SENSORS AND TRANSDUCERS

Size: px
Start display at page:

Download "SENSORS AND TRANSDUCERS"

Transcription

1 Electrical Measurements International Program Department of Electrical Engineering UNIVERSITAS INDONESIA ANDRITTO ABDUL GHAFFAR ANDHIKA ADIEL INSANI Lecturer : Ir. Chairul Hudaya, ST, M.Eng., Ph.D., IPM SENSORS AND TRANSDUCERS

2 INTRODUCTION SENSOR A device that measures a physical quantity and converts it into signal which can be read by an observer or by an instrument. For example, a mercury thermometer that converts measured temperature into expansion and contraction of a liquid which can be read on a calibrated glass tube.

3 INTRODUCTION TRANSDUCERS Is a device usually electrical, electronic, electro-mechanical, electromagnetic, photonic or photovoltaic that converts one type of energy or physical to another (generally electrical or mechanical) for various measurement purposes including measurement or information transfer. For example, pressure censors.

4 ELECTRICAL TRANSDUCE RS

5 ELECTRICAL TRANSDUCER DEFINITION The transducers which convert one form energy to electrical energy for measurement purposes. The quantities which can t be measured directly such as pressure, temperature, displacement, fluid, humidity etc., are required to be sensed and changed into electrical signal first.

6 ELECTRICAL TRANSDUCER ADVANTAGES Power requirement is very low for controlling the electronic system. Amplifier may be used for amplifying the electrical signal. Less friction effect. Less mass-inertia effect, because the inertia effect of the signals is due to the mass of electron which can be neglected. The output can be indicated and recorded remotely from sensing element

7 ELECTRICAL TRANSDUCER BASIC REQUIREMENTS Linearity: The input vs output should be linear and balance. Ruggedness: Transducer should be capable to protect itself from overload. Repeatability: Transducers should reproduce the same output signal when the same input signal is applied again under unchanged environmental conditions, e.g. temperature, pressure, etc.

8 ELECTRICAL TRANSDUCER BASIC REQUIREMENTS (CONT) High reliability and stabilty: Transducers should give minimum error in measurement for various change in surroundings. High output signal quality: The ratio of the signal to the noise should be high and the amplitude of the output signal should be enough. No hysteresis: Transducers should not give any hysteresis during measurement while input signal is varied from its low value to high value and vice versa. Residual reformation: There should not be any deformation on removal of input signal after long period of use.

9 LINEAR VARIABLE DIFFERENTIAL TRANSFORMER

10 LINEAR VARIABLE DIFFERENTIAL TRANSFORMERS DEFINITION Linear Variable Differential Transformer (LVDT) is the inductive transducer that used to translate the linear motion into electrical signals.

11 LINEAR VARIABLE DIFFERENTIAL TRANSFORMERS CONSTRUCTION It consists of a single primary windinds and two secondary windings wound on a cylindrical former. The two secondaries have equal number of turns and placed on either side of the primary winding. A sinusoidal voltage of amplitude 3 to 15 Volt and frequency 50 to 20K Hz is used to excite the primary. The primary winding is connected to an AC source. A movable soft iron core is placed inside the former. The displacement to be measured is applied to the arm attached to the soft iron core.

12 LINEAR VARIABLE DIFFERENTIAL TRANSFORMERS OPERATION

13 STRAIN GAUGES

14 STRAIN GAUGES BASICS The strain gauge is an electrical transducer; it is used to measure mechanical surface tension. Strain gauge can detect and convert force or small mechanical displacement into electrical signals. On the application of force a metal conductor is stretched or compressed, its resistance changes owing to the fact both length and diameter of conductor change. Also, there is a change on the value of resistivity of the conductor when it is strained and this property of the metal is called piezoresistive effect. Therefore, resistance strain gauges are also known as piezoresistive gauges. The strain gauges are used for measurement of strain and associated stress in experimental stress analysis. Secondly, many other detectors and transducers, for example the load cell, torque meter, flow meter, accelerometer employ strain gauge as a secondary transducer.

15 STRAIN GAUGES THEORY OF RESISTANCE STRAIN GAUGES The change in the value of resistance by the application of force can be explained by the normal dimensional changes of elastic material. If a positive strain occurs, its longitudinal dimension (x-direction) will increase while there will be a reduction in the lateral dimension (y-direction). The reverse happens for a negative strain. Since the resistance of a conductor is directly proportional to its length and inversely proportional to its crosssectional area, the resistance changes. The resistivity of a conductor is also changed when strained. This property is known as piezoresistive effect. Let us consider a strain gauge made of circular wire. The wire has the dimensions: length L, area A, diameter D before being strained. The material of the wire has a resistivity ρ

16 STRAIN GAUGES

17 STRAIN GAUGES

18 STRAIN GAUGES

19 ELECTROMAGN ETIC FLOW METER

20 ELECTROMAGNETIC FLOW METER BASICS Unlike many other types of flow meters, they offer true non-invasive measurements. They are easy to install and use to the extent that existing pipes in a process can be turned into meters simply by adding external electrodes and suitable magnets. They can measure reverse flows and are insensitive to viscosity, density, and flow disturbances. Electromagnetic flow meters can rapidly respond to flow changes and they are linear devices for a wide range of measurements. In recent years, technological refinements have resulted in much more economical, accurate, and smaller instruments than the previous versions.

21 ELECTROMAGNETIC FLOW METER BASICS (CONT) As in the case of many electric devices, the underlying principle of the electromagnetic flow meter is Faraday s law of electromagnetic induction. The induced voltages in an electromagnetic flow meter are linearly proportional to the mean velocity of liquids or to the volumetric flow rates. As is the case in many applications, if the pipe walls are made from nonconducting elements, then the induced voltage is independent of the properties of the fluid.

22 ELECTROMAGNETIC FLOW METER

23 ELECTROMAGNETIC FLOW METER FARADAY S LAW OF INDUCTION

24

25 ELECTROMAGNETIC FLOW METER

26 ELECTROMAGNETIC FLOW METER NOISE SOURCES Stray voltage in the process liquid Capacitive coupling between signal and power circuits Capacitive coupling in connection leads Electromechanical emf induced in the electrodes and the process fluid Inductive coupling of the magnets within the flow meter

27 ELECTROMAGNETIC FLOW METER ADVANTAGES OF ELECTROMAGNETIC FLOW METER The electromagnetic flow meter can measure flow in pipes of any size provided a powerful magnetic field can be produced. The output (voltage) is linearly proportional to the input (flow). The major advantage of electromagnetic flow meter is that there is no obstacle to the flow path which may reduce the pressure. The output is not affected by changes in characteristics of liquid such as viscosity, pressure and temperature.

28 ELECTROMAGNETIC FLOW METER LIMITATIONS The operating cost is very high in an electromagnetic flow meter, particularly if heavy slurries (solid particle in water) are handled. The conductivity of the liquid being metered should not be less than 10 µω/m. It will be found that most aqueous solutions are adequately conductive while a majority of hydrocarbon solutions are not sufficiently conductive.

29 TEMPERATURE TRANSDUCTERS

30 TEMPERATURE TRANSDUCERS DEFINITION Application of heat or its withdrawal from a body produces various primary effects on this body such as: Change in its physical or chemical state such as phase transition Change in its physical dimensions Variations in its electrical properties Generation of an emf at the junction of two dissimilar metals Change in the intensity of the emitted radiation Any of these effects can be employed to measure the temperature of a body, though the first one is generally used for standardisation of temperature sensors rather than for direct measurement of temperature.

31 TEMPERATURE TRANSDUCERS - RESISTANCE THERMOMETER RESISTANCE THERMOMETER Resistance temperature detectors, or resistance thermometers, employ a sensitive element of extremely pure platinum, copper or nickel wire that provides a definite resistance value at each temperature within its range. The relationship between temperature and resistance of conductors in the temperature range near 0 C can be calculated from the equation where Rt = resistance of the conductor at temperature t ( C) Rref = resistance at the reference temperature, usually 0 C α = temperature coefficient of resistance Δt = difference between operating and reference temperature

32

33 TEMPERATURE TRANSDUCERS - RESISTANCE THERMOMETER

34 TEMPERATURE TRANSDUCERS - THERMOCOUPLE THERMOCOUPLE

35 TEMPERATURE TRANSDUCERS - THERMOCOUPLE ERRORS DURING THE MEASUREMENT Open Junction: There are many sources of an open junction. Usually, the error introduced by an open junction is of such an extreme magnitude that an open junction is easily spotted. By simply measuring the resistance of the thermocouple, the open junction is easily identified. Insulation Degradation: The thermocouple is often used at very high temperatures. In some cases, the insulation can break down and causes a significant leakage resistance which will cause an error in the measurement of the Seeback voltage. In addition, chemicals in the insulation can defuse into the thermocouple wire and cause decalibration. Thermal Conduction: The thermocouple wire will shunt heat energy away from the source to be measured. For small temperature to be measured, small diameter thermocouple wire could be used. However, the small diameter wire is more susceptible to the effects. If a reasonable compromise between the degrading effects of small thermocouple wire and the loss of thermal energy and the resultant temperature error cannot be found, thermocouple extension wire can be used. This allows the thermocouple to be made of small diameter wire, while the extension wire covers majority of the connecting distance.

36 TEMPERATURE TRANSDUCERS - THERMOCOUPLE ERRORS DURING THE MEASUREMENT Galvanic Action: Chemicals coming in contact with the thermocouple wire can cause a galvanic action. This resultant voltage can be as much as 100 times the Seebeck voltage, causing extreme errors. Decalibration: This error is a potentially serious fault, as it can cause slight error that may escape detection. Decalibration is due to altering the characteristics of the thermocouple wire, thus changing the Seeback voltage. This can be caused due to subjecting the wire to excessively high temperatures, diffusion of particles from the atmosphere into the wire, or by cold working the wire.

37 TEMPERATURE TRANSDUCERS - THERMISTOR THERMISTOR

38 TEMPERATURE TRANSDUCERS - THERMISTORS THERMISTORS

39 TEMPERATURE TRANSDUCERS - THERMISTORS

40 TEMPERATURE TRANSDUCERS - THERMISTORS THERMISTORS

41 PRESSURE MEASUREM ENT

42 PRESSURE MEASUREMENT DEFINITION The pressure, or force, measurement can be done by converting the applied pressure or force into a displacement by elastic elements which acts as a primary transducer. The displacement of the elastic element which is a function of the applied force may be measured by the transducer which acts as a secondary transducer. The output of the secondary transducer is a function of the displacement, which in turn is a function of pressure or force which is the measurand. Some mechanical methods are used to convert the applied pressure of force into displacement. These mechanical devices are called force summing devices.

43 PRESSURE MEASUREMENT FORCE SUMMING DEVICE The most commonly used summing devices are Flat or corrugated diaphragms Pivot torque Straight tube Single or double mass cantilever suspension Circular or twisted Bourdon tube Bellows

44 PRESSURE MEASUREMENT SECONDARY TRANSDUCERS The displacement produced by the action of the force summing devices is converted into a change of some electrical parameter. The various transducers used for this purpose are of the following types: Resistive Inductive Differential transformer Capacitive Photo-electric Piezo-electric Ionization Oscillation.

45 PRESSURE MEASUREMENT TYPES OF SUMMING DEVICES

46 PRESSURE MEASUREMENT - RESISTIVE TRANSDUCER RESISTIVE TRANSDUCER The electrical strain gauges attached to a diaphragm may be used for measurement of pressure. The diagram is shown in Figure The output of these strain gauges is a function of the applied strain, which in turn, is a function of the diaphragm deflection and the differential pressure. The deflection generally follows a linear variation with differential pressure P = P2 P1 (when the deflection is less than 1/3 of the diaphragm thickness). One of the disadvantages of this method is small physical area is required for mounting the strain gauges. Change in resistance of strain gauges on account of application of pressure is calibrated in terms of the differential pressure. Gauges of this type are made in sizes having a lower range of 100 kn/m2 to 3 MN/m2 to an upper range of 100 kn/m2 to 100 MN/m2

47 PRESSURE MEASUREMENT - RESISTIVE TRANSDUCER RESISTIVE TRANSDUCER

48 PRESSURE MEASUREMENT - INDUCTIVE TRANSDUCER INDUCTIVE TRANSDUCER This type of transducers has been successfully used as secondary transducers along with a diaphragm for measurement of pressure. Figure shows an arrangement which uses two coils; an upper and a lower coil which form the two arms of an ac bridge. The coils have equal number of turns. The other two arms of the bridge are formed by two equal resistances each of value R. The diaphragm is symmetrically placed with respect to the coils and so when P1 = P2, The reluctances of the path of magnetic flux for both the coils are equal and hence the inductances of the coils are equal.

49 PRESSURE MEASUREMENT - INDUCTIVE TRANSDUCER INDUCTIVE TRANSDUCER

50 PRESSURE MEASUREMENT - DIFFERENTIAL TRANSDUCER DIFFERENTIAL TRANSDUCER The linear variable differential transformers (LVDT) is used as a secondary transducer for measuring the pressure with bellows or bourdon tube acting as a primary transducers, i.e., as a force summing device. The pressure is converted into displacement which is sensed by the LVDT and transformed into a voltage. The two arrangements are shown in Figure and

51 PRESSURE MEASUREMENT - DIFFERENTIAL TRANSDUCER DIFFERENTIAL TRANSDUCER

52 PRESSURE MEASUREMENT - CAPACITIVE TRANSDUCER CAPACITIVE TRANSDUCER In this type of transducers, a linear characteristics can be achieved by using a differential arrangement for the capacitive displacement transducers. The arrangement using three plates is shown in Figure P1 and P2 are fixed plates and M is the movable plate to which the displacement to be measured is applied. Thus, two capacitors are there whose differential output is taken.

53 PRESSURE MEASUREMENT - CAPACITIVE TRANSDUCER CAPACITIVE TRANSDUCER

54 PRESSURE MEASUREMENT - CAPACITIVE TRANSDUCER CAPACITIVE TRANSDUCER

55 PRESSURE MEASUREMENT - CAPACITIVE TRANSDUCER CAPACITIVE TRANSDUCER

56 PRESSURE MEASUREMENT - PHOTOELECTRIC TRANSDUCER PHOTOELECTRIC TRANSDUCER

57 PRESSURE MEASUREMENT - PIEZO-ELECTRIC TRANSDUCER PIEZO-ELECTRIC TRANSDUCER When piezoelectric crystals are under the influence of some external force or pressure, they produce an emf. The force or displacement or pressure to be measured is applied to the crystal. The pressure is applied to the crystal through a force summing device. This causes a deformation which produces an emf which is a function of the deformation. This output emf may be measured to know the value of applied force and hence the pressure.

58 PRESSURE MEASUREMENT - PIEZO-ELECTRIC TRANSDUCER PIEZO-ELECTRIC TRANSDUCER

59 PRESSURE MEASUREMENT - IONISATION TRANSDUCERS IONISATION TRANSDUCER Ionisation is the process of removing an electron from an atom producing a free electron and a positively charged ion. Ionisation may be produced by the collision of a high speed electron from the atom. Figure shows the essential features of an ionisation-type gauge. Electrons are emitted from heated cathode using a filament and are accelerated towards the grid, which is positively charged. Some of the electrons are captured by the grid, producing grid current IG. Electrons having high kinetic energy pass through and cause ionization of gas atoms.

60 PRESSURE MEASUREMENT - IONISATION TRANSDUCERS IONISATION TRANSDUCER

61 PRESSURE MEASUREMENT - IONISATION TRANSDUCERS IONISATION TRANSDUCER

62 PRESSURE MEASUREMENT - OSCILLATION TRANSDUCERS OSCILLATION TRANSDUCERS These types of transducers use a force summing device to change the capacitance, C, or inductance, L, of an LC oscillation circuit. Figure shows the basic elements of LC transistor oscillator whose output frequency is affected by a change in the inductance of a coil. The change in inductance is caused by the force summing device acting upon an inductive device. The output of oscillator is a modulated output and can be demodulated and calibrated in terms of the pressure or force applied

63 PRESSURE MEASUREMENT - OSCILLATION TRANSDUCERS OSCILLATION TRANSDUCERS

64 IT S CONCLUSIO TIME!

65 CONCLUSIONS BASICS Sensor: A device that measures a physical quantity and converts it into signal which can be read by an observer or by an instrument. Transducer: Is a device that converts one type of energy or physical to another (generally electrical or mechanical) for various measurement purposes.

66 CONCLUSION TYPES OF TRANSDUCERS Linear Variable Differential Transformer (LVDT): uses displacement for measurement by excitation, resulting differential output Strain Gauges: detect and convert force or small mechanical displacement into electrical signals Electromagnetic Flow Meter: uses Faraday s Law of electromagnetic induction, and measure a flow using inductions of coils and electrodes

67 CONCLUSION TYPES OF TRANSDUCERS Temperature Transducers: Resistance Thermometers: employ a sensitive element of extremely pure platinum, copper or nickel wire that provides a definite resistance value at each temperature Thermocouple: consisting of two dissimilar metals joined together, is called a thermocouple and the voltage is called the Seebeck voltage Thermistors: semiconductors which behave as resistors with a high negative temperature coefficient of resistance

68 CONCLUSION TYPES OF TRANSDUCERS Pressure measurement: Resistive Transducers Inductive Transducers Capacitive Transducers Differential Transformers Photoelectric Transducers Piezoelectric Transducers Ionisation Transducers

69 REFERENCES VIDEO REFERENCES LVDT - Electrical Resistance Thermometer - Thermocouple - Electromagnetic Flow Meter - Photoelectric - Thermistor -

70 THAT S A WRAP! THANK YOU FOR LISTENING

Part 2. Sensor and Transducer Instrument Selection Criteria (3 Hour)

Part 2. Sensor and Transducer Instrument Selection Criteria (3 Hour) Part 2 Sensor and Transducer Instrument Selection Criteria (3 Hour) At the end of this chapter, you should be able to: Describe the definition of sensor and transducer Determine the specification of control

More information

Transducer. A device to which change or converts physical quantity in a more easily measurable quantity. Transducer. (Input) Sensor.

Transducer. A device to which change or converts physical quantity in a more easily measurable quantity. Transducer. (Input) Sensor. Transducer A device to which change or converts physical quantity in a more easily measurable quantity Transducer (Input) Sensor (Output) Actuator Sensor A device which senses and detects the physical

More information

Unit 3 Transducers. Lecture_3.1 Introduction to Transducers

Unit 3 Transducers. Lecture_3.1 Introduction to Transducers Unit 3 Transducers Lecture_3.1 Introduction to Transducers Introduction to transducers A transducer is a device that converts one form of energy to other form. It converts the measurand to a usable electrical

More information

INSTRUMENTATION ECE Fourth Semester. Presented By:- Sumit Grover Lect., Deptt. of ECE

INSTRUMENTATION ECE Fourth Semester. Presented By:- Sumit Grover Lect., Deptt. of ECE INSTRUMENTATION ECE Fourth Semester Presented By:- Sumit Grover Lect., Deptt. of ECE Detailed Contents Objectives Sensors and transducer Classification of transducers Temperature transducers Resistance

More information

Control Engineering BDA30703

Control Engineering BDA30703 Control Engineering BDA30703 Lecture 4: Transducers Prepared by: Ramhuzaini bin Abd. Rahman Expected Outcomes At the end of this lecture, students should be able to; 1) Explain a basic measurement system.

More information

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Fig. 1 Data acquisition block diagram

VTU NOTES QUESTION PAPERS NEWS RESULTS FORUMS Fig. 1 Data acquisition block diagram UNIT 7: Transducers: Classification and selection of transducers. Strain gauges. LVDT. Measurement of temperature and pressure. Photo-conductive and photo-voltaic cells. 06 Hours Nearly all engineering

More information

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements

Lecture 20. Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature MECH 373. Instrumentation and Measurements MECH 373 Instrumentation and Measurements Lecture 20 Measuring Pressure and Temperature (Chapter 9) Measuring Pressure Measuring Temperature 1 Measuring Acceleration and Vibration Accelerometers using

More information

Transducers. EEE355 Industrial Electronics

Transducers. EEE355 Industrial Electronics Transducers EEE355 Industrial Electronics 1 Terminology Transducers convert one form of energy into another Sensors/Actuators are input/output transducers Sensors can be passive (e.g. change in resistance)

More information

VALLIAMMAI ENGINEERING COLLEGE

VALLIAMMAI ENGINEERING COLLEGE VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203 DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING QUESTION BANK V SEMESTER EI6502 -INDUSTRIAL INSTRUMENTATION I Regulation 2013

More information

e453.eps 1 Change (or the absolute value) in the measured physical variable 2 Change in the sensor property is translated into low-power-level

e453.eps 1 Change (or the absolute value) in the measured physical variable 2 Change in the sensor property is translated into low-power-level 3 Basic Phenomenon in Effect in Sensor Operation Sensors Prof. Dr. M. Zahurul Haq zahurul@me.buet.ac.bd http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of

More information

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors

Slide 1. Temperatures Light (Optoelectronics) Magnetic Fields Strain Pressure Displacement and Rotation Acceleration Electronic Sensors Slide 1 Electronic Sensors Electronic sensors can be designed to detect a variety of quantitative aspects of a given physical system. Such quantities include: Temperatures Light (Optoelectronics) Magnetic

More information

I. MEASUREMENT OF TEMPERATURE

I. MEASUREMENT OF TEMPERATURE I. MEASUREMENT OF TEMPERATURE Most frequent measurement and control Direct contact: thermometer, Indirect contact: pyrometer (detect generated heat or sensing optical properties) 1. Definition of temperature

More information

Force and Displacement Measurement

Force and Displacement Measurement Force and Displacement Measurement Prof. R.G. Longoria Updated Fall 20 Simple ways to measure a force http://scienceblogs.com/dotphysics/200/02/diy_force_probe.php Example: Key Force/Deflection measure

More information

1. Distinguish the important characteristics of instrument that are totally electrical and totally electronic in nature. [16]

1. Distinguish the important characteristics of instrument that are totally electrical and totally electronic in nature. [16] Code No: RR320204 Set No. 1 1. Distinguish the important characteristics of instrument that are totally electrical and totally electronic in nature. [16] 2. Distinguish between deterministic signals and

More information

ECE421: Electronics for Instrumentation MEP382: Design of Applied Measurement Systems Lecture #2: Transduction Mechanisms

ECE421: Electronics for Instrumentation MEP382: Design of Applied Measurement Systems Lecture #2: Transduction Mechanisms ECE421: Electronics for Instrumentation MEP382: Design of Applied Measurement Systems Lecture #2: Transduction Mechanisms Mostafa Soliman, Ph.D. April 28 th 2014 Slides are borrowed from Dr. Moahmed Elshiekh

More information

Earlier Lecture. In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide.

Earlier Lecture. In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide. 41 1 Earlier Lecture In the earlier lecture, we have seen non metallic sensors like Silicon diode, Cernox and Ruthenium Oxide. Silicon diodes have negligible i 2 R losses. Cernox RTDs offer high response

More information

Transducers. ME 3251 Thermal Fluid Systems

Transducers. ME 3251 Thermal Fluid Systems Transducers ME 3251 Thermal Fluid Systems 1 Transducers Transform values of physical variables into equivalent electrical signals Converts a signal from one form to another form 2 Types of Transducers

More information

ELECTRONIC SENSORS PREAMBLE. This note gives a brief introduction to sensors. The focus is. on sensor mechanisms. It describes in general terms how

ELECTRONIC SENSORS PREAMBLE. This note gives a brief introduction to sensors. The focus is. on sensor mechanisms. It describes in general terms how ELECTRONIC SENSORS PREAMBLE This note gives a brief introduction to sensors. The focus is on sensor mechanisms. It describes in general terms how sensors work. It covers strain gage sensors in detail.

More information

e453.eps 1 Change (or the absolute value) in the measured physical variable 2 Change in the sensor property is translated into low-power-level

e453.eps 1 Change (or the absolute value) in the measured physical variable 2 Change in the sensor property is translated into low-power-level 3 Basic Phenomenon in Effect in Sensor Operation Measurement & Sensors Prof. Dr. M. Zahurul Haq http://teacher.buet.ac.bd/zahurul/ Department of Mechanical Engineering Bangladesh University of Engineering

More information

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity

Lecture 19. Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity MECH 373 Instrumentation and Measurements Lecture 19 Measurement of Solid-Mechanical Quantities (Chapter 8) Measuring Strain Measuring Displacement Measuring Linear Velocity Measuring Accepleration and

More information

15. Compare the result with the value you have taken above Compare the calculated pressure value with the actual pressure value that you have

15. Compare the result with the value you have taken above Compare the calculated pressure value with the actual pressure value that you have 105) to convert it to. 15. Compare the result with the value you have taken above. 17. 16. Compare the calculated pressure value with the actual pressure value that you have taken from the, is it the same?

More information

MCT151: Introduction to Mechatronics Lecture 10: Sensors & Transduction Mechanisms

MCT151: Introduction to Mechatronics Lecture 10: Sensors & Transduction Mechanisms Faculty of Engineering MCT151: Introduction to Mechatronics Lecture 10: Sensors & Transduction Mechanisms Slides are borrowed from Dr. Mohamed Elshiekh lectures Types of sensors Sensors are considered

More information

Sensors and transducers

Sensors and transducers Sensors and transducers Measurement is an important subsystem of a mechatronics system. Its main function is to collect the information on system status and to feed it to the micro-processor(s) for controlling

More information

Temperature Measurement

Temperature Measurement MECE 3320 Measurements & Instrumentation Temperature Measurement Dr. Isaac Choutapalli Department of Mechanical Engineering University of Texas Pan American Introduction Temperature is one of the most

More information

Unit 57: Mechatronic System

Unit 57: Mechatronic System Unit 57: Mechatronic System Unit code: F/60/46 QCF level: 4 Credit value: 5 OUTCOME 2 TUTORIAL 2 - SENSOR TECHNOLOGIES 2 Understand electro-mechanical models and components in mechatronic systems and products

More information

ME 515 Mechatronics. Overview of Computer based Control System

ME 515 Mechatronics. Overview of Computer based Control System ME 515 Mechatronics Introduction to Sensors I Asanga Ratnaweera Department of Faculty of Engineering University of Peradeniya Tel: 081239 (3627) Email: asangar@pdn.ac.lk Overview of Computer based Control

More information

US06CPHY06 Instrumentation and Sensors UNIT 2 Part 2 Pressure Measurements

US06CPHY06 Instrumentation and Sensors UNIT 2 Part 2 Pressure Measurements US06CPHY06 Instrumentation and Sensors UNIT 2 Part 2 Pressure Measurements Pressure Measurements What is Pressure? Pressure: Force exerted by a fluid on unit surface area of a container i.e. P = F/A. Units

More information

Overview. Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples

Overview. Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples Intro to Sensors Overview Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples Sensors? American National Standards Institute A device

More information

Sensors and Transducers. mywbut.com

Sensors and Transducers. mywbut.com Sensors and Transducers 1 Objectives At the end of this chapter, the students should be able to: describe the principle of operation of various sensors and transducers; namely.. Resistive Position Transducers.

More information

LABORATORY MANUAL MEASUREMENTS & INSTRUMENTATION (ME- 318-F)

LABORATORY MANUAL MEASUREMENTS & INSTRUMENTATION (ME- 318-F) LABORATORY MANUAL MEASUREMENTS & INSTRUMENTATION (ME- 318-F) LIST OF THE EXPERIMENT S. NO. NAME OF THE EXPERIMENT PAGE NO FROM TO 1. To measure stress and strain using strain gauge mounted on a cantilever

More information

Module I Module I: traditional test instrumentation and acquisition systems. Prof. Ramat, Stefano

Module I Module I: traditional test instrumentation and acquisition systems. Prof. Ramat, Stefano Preparatory Course (task NA 3.6) Basics of experimental testing and theoretical background Module I Module I: traditional test instrumentation and acquisition systems Prof. Ramat, Stefano Transducers A

More information

TRANSDUCERS transducer Measurand

TRANSDUCERS transducer Measurand TRANSDUCERS Transduction: transformation of one form of energy into another form. Sensing with specificity the input energy from the measurand by means of a "sensing element" and then transforming it into

More information

III B.Tech. II Semester Regular Examinations, April/May INSTRUMENTATION & CONTROL SYSTEMS (Mechanical Engineering) Time: 3 Hours Max Marks: 75

III B.Tech. II Semester Regular Examinations, April/May INSTRUMENTATION & CONTROL SYSTEMS (Mechanical Engineering) Time: 3 Hours Max Marks: 75 R10 Set No: 1 1. (a) Distinguish between accuracy and Precision. Which of these is more desirable during the act of measurement and why? (b) Discuss the necessity and importance of dynamic performance

More information

Temperature Scales. Temperature, and Temperature Dependent on Physical Properties. Temperature. Temperature Scale

Temperature Scales. Temperature, and Temperature Dependent on Physical Properties. Temperature. Temperature Scale Temperature Scales The Celsius, Fahrenheit, and Kelvin Temperature Scales: Temperature, and Temperature Dependent on Physical Properties Physics Enhancement Programme Dr. M.H. CHAN, HKBU 9 T F T 5 T T

More information

Overview. Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples

Overview. Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples Intro to Sensors Overview Sensors? Commonly Detectable Phenomenon Physical Principles How Sensors Work? Need for Sensors Choosing a Sensor Examples Sensors? American National Standards Institute A device

More information

COURSE OF Prepared By: MUHAMMAD MOEEN SULTAN Department of Mechanical Engineering UET Lahore, KSK Campus

COURSE OF Prepared By: MUHAMMAD MOEEN SULTAN Department of Mechanical Engineering UET Lahore, KSK Campus COURSE OF Active and passive instruments Null-type and deflection-type instruments Analogue and digital instruments In active instruments, the external power source is usually required to produce an output

More information

UNIT 2 STRAIN MEASURMENTS, FORCE MEASUREMENTS. Therefore, resistance strain gauges are also known as piezo-resistive gauges.

UNIT 2 STRAIN MEASURMENTS, FORCE MEASUREMENTS. Therefore, resistance strain gauges are also known as piezo-resistive gauges. UNIT 2 STRAIN MEASURMENTS, FORCE MEASUREMENTS STRAIN MEASURMENTS Introduction: When a metal conductor is stretched or compressed, its resistance changes an account of the fact that both length and diameter

More information

ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS

ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS UNIT 2: ELECTRICITY AND MAGNETISM, A. C. THEORY AND ELECTRONICS, ATOMIC AND NUCLEAR PHYSICS MODULE 1: ELECTRICITY AND MAGNETISM GENERAL OBJECTIVES On completion of this Module, students should: 1. understand

More information

Measurement Techniques for Engineers. Motion and Vibration Measurement

Measurement Techniques for Engineers. Motion and Vibration Measurement Measurement Techniques for Engineers Motion and Vibration Measurement Introduction Quantities that may need to be measured are velocity, acceleration and vibration amplitude Quantities useful in predicting

More information

APPLICATIONS OF VIBRATION TRANSDUCERS

APPLICATIONS OF VIBRATION TRANSDUCERS APPLICATIONS OF VIBRATION TRANSDUCERS 1) Measurements on Structures or Machinery Casings: Accelerometers and Velocity Sensors Used in gas turbines, axial compressors, small and mid-size pumps. These sensors

More information

REPORT ON TRANSDUCERS TRANSDUCERS

REPORT ON TRANSDUCERS TRANSDUCERS REPORT ON TRANSDUCERS TRANSDUCERS DEFINITIONS: TRANSDUCER A transducer is a device, usually electrical, electronic, electro-mechanical, electromagnetic, photonic, or photovoltaic that converts one type

More information

QUESTION BANK DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING UNIT I - INTRODUCTION SYLLABUS

QUESTION BANK DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING UNIT I - INTRODUCTION SYLLABUS QUESTION BANK DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING YEAR/SEM NAME OF THE SUBJECT NAME OF THE FACULTY : II / IV : EE6404 MEASUREMENTS AND INSTRUMENTATION : K.M.S.MUTHUKUMARA RAJAGURU, AP/EEE

More information

Strain, Force, and Pressure

Strain, Force, and Pressure 10-1 10-1 Strain, Force, and Pressure Force is that which results in acceleration (when forces don t cancel). Strain is the change in shape of an object...... usually due to some force. (Force is usually

More information

Module 3 Electrical Fundamentals

Module 3 Electrical Fundamentals 3.1 Electron Theory Structure and distribution of electrical charges within: atoms, molecules, ions, compounds; Molecular structure of conductors, semiconductors and insulators. 3.2 Static Electricity

More information

1. Mark the correct statement(s)

1. Mark the correct statement(s) 1. Mark the correct statement(s) Figure to the right shows a mass measurement scale using a spring. 1.1 The span of the scale is a) 16 kg b) 21 kg c) 11 kg d) 5-16 kg 1.2 The range of the scale is a) 16

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 04 ELECTRONICS AND COMMUNICATION ENGINEERING Name : Electronic Measurements and Instrumentation Code : A50422 Class : III -

More information

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera

1 Written and composed by: Prof. Muhammad Ali Malik (M. Phil. Physics), Govt. Degree College, Naushera ELECTROMAGNETISM Q # 1. Describe the properties of magnetic field due to current in a long straight conductor. Ans. When the heavy current is passed through a straight conductor: i. A magnetic field is

More information

The secondary winding have equal no. of turns. The secondary windings are placed identically on either side of the primary winding.

The secondary winding have equal no. of turns. The secondary windings are placed identically on either side of the primary winding. UNIT 4 DISPLACEMENT MEASURMENT Electrical comparator Working principle of Electrical comparators: These instruments are based on the theory of Wheatstone A.C. Bridge. When the bridge is electrically balanced,

More information

INSTRUMENTATION AND CONTROL SYSTEMS LAB

INSTRUMENTATION AND CONTROL SYSTEMS LAB INSTRUMENTATION AND CONTROL SYSTEMS LAB INDEX S.No. Name of the Experiment Page No. 1 Linear Variable Differential Transformer (L.V.D.T) 2 Speed Measurement Module 3 Capacitive Pickup 4 Thermister Module

More information

Course Name: Sensor and Transducer Course Code: EE 802B Credit: 3

Course Name: Sensor and Transducer Course Code: EE 802B Credit: 3 Course Name: Sensor and Transducer Course Code: EE 802B Credit: 3 Prerequisites: Sl. No. Subject Description Level of Study 01 Basic Electrical & Electronics Engineering 02 Electrical & Electronics Measurement

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad DEPARTMENT OF ECE QUESTION BANK. : G.Lakshminarayana, Asst.

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad DEPARTMENT OF ECE QUESTION BANK. : G.Lakshminarayana, Asst. ` INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 500 04 DEPARTMENT OF ECE QUESTION BANK Name Code Class Branch P a g e : Electronic Measurements and Instrumentation : A504 : III - B. Tech

More information

5) Define Instrumental error These are the errors inherent in measuring instrument because of their mechanical structure.

5) Define Instrumental error These are the errors inherent in measuring instrument because of their mechanical structure. EI1252- TRANSDUCER ENGINEERING TWO MARKS Q & A UNIT 1 1) What is instrument? It is a device for determining the value or magnitude of a quantity or variable. 2) Add 826 ± 5 to 628 ± 3. N1 = 826 ± 5 ( =

More information

Objective of Lecture Discuss resistivity and the three categories of materials Chapter 2.1 Show the mathematical relationships between charge,

Objective of Lecture Discuss resistivity and the three categories of materials Chapter 2.1 Show the mathematical relationships between charge, Objective of Lecture Discuss resistivity and the three categories of materials Chapter 2.1 Show the mathematical relationships between charge, current, voltage, and energy. Chapter 2.2-2.4 Define resistance

More information

Cryogenic Instrumentation I Thermometry OUTLINE Thermometry Pt (pure metal) Temperature Ranges of Thermometer Application Typical Resistive Thermal

Cryogenic Instrumentation I Thermometry OUTLINE Thermometry Pt (pure metal) Temperature Ranges of Thermometer Application Typical Resistive Thermal Cryogenic Instrumentation I 1. Thermometry 2. anges of Application 3. Constant Volume 4. Thermocouples 5. Time esponse Data 6. 4 Terminal esistance Measurement OUTLINE 8. Pt (pure metal) 9. Typical esistive

More information

Chapter 3. Lecture 3 Chapter 3 Basic Principles of Transducers. Chapter 3 - Definitions. Chapter 3. Chapter 3 7/28/2010. Chapter 3 - Definitions.

Chapter 3. Lecture 3 Chapter 3 Basic Principles of Transducers. Chapter 3 - Definitions. Chapter 3. Chapter 3 7/28/2010. Chapter 3 - Definitions. Lecture 3 Basic Principles of ransducers By Hung Nguyen Maritime Engineering and Hydrodynamics Learning Outcomes: p. 3-3 Contents of : resistance transducers capacitance transducers inductance transducers

More information

Objective Type Questions Instrumentation System & Devices (IDS)

Objective Type Questions Instrumentation System & Devices (IDS) 1. A balance beam scale uses which of the following units? a. grams b.pounds c. ounces d. kilograms 2. Which of the following would be about the height of the average doorway? a. 2 meters b. 2 centimeters

More information

CHAPTER 9: TEMPERATURE, PRESSURE, STRAIN AND MOTION MEASUREMENTS

CHAPTER 9: TEMPERATURE, PRESSURE, STRAIN AND MOTION MEASUREMENTS CHAPTER 9: TEMPERATURE, PRESSURE, STRAIN AND MOTION MEASUREMENTS I. MEASUREMENT OF TEMPERATURE 1. Introduction In industrial-process control, temperature is the most frequently controlled and measured

More information

2. (a) Differentiate between rare metal thermocouples and base metal thermocouples.

2. (a) Differentiate between rare metal thermocouples and base metal thermocouples. Code No: R05410304 Set No. 1 1. (a) Distinguish between direct and indirect methods of measurement with suitable examples. (b) What are desired, modifying and interfering inputs for an instrumentation

More information

Section 7. Temperature Measurement

Section 7. Temperature Measurement Section 7 Temperature Measurement 7/25/2017 Engineering Measurements 7 1 Working Definition Temperature is a measure of the average kinetic energy of the molecules that make of a substance. After time,

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad -500 043 MECHANICAL ENGINEERING TUTORIAL QUESTION BANK Name : INSTRUMENTATION AND CONTROL SYSTEMS Code : A70343 Class : IV B. Tech

More information

Sensors Lecture #5: Position and Displacement using Resistive, Capacitive and Inductive Sensors

Sensors Lecture #5: Position and Displacement using Resistive, Capacitive and Inductive Sensors Sensors Lecture #5: Position and Displacement using Resistive, Capacitive and Inductive Sensors Jerome P. Lynch Department of Civil and Environmental Engineering Department of Electrical Engineering and

More information

Set No. 1 1. (a) Differentiate among Desired, Modifying and Interfering inputs. (b) How do you eliminate the effects of interfering and modifying inputs? Explain 2. (a) Define the term Transducer and explain

More information

INSTRUMENTATION AND CONTROL

INSTRUMENTATION AND CONTROL INSTRUMENTATION AND CONTROL This tutorial provides minimal engineering science necessary to complete the rest of the tutorials. Greater depth of the individual topics can be found on the web site. It is

More information

1P22/1P92 Exam Review Problems 2013 Friday, January 14, :03 AM. Chapter 20

1P22/1P92 Exam Review Problems 2013 Friday, January 14, :03 AM. Chapter 20 Exam Review Problems 2011 Page 1 1P22/1P92 Exam Review Problems 2013 Friday, January 14, 2011 10:03 AM Chapter 20 True or false? 1 It's impossible to place a charge on an insulator, because no current

More information

Module 2 Mechanics of Machining. Version 2 ME IIT, Kharagpur

Module 2 Mechanics of Machining. Version 2 ME IIT, Kharagpur Module 2 Mechanics of Machining Lesson 10 Dynamometers for measuring cutting forces Instructional objectives At the end of this lesson, the students would be able to (i) (ii) (iii) (iv) show the general

More information

STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING

STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING STRAIN GAUGES YEDITEPE UNIVERSITY DEPARTMENT OF MECHANICAL ENGINEERING 1 YEDITEPE UNIVERSITY ENGINEERING FACULTY MECHANICAL ENGINEERING LABORATORY 1. Objective: Strain Gauges Know how the change in resistance

More information

An Essential Requirement in CV Based Industrial Appliances.

An Essential Requirement in CV Based Industrial Appliances. Measurement of Flow P M V Subbarao Professor Mechanical Engineering Department An Essential Requirement in CV Based Industrial Appliances. Mathematics of Flow Rate The Scalar Product of two vectors, namely

More information

EE 5344 Introduction to MEMS CHAPTER 6 Mechanical Sensors. 1. Position Displacement x, θ 2. Velocity, speed Kinematic

EE 5344 Introduction to MEMS CHAPTER 6 Mechanical Sensors. 1. Position Displacement x, θ 2. Velocity, speed Kinematic I. Mechanical Measurands: 1. Classification of main types: EE 5344 Introduction MEMS CHAPTER 6 Mechanical Sensors 1. Position Displacement x, θ. Velocity, speed Kinematic dx dθ v =, = ω 3. Acceleration

More information

THERMOCOUPLE CHARACTERISTICS TRAINER

THERMOCOUPLE CHARACTERISTICS TRAINER THERMOCOUPLE CHARACTERISTICS TRAINER (Model No : ) User Manual Version 2.0 Technical Clarification /Suggestion : / Technical Support Division, Vi Microsystems Pvt. Ltd., Plot No :75,Electronics Estate,

More information

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad

INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad INSTITUTE OF AERONAUTICAL ENGINEERING (Autonomous) Dundigal, Hyderabad - 500 043 ELECTRONICS AND COMMUNICATION ENGINEERING Course Name : Electronic Measurements and Instrumentation Course Code : A50422

More information

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) Subject Code : Page No: 1/

MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC Certified) Subject Code : Page No: 1/ MAHARASHTRA STATE BOARD OF TECHNICAL EDUCATION (Autonomous) (ISO/IEC 27001 2005 Certified) SUMMER 14 EXAMINATION Model Answer Subject Code : 17434 Page No: 1/ Important Instructions to examiners: 1) The

More information

Induction_P1. 1. [1 mark]

Induction_P1. 1. [1 mark] Induction_P1 1. [1 mark] Two identical circular coils are placed one below the other so that their planes are both horizontal. The top coil is connected to a cell and a switch. The switch is closed and

More information

Theory and Design for Mechanical Measurements

Theory and Design for Mechanical Measurements Theory and Design for Mechanical Measurements Third Edition Richard S. Figliola Clemson University Donald E. Beasley Clemson University John Wiley & Sons, Inc. New York / Chichester / Weinheim / Brisbane

More information

MARKING SCHEME SET 55/1/G Q. No. Expected Answer / Value Points Marks Total Marks

MARKING SCHEME SET 55/1/G Q. No. Expected Answer / Value Points Marks Total Marks MARKING SCHEME SET 55//G Q. No. Expected Answer / Value Points Marks Total Marks Set,Q Set2,Q5 Set,Q2 Set,Q2 Set2,Q4 Set,Q5 Set,Q Set2,Q2 Set,Q4 Set,Q4 Set2,Q Set,Q Set,Q5 Set2,Q Set,Q Set,Q6 Set2,Q7 Set,Q0

More information

Units (Different systems of units, SI units, fundamental and derived units)

Units (Different systems of units, SI units, fundamental and derived units) Physics: Units & Measurement: Units (Different systems of units, SI units, fundamental and derived units) Dimensional Analysis Precision and significant figures Fundamental measurements in Physics (Vernier

More information

Biosensors and Instrumentation: Tutorial 2

Biosensors and Instrumentation: Tutorial 2 Biosensors and Instrumentation: Tutorial 2. One of the most straightforward methods of monitoring temperature is to use the thermal variation of a resistor... Suggest a possible problem with the use of

More information

CHAPTER 7: TRANSDUCERS In general terms, the transduction process involves the transformation of one form of energy into another form. This process consists of sensing with specificity the input energy

More information

SENSORS and TRANSDUCERS

SENSORS and TRANSDUCERS SENSORS and TRANSDUCERS Tadeusz Stepinski, Signaler och system The Mechanical Energy Domain Physics Surface acoustic waves Silicon microresonators Variable resistance sensors Piezoelectric sensors Capacitive

More information

AP Physics C Mechanics Objectives

AP Physics C Mechanics Objectives AP Physics C Mechanics Objectives I. KINEMATICS A. Motion in One Dimension 1. The relationships among position, velocity and acceleration a. Given a graph of position vs. time, identify or sketch a graph

More information

Optics Definitions. The apparent movement of one object relative to another due to the motion of the observer is called parallax.

Optics Definitions. The apparent movement of one object relative to another due to the motion of the observer is called parallax. Optics Definitions Reflection is the bouncing of light off an object Laws of Reflection of Light: 1. The incident ray, the normal at the point of incidence and the reflected ray all lie in the same plane.

More information

Industrial Instrumentation Prof. A. Barua Department of Electrical Engineering Indian Institute of Technology - Kharagpur

Industrial Instrumentation Prof. A. Barua Department of Electrical Engineering Indian Institute of Technology - Kharagpur Industrial Instrumentation Prof. A. Barua Department of Electrical Engineering Indian Institute of Technology - Kharagpur Lecture - 19 Low Pressure Measurement Welcome to the lesson 19 of Industrial Instrumentation.

More information

Measurements in Mechatronic design. Transducers

Measurements in Mechatronic design. Transducers Measurements in Mechatronic design Transducers Quantities Current Voltage Torque Force Magnetic flux Distance Temperature Measurement system Physical quanties Transducer Signal conditioning Measurement

More information

Finite Element Analysis of Piezoelectric Cantilever

Finite Element Analysis of Piezoelectric Cantilever Finite Element Analysis of Piezoelectric Cantilever Nitin N More Department of Mechanical Engineering K.L.E S College of Engineering and Technology, Belgaum, Karnataka, India. Abstract- Energy (or power)

More information

[ ] Sensors for Temperature Measurement, and Their Application 2L R 1 1 T 1 T 2

[ ] Sensors for Temperature Measurement, and Their Application 2L R 1 1 T 1 T 2 Sensors for Temperature Measurement, and Their Application In today s market, it is very rare to see electronic equipment that has not undergone extensive thermal evaluation, either by measurement or simulation.

More information

MODEL TEST - 1 PHYSICS

MODEL TEST - 1 PHYSICS MODEL TEST - 1 PHYSICS [Time: 3 Hrs] [Max. Marks: 70] Note: 1. All questions are compulsory. 2. Neat diagrams must be drawn wherever necessary. 3. Figures to the right indicate full marks. 4. Use of only

More information

Scheme & Solutions of 14EI 505 (OCT-2018)

Scheme & Solutions of 14EI 505 (OCT-2018) Scheme & Solutions of 14EI 505 (OCT-2018) Prepared By: P. Vinodh Babu Associate Professor Department of EIE Bapatla Engineering College Bapatla-522102 Phone numbers: 9490126829, 7386014802 Hall Ticket

More information

Advanced Measurements

Advanced Measurements Albaha University Faculty of Engineering Mechanical Engineering Department Lecture 11: Force, Strain, and Tactile Sensors Ossama Abouelatta o_abouelatta@yahoo.com Mechanical Engineering Department Faculty

More information

(Refer Slide Time 03:12)

(Refer Slide Time 03:12) Mechanical Measurements and Metrology Prof. S. P. Venkateshan Department of Mechanical Engineering Indian Institute of Technology, Madras Module -2 Lecture - 20 Pressure Measurement So this will be lecture

More information

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January ISSN

International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January ISSN International Journal of Scientific & Engineering Research, Volume 5, Issue 1, January-214 29 An Experimental Analysis of Stress Relaxation in Nonwoven Fabrics Sajid Ahmed Qureshi ABSTRACT - The current

More information

ANAND INSTITUTE OF HIGHER TECHNOLOGY, Kazhipattur, Chennai DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING

ANAND INSTITUTE OF HIGHER TECHNOLOGY, Kazhipattur, Chennai DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING ANAND INSTITUTE OF HIGHER TECHNOLOGY, Kazhipattur, Chennai-603 103 DEPARTMENT OF ELECTRONICS AND INSTRUMENTATION ENGINEERING 2 Marks and 16 Marks QUESTION BANK Course code / Course Name: EI2251 / INDUSTRIAL

More information

Bridge Measurement 2.1 INTRODUCTION Advantages of Bridge Circuit

Bridge Measurement 2.1 INTRODUCTION Advantages of Bridge Circuit 2 Bridge Measurement 2.1 INTRODUCTION Bridges are often used for the precision measurement of component values, like resistance, inductance, capacitance, etc. The simplest form of a bridge circuit consists

More information

Temperature measurement

Temperature measurement emperature measurement BASICS Interest in emperature measurements appeared definitively later as respect to other quantities. emperature is an intensive quantity (a quantity strictly correlated to temperature

More information

Subject: BT6008 Process Measurement and Control. The General Control System

Subject: BT6008 Process Measurement and Control. The General Control System WALJAT COLLEGES OF APPLIED SCIENCES In academic partnership with BIRLA INSTITUTE OF TECHNOLOGY Question Bank Course: Biotechnology Session: 005-006 Subject: BT6008 Process Measurement and Control Semester:

More information

Cryogenic Engineering Prof. M. D. Atrey Department of Mechanical Engineering Indian Institute of Technology, Bombay

Cryogenic Engineering Prof. M. D. Atrey Department of Mechanical Engineering Indian Institute of Technology, Bombay Cryogenic Engineering Prof. M. D. Atrey Department of Mechanical Engineering Indian Institute of Technology, Bombay Lecture No. # 41 Instrumentation in Cryogenics (Refer Slide Time: 00:31) So, welcome

More information

Most matter is electrically neutral; its atoms and molecules have the same number of electrons as protons.

Most matter is electrically neutral; its atoms and molecules have the same number of electrons as protons. Magnetism Electricity Magnetism Magnetic fields are produced by the intrinsic magnetic moments of elementary particles associated with a fundamental quantum property, their spin. -> permanent magnets Magnetic

More information

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM

SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM SECTION 3 BASIC AUTOMATIC CONTROLS UNIT 12 BASIC ELECTRICITY AND MAGNETISM Unit Objectives Describe the structure of an atom. Identify atoms with a positive charge and atoms with a negative charge. Explain

More information

5. ELECTRIC CURRENTS

5. ELECTRIC CURRENTS 5. ELECTRIC CURRENTS TOPIC OUTLINE Section Recommended Time Giancoli Section 5.1 Potential Difference, Current, Resistance 5.2 Electric Circuits 3h 19.1, 19.2 6.2 Electric Field and Force 6.3 Magnetic

More information

ECNG3032 Control and Instrumentation I

ECNG3032 Control and Instrumentation I sensor ECNG3032 Control and Instrumentation I Lecture 1 Temperature Sensors Sensors The sensor is the first element in the measurement system. Measurand Transducer Principle Excitation Signal Interface

More information

PANDIAN SARASWATHI YADAV ENGINEERING COLLEGE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6404-MEASUREMENTS AND INSTRUMENTATION

PANDIAN SARASWATHI YADAV ENGINEERING COLLEGE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6404-MEASUREMENTS AND INSTRUMENTATION PANDIAN SARASWATHI YADAV ENGINEERING COLLEGE DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING EE6404-MEASUREMENTS AND INSTRUMENTATION ACADEMIC YEAR: 2015-2016 (EVEN SEMESTER) Branch: EEE QUESTION BANK

More information

Siddharth Institute of Engineering & Technology

Siddharth Institute of Engineering & Technology SIDDHARTH INSTITUTE OF ENGINEERING & TECHNOLOGY :: PUTTUR (AUTONOMOUS) (Approved by AICTE, New Delhi & Affiliated to JNTUA, Anantapuramu) (Accredited by NBA & Accredited by NAAC with A Grade) (An ISO 9001:2008

More information