time. In its most basic form, it is comprised of three

More information

FEATURES AND APPLICATIONS OF POLYMER THIN FILM MULTI-LAYER CAPACITOR PML CAP

FEATURES AND APPLICATIONS OF POLYMER THIN FILM MULTI-LAYER CAPACITOR PML CAP FEATURES AND APPLICATIONS OF POLYMER THIN FILM MULTI-LAYER CAPACITOR PML CAP PML CAP Polymer Multi-Layer Capacitor (PML CAP) is a surface mounting capacitor with multiple metal-deposited polymer layers

More information

Chapter 13. Capacitors

Chapter 13. Capacitors Chapter 13 Capacitors Objectives Describe the basic structure and characteristics of a capacitor Discuss various types of capacitors Analyze series capacitors Analyze parallel capacitors Analyze capacitive

More information

Electrostatic measurements around a cryo-jet

Electrostatic measurements around a cryo-jet Electrostatic measurements around a cryo-jet KIT, 2018-04-19 Pre-normative REsearch for Safe use of Liquid HYdrogen 1 PRESLHY Kick-off Meeting, April 16-20, 2018, KIT, Karlsruhe, Germany Content I. Intro

More information

Electric Force and Charges. Conceptual Physics 11 th Edition. Electric Force and Charges

Electric Force and Charges. Conceptual Physics 11 th Edition. Electric Force and Charges Conceptual Physics 11 th Edition Central rule of electricity Opposite charges attract one another; like charges repel. Chapter 22: ELECTROSTATICS This lecture will help you understand: Electrical Forces

More information

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity MECH 373 Instrumentation and Measurements Lecture 19 Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity Measuring Accepleration and

More information

Piezoelectric Resonators ME 2082

Piezoelectric Resonators ME 2082 Piezoelectric Resonators ME 2082 Introduction K T : relative dielectric constant of the material ε o : relative permittivity of free space (8.854*10-12 F/m) h: distance between electrodes (m - material

More information

Fibre Friction WHAT IS FIBRE

Fibre Friction WHAT IS FIBRE Fibre Friction WHAT IS FIBRE Fibre is a class of materials that are continuous filaments. Any thing having high length to width ratio. Diameter or width of fibre is negligible which cant be measured. Fibres

More information

Electrostatics. Electrostatics - the study of electrical charges that can be collected and held in one place - charges at rest.

Electrostatics. Electrostatics - the study of electrical charges that can be collected and held in one place - charges at rest. Electrostatics Electrostatics - the study of electrical charges that can be collected and held in one place - charges at rest. Examples: BASIC IDEAS: Electricity begins inside the atom itself. An atom

More information

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING

DEPARTMENT OF ELECTRICAL ENGINEERING DIT UNIVERSITY HIGH VOLTAGE ENGINEERING UNIT 1: BREAKDOWN IN SOLIDS 1.) Introduction: The solid dielectric materials are used in all kinds of electrical apparatus and devices to insulate current carrying part from another when they operate at

More information

The Basic Capacitor. Dielectric. Conductors

The Basic Capacitor. Dielectric. Conductors Chapter 9 The Basic Capacitor Capacitors are one of the fundamental passive components. In its most basic form, it is composed of two conductive plates separated by an insulating dielectric. The ability

More information

Properties of Electric Charge

Properties of Electric Charge 1 Goals 2 Properties of Electric Charge 2 Atomic Structure: Composed of three main particles: 1. Proton 2. Neutron 3. Electron Things to Remember: 3 Everything is made of atoms. Electrons can move from

More information

Trade of Electrician Standards Based Apprenticeship Capacitance Phase 2 Module No. 2.1 Unit No COURSE NOTES

Trade of Electrician Standards Based Apprenticeship Capacitance Phase 2 Module No. 2.1 Unit No COURSE NOTES Trade of Electrician Standards Based Apprenticeship Capacitance Phase 2 Module No. 2.1 Unit No. 2.1.8 COURSE NOTES Certification & Standards Department Created by Gerry Ryan - Galway TC Revision 1 April

More information

The design and operational theory of ph electrodes is a very complex subject, explored only briefly here. What is important to understand is that thes

The design and operational theory of ph electrodes is a very complex subject, explored only briefly here. What is important to understand is that thes ph measurement A very important measurement in many liquid chemical processes (industrial, pharmaceutical, manufacturing, food production, etc.) is that of ph: the measurement of hydrogen ion concentration

More information

RADIO AMATEUR EXAM GENERAL CLASS

RADIO AMATEUR EXAM GENERAL CLASS RAE-Lessons by 4S7VJ 1 CHAPTER- 2 RADIO AMATEUR EXAM GENERAL CLASS By 4S7VJ 2.1 Sine-wave If a magnet rotates near a coil, an alternating e.m.f. (a.c.) generates in the coil. This e.m.f. gradually increase

More information

fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok

fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok fehmibardak.cbu.tr Temporary Office 348, Mühendislik Fakültesi B Blok 1 Course Progress Introductory level Electrostatic, Coulomb s Law Electric Field, Gauss Law Magnetic field, Maxwell s Equations Current,

More information

Objective of Lecture Discuss resistivity and the three categories of materials Chapter 2.1 Show the mathematical relationships between charge,

Objective of Lecture Discuss resistivity and the three categories of materials Chapter 2.1 Show the mathematical relationships between charge, Objective of Lecture Discuss resistivity and the three categories of materials Chapter 2.1 Show the mathematical relationships between charge, current, voltage, and energy. Chapter 2.2-2.4 Define resistance

More information

Revision checklist SP10. SP10 Electricity and Circuits. SP10a Electric circuits. SP10b Current and potential difference

Revision checklist SP10. SP10 Electricity and Circuits. SP10a Electric circuits. SP10b Current and potential difference Electricity and Circuits a Electric circuits Describe the basic structure of an atom (positions, relative masses and relative charges of protons, neutrons and electrons). Recognise the circuit symbols

More information

Strain, Force, and Pressure

Strain, Force, and Pressure 10-1 10-1 Strain, Force, and Pressure Force is that which results in acceleration (when forces don t cancel). Strain is the change in shape of an object...... usually due to some force. (Force is usually

More information

Electric Charges & Current. Chapter 12. Types of electric charge

Electric Charges & Current. Chapter 12. Types of electric charge Electric Charges & Current Chapter 12 Types of electric charge Protons w/ + charge stuck in the nucleus Electrons w/ - charge freely moving around the nucleus in orbits 1 Conductors Allow the easy flow

More information

Experiment FT1: Measurement of Dielectric Constant

Experiment FT1: Measurement of Dielectric Constant Experiment FT1: Measurement of Dielectric Constant Name: ID: 1. Objective: (i) To measure the dielectric constant of paper and plastic film. (ii) To examine the energy storage capacity of a practical capacitor.

More information

Engineering innovation through Advanced Materials and Technology. A wholly owned subsidiary of The Morgan Crucible Company PLC

Engineering innovation through Advanced Materials and Technology. A wholly owned subsidiary of The Morgan Crucible Company PLC Engineering innovation through Advanced Materials and Technology A wholly owned subsidiary of The Morgan Crucible Company PLC Unraveling the Commutation Mystery DC Machine Basics Machine Adjustments Carbon

More information

EDEXCEL NATIONAL CERTIFICATE. UNIT 38 ELECTRICAL and ELECTRONIC PRINCIPLES OUTCOME 2

EDEXCEL NATIONAL CERTIFICATE. UNIT 38 ELECTRICAL and ELECTRONIC PRINCIPLES OUTCOME 2 EDEXCEL NATIONAL CERTIFICATE UNIT 38 ELECTRICAL and ELECTRONIC PRINCIPLES OUTCOME 2 Electric fields and capacitors Electric fields: electrostatics, charge, electron movement in field, force on unit charge,

More information

ELECTRICITY. Chapter ELECTRIC CHARGE & FORCE

ELECTRICITY. Chapter ELECTRIC CHARGE & FORCE ELECTRICITY Chapter 17 17.1 ELECTRIC CHARGE & FORCE Essential Questions: What are the different kinds of electric charge? How do materials become charged when rubbed together? What force is responsible

More information

Model M3484 Industrial Line Noise Filter Module Customer Reference Manual

Model M3484 Industrial Line Noise Filter Module Customer Reference Manual Model M3484 Industrial Line Noise Filter Module Customer Reference Manual Web: www.bonitron.com Tel: 615-244-2825 Email: info@bonitron.com Bonitron, Inc. Bonitron, Inc. Nashville, TN An industry leader

More information

Requirements to perform accurate dielectric material analysis

Requirements to perform accurate dielectric material analysis Requirements to perform accurate dielectric material analysis By Britta Pfeiffer 2017 by OMICRON Lab V1.0 Visit www.omicron-lab.com for more information. Contact support@omicron-lab.com for technical support.

More information

Electric Force and Charges. Conceptual Physics 11 th Edition. What are Atoms Made of?

Electric Force and Charges. Conceptual Physics 11 th Edition. What are Atoms Made of? Conceptual Physics 11 th Edition Electrical Forces and Charges Conservation of Charge Coulomb s Law Conductors and Insulators Chapter 22: ELECTROSTATICS Charging Charge Polarization Electric Field Electric

More information

Electricity Electrostatics Types of materials Charging an Object Van de Graaff Generator

Electricity Electrostatics Types of materials Charging an Object Van de Graaff Generator Electricity Electricity is the physical phenomena associated with the position or movement of electric charge. The study of electricity is generally divided into two areas electrostatics and current electricity.

More information

CAPACITANCE. Capacitor. Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized.

CAPACITANCE. Capacitor. Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized. D ircuits APAITANE APAITANE Because of the effect of capacitance, an electrical circuit can store energy, even after being de-energized. EO 1.5 EO 1.6 EO 1.7 EO 1.8 EO 1.9 DESRIBE the construction of a

More information

Electroscope Used to are transferred to the and Foil becomes and

Electroscope Used to are transferred to the and Foil becomes and Electricity Notes Chapter 17 Section 1: Electric Charge and Forces Electric charge is a variety of independent all with one single name. Electricity is related to, and both (-) and (+) carry a charge.

More information

Elizabethtown College Department of Physics and Engineering PHY104

Elizabethtown College Department of Physics and Engineering PHY104 Elizabethtown College Department of Physics and Engineering PHY104 Lab #7- Capacitors 1. Introduction The capacitor is one of the essential elements of analog circuitry. It is highly useful for its energy

More information

Electrical Theory Lesson 1: Electricity and Electronics

Electrical Theory Lesson 1: Electricity and Electronics Page 1: Welcome to Lesson 1 of Electrical Theory. This lesson covers the following objectives: Identify the relationship between elements and compounds. Construct a model of an atom. Discuss the concepts

More information

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004

ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No Lab Section: 0003 Date: February 8, 2004 ENERGY AND TIME CONSTANTS IN RC CIRCUITS By: Iwana Loveu Student No. 416 614 5543 Lab Section: 0003 Date: February 8, 2004 Abstract: Two charged conductors consisting of equal and opposite charges forms

More information

Electrostatics is the study of non-moving electric charges, sometimes called static electricity.

Electrostatics is the study of non-moving electric charges, sometimes called static electricity. Electrostatic Phenomena Electrostatics is the study of non-moving electric charges, sometimes called static electricity. A simple experiment will demonstrate the phenomena. 1. Take a polythene rod and

More information

Theme 5: Electricity in the Home

Theme 5: Electricity in the Home Theme 5: Electricity in the Home Static Electricity WHAT IS STATIC ELECTRICITY? Everything we see is made up of tiny little parts called atoms. So what are atoms made of? In the middle of each atom is

More information

Lab 1 ELECTROSTATICS

Lab 1 ELECTROSTATICS 5 Name Date Partners Lab 1 ELECTROSTATICS OBJECTIVES To understand the difference between conducting and insulating materials. To observe the effects of charge polarization in conductors and insulators

More information

7. CONCLUSIONS & SCOPE

7. CONCLUSIONS & SCOPE 7. CONCLUSIONS & SCOPE ENERGY harvesting is a critical technology for the expansion of self-governing, self-powered electronic devices. As the energy requirements of low-power electronics reduction, the

More information

Electricity Review completed.notebook. June 13, 2013

Electricity Review completed.notebook. June 13, 2013 Which particle in an atom has no electric charge associated with it? a. proton c. neutron b. electron d. nucleus Jun 12 9:28 PM The electrons in a metal sphere can be made to move by touching it with a

More information

Section 1: Electric Charge and Force

Section 1: Electric Charge and Force Electricity Section 1 Section 1: Electric Charge and Force Preview Key Ideas Bellringer Electric Charge Transfer of Electric Charge Induced Charges Charging by Contact Electric Force Electric Field Lines

More information

4.2.1 Current, potential difference and resistance

4.2.1 Current, potential difference and resistance 4.2 Electricity Electric charge is a fundamental property of matter everywhere. Understanding the difference in the microstructure of conductors, semiconductors and insulators makes it possible to design

More information

Type FCA Acrylic Surface Mount Film Capacitors

Type FCA Acrylic Surface Mount Film Capacitors Type Acrylic Surface Mount Film Capacitors Acrylic Stacked Metallized Film Capacitors for Filtering and Noise Attenuation Type acrylic film chips are non-inductive stacked metallized film capacitors which

More information

Introduction to Basic Electronics Lecture -2

Introduction to Basic Electronics Lecture -2 Introduction to Basic Electronics Lecture -2 Basic Electronics What is electricity? Voltage, Current, Resistance DC/AC Ohm s Law Capacitors & Inductors Conductor & Insulator What is Electricity? Everything

More information

Renewable Energy Systems

Renewable Energy Systems Renewable Energy Systems 2 Buchla, Kissell, Floyd Chapter Outline Electrical Fundamentals 2 Buchla, Kissell, Floyd 2-1 ENERGY, CHARGE, AND VOLTAGE 2-2 ELECTRICAL CURRENT 2-3 RESISTANCE AND OHM'S LAW 2-4

More information

Chapter 19, Electricity Physical Science, McDougal-Littell, 2008

Chapter 19, Electricity Physical Science, McDougal-Littell, 2008 SECTION 1 (PP. 633-641): MATERIALS CAN BECOME ELECTRICALLY CHARGED. Georgia Standards: S8P2c Compare and contrast the different forms of energy (heat, light, electricity, mechanical motion, sound) and

More information

Technology Brief 9: Capacitive Sensors

Technology Brief 9: Capacitive Sensors 218 TEHNOLOGY BRIEF 9: APAITIVE SENSORS Technology Brief 9: apacitive Sensors To sense is to respond to a stimulus. (See Tech Brief 7 on resistive sensors.) A capacitor can function as a sensor if the

More information

Digital Integrated Circuits A Design Perspective

Digital Integrated Circuits A Design Perspective Semiconductor Memories Adapted from Chapter 12 of Digital Integrated Circuits A Design Perspective Jan M. Rabaey et al. Copyright 2003 Prentice Hall/Pearson Outline Memory Classification Memory Architectures

More information

Electricity

Electricity Electricity Electric Charge There are two fundamental charges in the universe. Positive (proton) has a charge of +1.60 x 10-19 C Negative (electron) has a charge of 1.60 x 10-19 C There is one general

More information

Electro - Principles I

Electro - Principles I Electro - Principles I Capacitance The Capacitor What is it? Page 8-1 The capacitor is a device consisting essentially of two conducting surfaces separated by an insulating material. + Schematic Symbol

More information

MCE603: Interfacing and Control of Mechatronic Systems. Chapter 1: Impedance Analysis for Electromechanical Interfacing

MCE603: Interfacing and Control of Mechatronic Systems. Chapter 1: Impedance Analysis for Electromechanical Interfacing MCE63: Interfacing and Control of Mechatronic Systems Chapter 1: Impedance Analysis for Electromechanical Interfacing Part B: Input and Output Impedance Cleveland State University Mechanical Engineering

More information

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories

Digital Integrated Circuits A Design Perspective. Semiconductor. Memories. Memories Digital Integrated Circuits A Design Perspective Semiconductor Chapter Overview Memory Classification Memory Architectures The Memory Core Periphery Reliability Case Studies Semiconductor Memory Classification

More information

1. Voltage is how much work is being done for a charge. 2. Lightning is the electric breakdown of air by weak electric fields and is a flow of energy.

1. Voltage is how much work is being done for a charge. 2. Lightning is the electric breakdown of air by weak electric fields and is a flow of energy. Chapters 17 and 18 Practice Problems True or False 1. Voltage is how much work is being done for a charge. 2. Lightning is the electric breakdown of air by weak electric fields and is a flow of energy.

More information

Advanced Physics in Creation Table of Contents

Advanced Physics in Creation Table of Contents Module #1: Units and Vectors Revisited Advanced Physics in Creation Table of Contents Introduction.. 1 Units Revisited.. 1 A Review of Vectors.... 5 Unit Vectors.. 12 The Dot Product... 15 The Physical

More information

Best Practices 8.0. Understanding and treating an industrial static problem

Best Practices 8.0. Understanding and treating an industrial static problem Understanding and treating an industrial static problem Most people have encountered examples of static electricity from an early age. Perhaps you have been shocked when grabbing a door handle or touching

More information

INTRODUCTION TO BIOPHYSICS. II semester, week /2015

INTRODUCTION TO BIOPHYSICS. II semester, week /2015 INTRODUCTION TO BIOPHYSICS II semester, week 3 2014/2015 INTRODUCTION TO ELECTRICITY Electricity phenomena associated with interaction between electrically charged objects PARTICLES AND ELECTRIC CHARGE

More information

Electric Charge. Conductors A material that transfers charge easily Metals

Electric Charge. Conductors A material that transfers charge easily Metals Electric Charge An electrical property of matter that creates a force between objects. Like charges repel Opposite charges attract Equal amount of positive and negative = no net charge Electrons: Negative

More information

Capacitors. Charging a Capacitor. Charge and Capacitance. L05: Capacitors and Inductors

Capacitors. Charging a Capacitor. Charge and Capacitance. L05: Capacitors and Inductors L05: Capacitors and Inductors 50 Capacitors 51 Outline of the lecture: Capacitors and capacitance. Energy storage. Capacitance formula. Types of capacitors. Inductors and inductance. Inductance formula.

More information

Series FEATURES AND BENEFITS INTRODUCTION. Figure 1 Power Derating Curve. Table 1 Tolerance and TCR vs. Resistance

Series FEATURES AND BENEFITS INTRODUCTION. Figure 1 Power Derating Curve. Table 1 Tolerance and TCR vs. Resistance The 303143 Series Ultra The High-Precision 303143 Series Fixed Resistor Z-Foil Z201 Ultra High-Precision Fixed Resistor Z-Foil Z201 Screen/Test Flow as modified from S-311-P813 Proposed by NASA FEATURES

More information

Application Note Measuring Calibrated Magneto-electric Samples Rev A

Application Note Measuring Calibrated Magneto-electric Samples Rev A Application Note Measuring Calibrated Magneto-electric Samples Rev A Radiant Technologies, Inc. 2835D Pan American Freeway NE Albuquerque, NM 87107 Tel: 505-842-8007 Fax: 505-842-0366 e-mail: radiant@ferrodevices.com

More information

4.2.1 Current, potential difference and resistance Standard circuit diagram symbols. Content. Key opportunities for skills development WS 1.

4.2.1 Current, potential difference and resistance Standard circuit diagram symbols. Content. Key opportunities for skills development WS 1. 4.2 Electricity Electric charge is a fundamental property of matter everywhere. Understanding the difference in the microstructure of conductors, semiconductors and insulators makes it possible to design

More information

Digital Electronics Electronics, Devices and Circuits

Digital Electronics Electronics, Devices and Circuits Digital Electronics Electronics, Devices and Circuits Dr. I. J. Wassell Introduction In the coming lectures we will consider how logic gates can be built using electronic circuits First, basic concepts

More information

Multiphysics Simulation of a Monoblock Dielectric Filter

Multiphysics Simulation of a Monoblock Dielectric Filter Multiphysics Simulation of a Monoblock Dielectric Filter Theunis Beukman, CST AG Overview Filter device Introduction Synthesis Optimization Multiphysics workflows High ambient temperature High input power

More information

SENSORS AND TRANSDUCERS

SENSORS AND TRANSDUCERS Electrical Measurements International Program Department of Electrical Engineering UNIVERSITAS INDONESIA ANDRITTO ABDUL GHAFFAR ANDHIKA ADIEL INSANI Lecturer : Ir. Chairul Hudaya, ST, M.Eng., Ph.D., IPM

More information

Fundamentals of Static Electricity

Fundamentals of Static Electricity Fundamentals of Static Electricity Basic Concepts Calculation Methods Guidelines Case Histories Fundamentals of Static Electricity How Do Charges Accumulate? How Do Accumulated Charges Discharge? How Do

More information

Basic Electricity. ME 120 Lecture Notes. Portland State University Mechanical and Materials Engineering

Basic Electricity. ME 120 Lecture Notes. Portland State University Mechanical and Materials Engineering Basic Electricity ME 120 Lecture Notes Portland State University Mechanical and Materials Engineering Learning Objectives Successful completion of this module will enable students to Link the basic model

More information

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur

Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Power System Analysis Prof. A. K. Sinha Department of Electrical Engineering Indian Institute of Technology, Kharagpur Lecture - 9 Transmission Line Steady State Operation Welcome to lesson 9, in Power

More information

3 Electric current, resistance, energy and power

3 Electric current, resistance, energy and power 3 3.1 Introduction Having looked at static charges, we will now look at moving charges in the form of electric current. We will examine how current passes through conductors and the nature of resistance

More information

Higher Physics. Electricity. Summary Notes. Monitoring and measuring a.c. Current, potential difference, power and resistance

Higher Physics. Electricity. Summary Notes. Monitoring and measuring a.c. Current, potential difference, power and resistance Higher Physics Electricity Summary Notes Monitoring and measuring a.c. Current, potential difference, power and resistance Electrical sources and internal resistance Capacitors Conductors, semiconductors

More information

HIGH SCHOOL SCIENCE. Physical Science 7: Electricity & Magnetism

HIGH SCHOOL SCIENCE. Physical Science 7: Electricity & Magnetism HIGH SCHOOL SCIENCE Physical Science 7: Electricity & Magnetism WILLMAR PUBLIC SCHOOL 2013-2014 EDITION CHAPTER 7 Electricity & Magnatism In this chapter you will: 1. Analyze factors that affect the strength

More information

NUMERICAL ANALYSES OF ELECTROMAGNETIC FIELDS IN HIGH VOLTAGE BUSHING AND IN ELECTROMAGNETIC FLOW METER

NUMERICAL ANALYSES OF ELECTROMAGNETIC FIELDS IN HIGH VOLTAGE BUSHING AND IN ELECTROMAGNETIC FLOW METER Intensive Programme Renewable Energy Sources May 2011, Železná Ruda-Špičák, University of West Bohemia, Czech Republic NUMERICAL ANALYSES OF ELECTROMAGNETIC FIELDS IN HIGH VOLTAGE BUSHING AND IN ELECTROMAGNETIC

More information

Chapt ha e pt r e r 9 Capacitors

Chapt ha e pt r e r 9 Capacitors Chapter 9 Capacitors Basics of a Capacitor In its simplest form, a capacitor is an electrical device constructed of two parallel plates separated by an insulating material called the dielectric In the

More information

Introduction. Energy Generation with the Piezo Effect

Introduction. Energy Generation with the Piezo Effect Introduction The term Energy Harvesting is popularly used when electricity is generated from sources such as ambient temperature, vibrations or air flows. Since there are now electronic circuits whose

More information

Electrostatics 1 July 6. Name Date Partners ELECTROSTATICS

Electrostatics 1 July 6. Name Date Partners ELECTROSTATICS Electrostatics 1 Name Date Partners ELECTROSTATICS OBJECTIVES OVERVIEW To understand the difference between conducting and insulating materials. To observe the effects of charge polarization in conductors

More information