Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design

Size: px
Start display at page:

Download "Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design"

Transcription

1 Lecture #06 September 18, 2014 The rocket equation Mass ratio and performance Structural and payload mass fractions Regression analysis Multistaging Optimal ΔV distribution between stages Trade-off ratios Parallel staging Modular staging David L. Akin - All rights reserved

2 Notes Turn in Systems Engineering Team Project today Post files on your group discussion site on Canvas Problems for lectures 3-6 will be posted shortly but 2

3 Lecture #04 Home Problem Chose a human-carrying spacecraft from the past or present (e.g., Mercury, Gemini, Apollo (CSM or LM), Soyuz, Skylab, ISS, Mir, Dragon V2, Orion ) Create a solid model using the system of your choice (e.g., Inventor, NX, Solidworks, Creo) Create and turn in Dimensioned three-view Interior view with crew accommodations Sales shot of vehicle (perspective, lighting, background ) 3

4 Derivation of the Rocket Equation Momentum at time t: Momentum at time t+δt: Some algebraic manipulation gives: M = mv Take to limits and integrate: Δm V e m v-v e m-δm v M =(m m)(v + v)+ m(v V e ) mfinal m initial m v = mv e dm m = Vfinal V initial dv V e v+δv 4

5 The Rocket Equation Alternate forms Basic definitions/concepts Mass ratio r m final or R m initial m initial m final r m final = e V Ve m ( initial ) mfinal v = V e ln = V e ln r Nondimensional velocity change Velocity ratio 5 m initial V V e

6 Rocket Equation (First Look) Mass Ratio, (M final /M initial ) Typical Range for Launch to Low Earth Orbit Velocity Ratio, (ΔV/Ve) 6

7 Sources and Categories of Vehicle Mass Payload Propellants Structure Propulsion Avionics Power Mechanisms Thermal Etc. 7

8 Sources and Categories of Vehicle Mass Payload Propellants Inert Mass Structure Propulsion Avionics Power Mechanisms Thermal Etc. 8

9 Basic Vehicle Parameters Basic mass summary Inert mass fraction Payload fraction m o = m pl + m pr + m in δ m in m o = λ m pl m o = Parametric mass ratio r = λ + δ m in m pl + m pr + m in m pl m pl + m pr + m in m o =initial mass m pl =payload mass m pr =propellant mass m in =inert mass 9

10 Rocket Equation (including Inert Mass) Payload Fraction, (M payload /M initial ) Typical Range for Launch to Low Earth Orbit Inert Mass Fraction δ Velocity Ratio, (ΔV/Ve) 10

11 Limiting Performance Based on Inert Asymptotic Velocity Ratio, (ΔV/Ve) Typical Feasible Design Range for Inert Mass Fraction Inert Mass Fraction, (M inert /M initial ) 11

12 Regression Analysis of Existing Vehicles Veh/Stage prop mass gross mass Type Propellants Isp vac isp sl sigma eps delta (lbs) (lbs) (sec) (sec) Delta 6925 Stage 2 13,367 15,394 StorabN2O4-A Delta 7925 Stage 2 13,367 15,394 StorabN2O4-A Titan II Stage 2 59,000 65,000 StorabN2O4-A Titan III Stage 2 77,200 83,600 StorabN2O4-A Titan IV Stage 2 77,200 87,000 StorabN2O4-A Proton Stage 3 110, ,000 StorabN2O4-A Titan II Stage 1 260, ,000 StorabN2O4-A Titan III Stage 1 294, ,000 StorabN2O4-A Titan IV Stage 1 340, ,000 StorabN2O4-A Proton Stage 2 330, ,000 StorabN2O4-A Proton Stage 1 904,000 1,004,000 StorabN2O4-A average standard deviation

13 Inert Mass Fractions for Existing LVs Inert Mass Fraction ,000 10,000 Gross Mass (MT) LOX/LH2 LOX/RP-1 Solid Storable 13

14 Regression Analysis Given a set of N data points (x i,y i ) Linear curve fit: y=ax+b find A and B to minimize sum squared error N error = (Ax i + B y i ) 2 Analytical solutions exist, or use Solver in Excel Power law fit: y=bx A error = i=1 Polynomial, exponential, many other fits possible i=1 N [A log(x i )+B log(y i )] 2 14

15 Solution of Least-Squares Linear (error) A A N x 2 i + B i=1 N =2 (Ax i + B y i )x i =0 i=1 N x i i=1 (error) B N x i y i =0 i=1 N =2 (Ax i + B y i )=0 A i=1 N x i + NB i=1 N y i =0 i=1 A = N x i y i x i yi N x 2 i ( x i ) 2 B = yi x 2 i x i xi y i N x 2 i ( x i ) 2 15

16 Regression Analysis - Storables Inert Mass Fraction R 2 = ,000 Gross Mass (MT) 16

17 Regression Values for Design Parameters Vacuum Ve (m/sec) Inert Mass Fraction λ Max ΔV (m/sec) LOX/LH ,070 LOX/RP Storables Solids

18 Stage Inert Mass Fraction Estimation LOX/LH2 =0.987 (M stage hkgi) storables = (M stage hkgi)

19 Revised Analysis With ε Instead of δ r = + =) = r r = m pl + m in m pl + m pr + m in r = m pl m pr +m in + m in m pr +m in m pl m pr +m in + m pr+m in m pr +m in r = + +1 where m pl m in + m pr 19 = r 1 r

20 The Rocket Equation for Multiple Stages Assume two stages V 1 = V e1 ln V 2 = V e2 ln Assume V e1 =V e2 =V e ( mfinal1 m initial1 ( mfinal2 m initial2 ) ) = V e1 ln(r 1 ) = V e2 ln(r 2 ) V 1 + V 2 = V e ln(r 1 ) V e ln(r 2 )= V e ln(r 1 r 2 ) 20

21 Continued Look at Multistaging There s a historical tendency to define r 0 =r 1 r 2 V 1 + V 2 = V e ln (r 1 r 2 ) = V e ln (r 0 ) But it s important to remember that it s really V 1 + V 2 = V e ln (r 1 r 2 ) = V e ln m final1 m initial1 m final2 m initial2 And that r 0 has no physical significance, since m final1 = m initial2 r 0 = m final2 m initial1 21

22 Multistage Inert Mass Fraction Total inert mass fraction Convert to dimensionless parameters δ 0 = m in,1 + m in,2 + m in,3 m 0 δ 0 = m in,1 m 0 0 = General form of the equation n stages j 1 0 = + m in,2 m 0,2 m 0,2 m 0 22 j=1 = m in,1 m 0 + m in,2 m 0 + m in,3 m 0,3 m 0,3 m 0,2 m 0,2 m 0 j =1 + m in,3 m 0

23 Multistage Payload Fraction Total payload fraction (3 stage example) λ 0 = m pl m 0 = m pl m 0,3 m 0,3 m 0,2 m 0,2 m 0 Convert to dimensionless parameters λ 0 = λ 3 λ 2 λ 1 Generic form of the equation λ 0 = n stages j=1 λ j 23

24 Effect of Staging 0.25 Inert Mass Fraction δ=0.15 Payload Fraction stage 2 stage 3 stage 4 stage Velocity Ratio (ΔV/Ve) 24

25 Effect of ΔV Distribution 70 1st Stage: Solids 2nd Stage: LOX/LH2 Normalized Mass (kg/kg of payload) Stage 2 ΔV (m/sec) Total mass Stage 2 mass Stage 1 mass 25

26 ΔV Distribution and Design Parameters st Stage: Solids 2nd Stage: LOX/LH delta_0 lambda_0 lambda/delta Stage 2 ΔV (m/sec) 26

27 Lagrange Multipliers Given an objective function y = f(x) subject to constraint function z = g(x) Create a new objective function y = f(x)+ [g(x) z] Solve simultaneous equations y x = 0 y = 0 27

28 Optimum ΔV Distribution Between Stages Maximize payload fraction (2 stage case) subject to constraint function Create a new objective function λ o = λ 0 = λ 1 λ 2 =(r 1 δ 1 )(r 2 δ 2 ) V total = V 1 + V 2 ( e V 1 V e,1 δ 1 )( e V 2 V e,2 δ 2 ) + K [ V 1 + V 2 V total ] Very messy for partial derivatives 28

29 Optimum ΔV Distribution (continued) Use substitute objective function max (λ o ) max [ln (λ o )] Create a new constrained objective function ln (λ o )=ln (r 1 δ 1 )+ln (r 2 δ 2 )+K [ V 1 + V 2 V total ] Take partials and set equal to zero [ln (λ o )] r 1 =0 [ln (λ o )] r 2 =0 [ln (λ o )] K =0 29

30 Optimum ΔV Special Cases Generic partial of objective function [ln (λ o )] r i = 1 r i δ i + K V e,i r i =0 Case 1: δ 1 =δ 2 V e,1 =V e,2 r 1 = r 2 = V 1 = V 2 = V total 2 Same principle holds for n stages r 1 = r 2 = = r n = V 1 = V 2 = = V n = V total n 30

31 Sensitivity to Inert Mass ΔV for multistaged rocket where V tot = n stages k=1 V k = n k=1 m o,k = m pl + m pr,k + m in,k + m f,k = m pl + m in,k + nx j=k+1 V e,k ln nx j=k+1 m o,k m f,k (m pr,j + m in,j ) (m pr,j + m in,j ) 31

32 Finding Payload Sensitivity to Inert Mass Given the equation linking mass to ΔV, take and solve to find m pl m in,k ( V tot ) m pl = ( Vtot )=0 This equation shows the trade-off ratio - Δpayload resulting from a change in inert mass for stage k (for a vehicle with N total stages) dm pl + ( V tot) m in,j dm in,j =0 32 k j=1 V e,j ( N l=1 V e,l ( ) 1 m o,j 1 m f,j ) 1 m o,l 1 m f,l

33 Trade-off Ratio Example: Gemini-Titan II Initial Mass (kg) Stage 1 Stage 2 150,500 32,630 Final Mass (kg) 39, Ve (m/sec) dm

34 Payload Sensitivity to Propellant Mass In a similar manner, solve to find m pl m pr,k = ( Vtot )=0 k j=1 V e,j N l=1 V e,l ( This equation gives the change in payload mass as a function of additional propellant mass (all other parameters held constant) ( ) 1 m o,j ) 1 m o,l 1 m f,l 34

35 Trade-off Ratio Example: Gemini-Titan II Initial Mass (kg) Stage 1 Stage 2 150,500 32,630 Final Mass (kg) 39, Ve (m/sec) dm dm

36 Payload Sensitivity to Exhaust Velocity Use the same technique to find the change in payload resulting from additional exhaust velocity for stage k m pl V e,k = ( Vtot )=0 ( ) k j=1 ln mo,j m f,j N l=1 V e,l ( ) 1 m o,l 1 m f,l This trade-off ratio (unlike the ones for inert and propellant masses) has units - kg/(m/sec) 36

37 Trade-off Ratio Example: Gemini-Titan II Initial Mass (kg) Stage 1 Stage 2 150,500 32,630 Final Mass (kg) 39, Ve (m/sec) dm dm dm (kg/m/sec)

38 Parallel Staging Multiple dissimilar engines burning simultaneously Frequently a result of upgrades to operational systems General case requires brute force numerical performance analysis 38

39 Parallel-Staging Rocket Equation Momentum at time t: M = mv Momentum at time t+δt: (subscript b =boosters; c =core vehicle) M = (m m b m c )(v + v) + m b (v V e,b ) + m c (v V e,c ) Assume thrust (and mass flow rates) constant 39

40 Parallel-Staging Rocket Equation Rocket equation during booster burn V = V e ln m final m initial = V e ln m in,b +m in,c + m pr,c +m 0,2 m in,b +m pr,b +m in,c +m pr,c +m 0,2 χ where = fraction of core propellant remaining after booster burnout, and where V e = V e,bṁ b +V e,c ṁ c ṁ b +ṁ c = V e,bm pr,b +V e,c (1 χ)m pr,c m pr,b +(1 χ)m pr,c 40

41 Analyzing Parallel-Staging Performance Parallel stages break down into pseudo-serial stages: Stage 0 (boosters and core) V 0 = V e ln Stage 1 (core alone) V 1 = V e,c ln Subsequent stages are as before ( ) min,b +m in,c +χm pr,c +m 0,2 m in,b +m pr,b +m in,c +m pr,c +m 0,2 m in,c +m 0,2 m in,c + m pr,c +m 0,2 41

42 Parallel Staging Example: Space Shuttle 2 x solid rocket boosters (data below for single SRB) Gross mass 589,670 kg Empty mass 86,183 kg Isp 269 sec Burn time 124 sec External tank (space shuttle main engines) Gross mass 750,975 kg Empty mass 29,930 kg Isp 455 sec Burn time 480 sec Payload (orbiter + P/L) 125,000 kg 42

43 Shuttle Parallel Staging Example V e,b = gi sp,e =(9.8)(269) = 2636 m sec V e = χ = = (1, 007, 000) (721, 000)(1.7417) 1, 007, , 000(1.7417) V 0 = 2921 ln 862, 000 3, 062, 000 =3702m sec 154, 900 V 1 = 4459 ln 689, 700 =6659m sec V tot =10, 360 m sec 43 V e,c =4459 m sec =2921 m sec

44 Modular Staging Use identical modules to form multiple stages Have to cluster modules on lower stages to make up for nonideal ΔV distributions Advantageous from production and development cost standpoints 44

45 Module Analysis All modules have the same inert mass and propellant mass Because δ varies with payload mass, not all modules have the same δ Introduce two new parameters Conversions m in m in + m pr = ε = δ 1 λ 45 m in m mod σ = σ m in m pr δ 1 δ λ

46 Rocket Equation for Modular Boosters Assuming n modules in stage 1, If all 3 stages use same modules, n j for stage j, r 1 = where ρ pl n(m in )+m o2 n(m in + m pr )+m o2 = r 1 = n 1ε + n 2 + n 3 + ρ pl n 1 + n 2 + n 3 + ρ pl m pl m mod ; m mod = m in + m pr 46 nε + mo2 m mod n + m o2 m mod

47 Example: Conestoga 1620 (EER) Small launch vehicle (1 flight, 1 failure) Payload 900 kg Module gross mass 11,400 kg Module empty mass 1,400 kg Exhaust velocity 2754 m/sec Staging pattern 1st stage - 4 modules 2nd stage - 2 modules 3rd stage - 1 module 4th stage - Star 48V (gross mass 2200 kg, empty mass 140 kg, V e 2842 m/sec) 47

48 Conestoga 1620 Performance 4th stage Δ V V 4 = V e4 ln m f4 = 2842 ln m o4 Treat like three-stage modular vehicle; M pl =3100 kg = m in m mod = = pl = = 3104 m sec m pl = 3100 m mod = n 1 = 4; n 2 = 2; n 3 =1 48

49 Constellation 1620 Performance (cont.) r 1 = n 1 + n 2 + n 3 + pl = n 1 + n 2 + n 3 + pl r 2 = n 2 + n 3 + pl = n 2 + n 3 + pl r 3 = n 3 + pl = n 3 + pl V 1 = 1814 m sec ; V 2 = 2116 m sec V 3 = 3223 m sec ; V 4 = 3104 m V total = 10, 257 m sec sec = = =0.3103

50 Discussion about Modular Vehicles Modularity has several advantages Saves money (smaller modules cost less to develop) Saves money (larger production run = lower cost/ module) Allows resizing launch vehicles to match payloads Trick is to optimize number of stages, number of modules/stage to minimize total number of modules Generally close to optimum by doubling number of modules at each lower stage Have to worry about packing factors, complexity 50

51 OTRAG

52 Today s Tools Mass ratios Estimation of vehicle masses from v and inert mass fractions (both and ) Regression analysis Staging calculations Optimization of v distribution between stages Trade-off ratios Parallel staging calculations Modular vehicle calculations 52

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design Lecture #06 September 17, 2015 The rocket equation Mass ratio and performance Structural and payload mass fractions Regression analysis Multistaging Optimal ΔV distribution between stages Trade-off ratios

More information

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE Launch and Entry Vehicle Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE Launch and Entry Vehicle Design The rocket equation Mass ratio and performance Structural and payload mass fractions Regression analysis Multistaging Optimal ΔV distribution between stages Trade-off ratios Parallel staging Modular staging

More information

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design Lecture #03 September 5, 2017 The rocket equation Mass ratio and performance Structural and payload mass fractions Regression analysis Multistaging Optimal ΔV distribution between stages Trade-off ratios

More information

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE Launch and Entry Vehicle Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE Launch and Entry Vehicle Design The rest of orbital mechanics The rocket equation Mass ratio and performance Structural and payload mass fractions Regression analysis Multistaging Optimal ΔV distribution between stages Trade-off ratios

More information

Rocket Performance MARYLAND U N I V E R S I T Y O F. Ballistic Entry ENAE Launch and Entry Vehicle Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Ballistic Entry ENAE Launch and Entry Vehicle Design Rocket Performance Parallel staging Modular staging Standard atmospheres Orbital decay due to drag Straight-line (no gravity) entry based on atmospheric density 1 2014 David L. Akin - All rights reserved

More information

Rocket Performance MARYLAND

Rocket Performance MARYLAND Rocket Perforance The rocket equation Mass ratio and perforance Structural and payload ass fractions Multistaging Optial V distribution between stages Trade-off ratios Parallel staging Modular staging

More information

Parametric Design MARYLAND. The Design Process Regression Analysis Level I Design Example: Project Diana U N I V E R S I T Y O F.

Parametric Design MARYLAND. The Design Process Regression Analysis Level I Design Example: Project Diana U N I V E R S I T Y O F. Parametric Design The Design Process Regression Analysis Level I Design Example: U N I V E R S I T Y O F MARYLAND 2003 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Parametric Design

More information

MARYLAND. The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F.

MARYLAND. The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F. Parametric Design The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F MARYLAND 2004 David L. Akin - All rights reserved http://spacecraft.ssl.

More information

Mass Estimating Relationships MARYLAND. Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis

Mass Estimating Relationships MARYLAND. Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis Mass Estimating Relationships Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis 2006 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

More information

Parametric Design MARYLAND. The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F

Parametric Design MARYLAND. The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F Parametric Design The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F MARYLAND 2005 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Parametric

More information

The Design Process Level I Design Example: Low-Cost Lunar Exploration Amplification on Initial Concept Review

The Design Process Level I Design Example: Low-Cost Lunar Exploration Amplification on Initial Concept Review Parametric Design The Design Process Level I Design Example: Low-Cost Lunar Exploration Amplification on Initial Concept Review U N I V E R S I T Y O F MARYLAND 2008 David L. Akin - All rights reserved

More information

A little more about costing Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis

A little more about costing Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis A little more about costing Review of iterative design approach (MERs) Sample vehicle design analysis 2004 David L. Akin - All rights reserved http://spacecraft.ssl. umd.edu Internal Rate of Return Discount

More information

Rocket Propulsion Basics Thrust

Rocket Propulsion Basics Thrust Rockets 101: A Quick Primer on Propulsion & Launch Vehicle Technologies Steve Heister, Professor School of Aeronautics and Astronautics Purdue University Presentation to AFSAB, 13 January, 2010 Rocket

More information

Propulsion Systems Design

Propulsion Systems Design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 1 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Liquid

More information

Homework 2, part 2! ii) Calculate and plot design spike contour,

Homework 2, part 2! ii) Calculate and plot design spike contour, Homework 2, part 2! 1) For Aerospike Nozzle use Sonic Throat section, assume axi-symmetric design, full spike length.. For Aerospike Nozzle use Sonic Throat section, assume axisymmetric. design, full spike

More information

Robotic Mobility Above the Surface

Robotic Mobility Above the Surface Free Space Relative Orbital Motion Airless Major Bodies (moons) 1 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Propulsive Motion in Free Space Basic motion governed by Newton

More information

Multistage Rockets. Chapter Notation

Multistage Rockets. Chapter Notation Chapter 8 Multistage Rockets 8.1 Notation With current technology and fuels, and without greatly increasing the e ective I sp by air-breathing, a single stage rocket to Earth orbit is still not possible.

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2008 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu 1 Propulsion

More information

Propulsion Systems Design

Propulsion Systems Design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 1 2011 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Propulsion

More information

Comparison of Return to Launch Site Options for a Reusable Booster Stage

Comparison of Return to Launch Site Options for a Reusable Booster Stage Comparison of Return to Launch Site Options for a Reusable Booster Stage Barry Mark Hellman Space System Design Lab (SSDL) School of Aerospace Engineering USAF ASC/XRE barry.hellman@wpafb.af.mil Advisor

More information

Rocket Science 102 : Energy Analysis, Available vs Required

Rocket Science 102 : Energy Analysis, Available vs Required Rocket Science 102 : Energy Analysis, Available vs Required ΔV Not in Taylor 1 Available Ignoring Aerodynamic Drag. The available Delta V for a Given rocket burn/propellant load is ( ) V = g I ln 1+ P

More information

Propulsion and Energy Systems. Kimiya KOMURASAKI, Professor, Dept. Aeronautics & Astronautics, The University of Tokyo

Propulsion and Energy Systems. Kimiya KOMURASAKI, Professor, Dept. Aeronautics & Astronautics, The University of Tokyo Propulsion and Energy Systems Kimiya KOMURASAKI, Professor, Dept. Aeronautics & Astronautics, The University of Tokyo Schedule Space propulsion with non-chemical technologies 10/5 1) Space Propulsion Fundamentals

More information

Basic Ascent Performance Analyses

Basic Ascent Performance Analyses Basic Ascent Performance Analyses Ascent Mission Requirements Ideal Burnout Solution Constant & Average Gravity Models Gravity Loss Concept Effect of Drag on Ascent Performance Drag Profile Approximation

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Solid rocket motors Liquid rocket engines. Hybrid rocket engines Auxiliary propulsion systems

Propulsion Systems Design MARYLAND. Rocket engine basics Solid rocket motors Liquid rocket engines. Hybrid rocket engines Auxiliary propulsion systems Propulsion Systems Design Rocket engine basics Solid rocket motors Liquid rocket engines Monopropellants Bipropellants Propellant feed systems Hybrid rocket engines Auxiliary propulsion systems 2004 David

More information

Mission to Mars. MAE 598: Design Optimization Final Project. By: Trevor Slawson, Jenna Lynch, Adrian Maranon, and Matt Catlett

Mission to Mars. MAE 598: Design Optimization Final Project. By: Trevor Slawson, Jenna Lynch, Adrian Maranon, and Matt Catlett Mission to Mars MAE 598: Design Optimization Final Project By: Trevor Slawson, Jenna Lynch, Adrian Maranon, and Matt Catlett Motivation Manned missions beyond low Earth orbit have not occurred since Apollo

More information

The motion of a Rocket

The motion of a Rocket Prepared for submission to JCAP The motion of a Rocket Salah Nasri a United Arab Emirates University, Al-Ain, UAE E-mail: snasri@uaeu.ac.ae Abstract. These are my notes on some selected topics in undergraduate

More information

Robotic Mobility Above the Surface

Robotic Mobility Above the Surface Free Space Relative Orbital Motion Airless Major Bodies (moons) Gaseous Environments (Mars, Venus, Titan) Lighter-than- air (balloons, dirigibles) Heavier-than- air (aircraft, helicopters) 1 2012 David

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2005 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Overview of the Design Process

More information

PROPULSIONE SPAZIALE. Chemical Rocket Propellant Performance Analysis

PROPULSIONE SPAZIALE. Chemical Rocket Propellant Performance Analysis Chemical Rocket Propellant Performance Analysis Sapienza Activity in ISP-1 Program 15/01/10 Pagina 1 REAL NOZZLES Compared to an ideal nozzle, the real nozzle has energy losses and energy that is unavailable

More information

Launch Vehicle Family Album

Launch Vehicle Family Album Launch Vehicle Family Album T he pictures on the next several pages serve as a partial "family album" of NASA launch vehicles. NASA did not develop all of the vehicles shown, but has employed each in its

More information

MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design U N I V E R S I T Y O F

MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design U N I V E R S I T Y O F Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2004 David L. Akin - All rights reserved http://spacecraft.ssl. umd.edu Overview of the Design Process

More information

ENAE 483/788D FINAL EXAMINATION FALL, 2015

ENAE 483/788D FINAL EXAMINATION FALL, 2015 ENAE 48/788D FINAL EXAMINATION FALL, 2015 No phones, computers, or internet-enabled devices. Use the spaces following the questions to write your answers; you can also use the backs of the pages as necessary,

More information

Power, Propulsion, and Thermal Preliminary Design Review James Black Matt Marcus Grant McLaughlin Michelle Sultzman

Power, Propulsion, and Thermal Preliminary Design Review James Black Matt Marcus Grant McLaughlin Michelle Sultzman Power, Propulsion, and Thermal Preliminary Design Review James Black Matt Marcus Grant McLaughlin Michelle Sultzman Outline 1. Crew Systems Design Selection 2. Thermal Requirements and Design 3. Power

More information

Congreve Rockets This rockets were invented by Englishman, Sir William Congreve. Congreve successfully demonstrated a solid fuel rocket in 1805, and

Congreve Rockets This rockets were invented by Englishman, Sir William Congreve. Congreve successfully demonstrated a solid fuel rocket in 1805, and Congreve Rockets This rockets were invented by Englishman, Sir William Congreve. Congreve successfully demonstrated a solid fuel rocket in 1805, and the following year his rockets were used in action for

More information

AAE SOLID ROCKET PROPULSION (SRP) SYSTEMS

AAE SOLID ROCKET PROPULSION (SRP) SYSTEMS 7. SOLID ROCKET PROPULSION (SRP) SYSTEMS Ch7 1 7.1 INTRODUCTION 7.1 INTRODUCTION Ch7 2 APPLICATIONS FOR SRM APPLICATIONS FOR SRM Strap-On Boosters for Space Launch Vehicles, Upper Stage Propulsion System

More information

Launch Vehicles! Space System Design, MAE 342, Princeton University! Robert Stengel

Launch Vehicles! Space System Design, MAE 342, Princeton University! Robert Stengel Launch Vehicles! Space System Design, MAE 342, Princeton University! Robert Stengel Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/mae342.html

More information

Exercise 7: Thrust and the Rocket Equation

Exercise 7: Thrust and the Rocket Equation Astronomy 102 Name: Exercise 7: Thrust and the Rocket Equation Parts of this exercise were taken from NASA s Beginner s Guide to Rockets: Rocket Propulsion Activity, edited by Tom Benson. Objective: To

More information

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003 LAUNCH SYSTEMS Col. John Keesee 5 September 2003 Outline Launch systems characteristics Launch systems selection process Spacecraft design envelope & environments. Each student will Lesson Objectives Understand

More information

ENAE 791 Course Overview

ENAE 791 Course Overview ENAE 791 Challenges of launch and entry Course goals Web-based Content Syllabus Policies Project Content 1 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Space Transportation System

More information

Technology and Space Exploration

Technology and Space Exploration Technology and Space Exploration When did people first become interested in learning about Space and the Universe? Records from the earliest civilizations show that people studied and asked questions about

More information

HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10. Chapter 6. Conservation of Linear Momentum and Collisions. Dr.

HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10. Chapter 6. Conservation of Linear Momentum and Collisions. Dr. HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10 Chapter 6 Conservation of Linear Momentum and Collisions Dr. Armen Kocharian Momentum and Newton s Laws The linear momentum of an object of mass m

More information

Rockets, Missiles, and Spacecrafts

Rockets, Missiles, and Spacecrafts 36 1 Rockets, Missiles, and Spacecrafts 2 Chinese used rockets in the 12 th century AD against the Mongol attacks. In India Tipu Sultan used rockets against the British army in the 18 th century. The modern

More information

Course Overview/Orbital Mechanics

Course Overview/Orbital Mechanics Course Overview/Orbital Mechanics Course Overview Challenges of launch and entry Course goals Web-based Content Syllabus Policies Project Content An overview of orbital mechanics at point five past lightspeed

More information

Electrically Propelled Cargo Spacecraft for Sustained Lunar Supply Operations

Electrically Propelled Cargo Spacecraft for Sustained Lunar Supply Operations 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 9-12 July 2006, Sacramento, California AIAA 2006-4435 Electrically Propelled Cargo Spacecraft for Sustained Lunar Supply Operations Christian

More information

A COMPARISON OF NUCLEAR THERMAL ROCKETS WITH TRADITIONAL CHEMICAL ROCKETS FOR SPACE TRANSPORT. Joshua T. Hanes

A COMPARISON OF NUCLEAR THERMAL ROCKETS WITH TRADITIONAL CHEMICAL ROCKETS FOR SPACE TRANSPORT. Joshua T. Hanes A COMPARISON OF NUCLEAR THERMAL ROCKETS WITH TRADITIONAL CHEMICAL ROCKETS FOR SPACE TRANSPORT by Joshua T. Hanes A Senior Honors Thesis Submitted to the Faculty of The University of Utah In Partial Fulfillment

More information

Astronomy 230 Section 1 MWF B6 Eng Hall. Outline. The future: Special Relativity Summary

Astronomy 230 Section 1 MWF B6 Eng Hall. Outline. The future: Special Relativity Summary Astronomy 230 Section 1 MWF 1400-1450 106 B6 Eng Hall This Class (Lecture 26): Travel Next Class: Travel Research Papers are due on May 5 th. Outline Interstellar travel. What do we have now. What is a

More information

ENAE 483/788D MIDTERM FALL, 2018 NAME: a 3 = a = 42970] 1. So after one sol, the subspacecraft point would have gone 88773

ENAE 483/788D MIDTERM FALL, 2018 NAME: a 3 = a = 42970] 1. So after one sol, the subspacecraft point would have gone 88773 ENAE 483/788D MIDTERM FALL, 208 NAME: One 8.5 x piece of paper allowed for notes (both sides). No Internet-enabled devices allowed. Put your name on the cover page, and on each page if you disassemble

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan) Lighter-than- air (balloons, dirigibles) Heavier-than- air (aircraft, rotorcraft) 1 2018 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan) Lighter-than- air (balloons, dirigibles) Heavier-than- air (aircraft, rotorcraft) 1 2014 David L. Akin - All rights

More information

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN Satellite Orbital Maneuvers and Transfers Dr Ugur GUVEN Orbit Maneuvers At some point during the lifetime of most space vehicles or satellites, we must change one or more of the orbital elements. For example,

More information

Human Spaceflight Value Study Was the Shuttle a Good Deal?

Human Spaceflight Value Study Was the Shuttle a Good Deal? Human Spaceflight Value Study Was the Shuttle a Good Deal? Andy Prince Billy Carson MSFC Engineering Cost Office/CS50 20 October 2016 Purpose Examine the Space Shuttle Program Relative to its Goals and

More information

Conceptual Design of Manned Space Transportation Vehicle (MSTV) Using Laser Thruster in Combination with H-II Rocket

Conceptual Design of Manned Space Transportation Vehicle (MSTV) Using Laser Thruster in Combination with H-II Rocket Conceptual Design of Manned Space Transportation Vehicle (MSTV) Using Laser Thruster in Combination with H-II Rocket Laser Thruster Yoshinari Minami Advanced Sci.-Tech. Rsch. Orgn. (Formerly NEC Space

More information

The Last Space Shuttle Mission

The Last Space Shuttle Mission The Last Space Shuttle Mission July 8, 2011 QuickTime and a decompressor are needed to see this picture. Video: NASA Where Are We Going? Low-Earth Orbit Interplanetary Travel Interstellar Travel Image:

More information

Chapter 9. Linear Momentum and Collisions

Chapter 9. Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Momentum Analysis Models Force and acceleration are related by Newton s second law. When force and acceleration vary by time, the situation can be very complicated.

More information

Rocket Dynamics. Forces on the Rocket

Rocket Dynamics. Forces on the Rocket Rocket Dynamics Forces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors F Thrust Forces on the Rocket Equation of otion: Need to minimize total mass to maximize acceleration

More information

Gravity Turn Concept. Curvilinear Coordinate System Gravity Turn Manoeuvre concept Solutions for Constant Pitch Rate

Gravity Turn Concept. Curvilinear Coordinate System Gravity Turn Manoeuvre concept Solutions for Constant Pitch Rate Gravity Turn Concept Curvilinear Coordinate System Gravity Turn Manoeuvre concept Solutions for Constant Pitch Rate Inclined Motion Concept In reality, vertical motion is used only for a very small part

More information

Lesson 7. Luis Anchordoqui. Physics 168. Tuesday, October 10, 17

Lesson 7. Luis Anchordoqui. Physics 168. Tuesday, October 10, 17 Lesson 7 Physics 168 1 Eruption of a large volcano on Jupiter s moon When volcano erupts speed of effluence exceeds escape speed of Io and so a stream of particles is projected into space Material in stream

More information

Reliability, Redundancy, and Resiliency

Reliability, Redundancy, and Resiliency Lecture #11 October 3, 2017 Review of probability theory Component reliability Confidence Redundancy Reliability diagrams Intercorrelated Failures System resiliency Resiliency in fixed fleets 1 2017 David

More information

PROBLEM SCORE Problem 1 (30 Pts) Problem 2 (30 Pts) Choose Problem #2 or #3! Problem 4 (40 Pts) TOTAL (100 Pts)

PROBLEM SCORE Problem 1 (30 Pts) Problem 2 (30 Pts) Choose Problem #2 or #3! Problem 4 (40 Pts) TOTAL (100 Pts) AAE 439 Exam #1 October 20, 2008 4:30 pm 6:00 pm ARMS B71 or ARMS 1109 NAME: SOLUTIONS Read all problems carefully before attempting to solve them. Your work must be legible, and the organization must

More information

An introduction to the plasma state in nature and in space

An introduction to the plasma state in nature and in space An introduction to the plasma state in nature and in space Dr. L. Conde Departamento de Física Aplicada E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid The plasma state of condensed matter

More information

A Notional Round Trip To The Trans-Lunar Libration Point (EML2)

A Notional Round Trip To The Trans-Lunar Libration Point (EML2) Many specialists in the astrodynamics field are currently studying trajectories between Earth and the trans-lunar libration point (EML2). Located about 60,000 km beyond the Moon from Earth, EML2 is a strategic

More information

Engineering Sciences and Technology. Trip to Mars

Engineering Sciences and Technology. Trip to Mars PART 2: Launch vehicle 1) Introduction : A) Open this file and save it in your directory, follow the instructions below. B) Watch this video (0 to 1min03s) and answer to questions. Give the words for each

More information

Space Exploration Earth and Space. Project Mercury Courtesy of NASA Images

Space Exploration Earth and Space. Project Mercury Courtesy of NASA Images Project Mercury 1959-1963 3 Project Mercury 1959-1963 Project Mercury was America s first manned space program. It had three main goals: to orbit a manned spacecraft around Earth; to see if humans could

More information

Applied Thermodynamics - II

Applied Thermodynamics - II Gas Turbines Sudheer Siddapureddy sudheer@iitp.ac.in Department of Mechanical Engineering Jet Propulsion - Classification 1. A heated and compressed atmospheric air, mixed with products of combustion,

More information

Chapter 8 Momentum and Impulse

Chapter 8 Momentum and Impulse Chapter 8 Momentum and Impulse Momentum plays a pivotal role in extending our understanding of Newton s Laws. In fact, Newton s laws were first written in terms of momentum. Later in this chapter, we will

More information

AERO2705 Week 4 Rocket Equation ISP and Rocket Fuels Tuesday 22 nd August The University of Sydney

AERO2705 Week 4 Rocket Equation ISP and Rocket Fuels Tuesday 22 nd August The University of Sydney AERO2705 Week 4 Rocket Equation ISP and Rocket Fuels Tuesday 22 nd August The University of Sydney Presenter Mr. Warwick Holmes Executive Director Space Engineering School of Aerospace, Mechanical and

More information

INNOVATIVE STRATEGY FOR Z9 REENTRY

INNOVATIVE STRATEGY FOR Z9 REENTRY INNOVATIVE STRATEGY FOR Z9 REENTRY Gregor Martens*, Elena Vellutini**, Irene Cruciani* *ELV, Corso Garibaldi, 34 Colleferro (Italy) **Aizoon, Viale Città d Europa 681, 144, Roma (Italy) Abstract Large

More information

The Launch of Gorizont 45 on the First Proton K /Breeze M

The Launch of Gorizont 45 on the First Proton K /Breeze M The Launch of Gorizont 45 on the First Proton K / Fred D. Rosenberg, Ph.D. Space Control Conference 3 April 2001 FDR -01 1 This work is sponsored by the Air Force under Air Force Contract F19628-00-C-0002

More information

Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium

Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium January 2015 Les Johnson / NASA MSFC / ED04 www.nasa.gov Mission Statement Interstellar Probe Mission:

More information

Fly Me to the Moon on an SLS Block II

Fly Me to the Moon on an SLS Block II Fly Me to the Moon on an SLS Block II Steven S. Pietrobon, Ph.D. 20 July 2015 The first Lunar mission will be the beginning. Later missions will stay for longer periods on the Moon and continue its exploration.

More information

IAC 17 D2.8 A5.4 FLY ME TO THE MOON ON AN SLS BLOCK II

IAC 17 D2.8 A5.4 FLY ME TO THE MOON ON AN SLS BLOCK II FLY ME TO THE MOON ON AN SLS BLOCK II Steven S. Pietrobon, Ph.D. Small World Communications, 6 First Avenue, Payneham South SA 5070, Australia, steven@sworld.com.au We examine how a 140 t to low Earth

More information

TEACHER PAGE CELEBRATING SPACE: A QUICK HISTORY

TEACHER PAGE CELEBRATING SPACE: A QUICK HISTORY Background Putting the Space Age Into Context: The dawn of the space age does not date back that far in human history only 40 years! It is so recent that you can get eye-witness accounts by asking parents,

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan)! Lighter-than- air (balloons, dirigibles)! Heavier-than- air (aircraft, rotorcraft) 1 2014 David L. Akin - All rights

More information

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Lecture 24 Design Aspects of Solid Propellant Rockets We will continue with solid propellant

More information

Traveling Into Space. Use Target Reading Skills. How Do Rockets Work? Building Vocabulary

Traveling Into Space. Use Target Reading Skills. How Do Rockets Work? Building Vocabulary Traveling Into Space This section explains how rockets work. It also describes the history of space exploration and explains how space shuttles, space stations, and space probes are used in exploring space

More information

The story of NASA. Presented by William Markham

The story of NASA. Presented by William Markham The story of NASA Presented by William Markham German Rocket Developments WW2 Comet ME 262 V1 flying bomb V2 Rocket Wernher Von Braun Early history An Act to provide for research into the problems of flight

More information

A trendsetting Micro-Launcher for Europe

A trendsetting Micro-Launcher for Europe A trendsetting Micro-Launcher for Europe Farid Gamgami German Aerospace Center (DLR), Space Launcher Systems Analysis (SART) Bremen, Germany Farid.Gamgami@dlr.de ABSTRACT In this paper we analyse a potential,

More information

Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond

Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond Small Satellite Aerocapture for Increased Mass Delivered to Venus and Beyond Adam Nelessen / Alex Austin / Joshua Ravich / Bill Strauss NASA Jet Propulsion Laboratory Ethiraj Venkatapathy / Robin Beck

More information

Low Thrust Trajectory Analysis (A Survey of Missions using VASIMR for Flexible Space Exploration - Part 2)

Low Thrust Trajectory Analysis (A Survey of Missions using VASIMR for Flexible Space Exploration - Part 2) (A Survey of Missions using VASIMR for Flexible Space Exploration - Part 2) Prepared by: Andrew V. Ilin Ad Astra Rocket Company 141 W. Bay Area Blvd Webster, TX 77598 In fulfillment of Task Number 5 of

More information

Concurrent Trajectory and Vehicle Optimization for an Orbit Transfer. Christine Taylor May 5, 2004

Concurrent Trajectory and Vehicle Optimization for an Orbit Transfer. Christine Taylor May 5, 2004 Concurrent Trajectory and Vehicle Optimization for an Orbit Transfer Christine Taylor May 5, 2004 Presentation Overview Motivation Single Objective Optimization Problem Description Mathematical Formulation

More information

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit

The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit The Interstellar Boundary Explorer (IBEX) Mission Design: A Pegasus Class Mission to a High Energy Orbit Ryan Tyler, D.J. McComas, Howard Runge, John Scherrer, Mark Tapley 1 IBEX Science Requirements IBEX

More information

SOLUTIONS MANUAL. ROCKET PROPULSION ELEMENTS, 8 th EDITION. By George P. Sutton and Oscar Biblarz. Published by John Wiley & Sons, Inc.

SOLUTIONS MANUAL. ROCKET PROPULSION ELEMENTS, 8 th EDITION. By George P. Sutton and Oscar Biblarz. Published by John Wiley & Sons, Inc. SOLUTIONS MANUAL to ROCKET PROPULSION ELEMENTS, 8 th EDITION By George P. Sutton and Oscar Biblarz Published by John Wiley & Sons, Inc. in 1 This manual is in part an outgrowth of courses taught by Prof.

More information

Math 1311 Section 5.5 Polynomials and Rational Functions

Math 1311 Section 5.5 Polynomials and Rational Functions Math 1311 Section 5.5 Polynomials and Rational Functions In addition to linear, exponential, logarithmic, and power functions, many other types of functions occur in mathematics and its applications. In

More information

General Remarks and Instructions

General Remarks and Instructions Delft University of Technology Faculty of Aerospace Engineering 1 st Year Examination: AE1201 Aerospace Design and System Engineering Elements I Date: 25 August 2010, Time: 9.00, Duration: 3 hrs. General

More information

Reliability, Redundancy, and Resiliency

Reliability, Redundancy, and Resiliency Review of probability theory Component reliability Confidence Redundancy Reliability diagrams Intercorrelated failures System resiliency Resiliency in fixed fleets Perspective on the term project 1 2010

More information

Ballistic Atmospheric Entry (Part II)

Ballistic Atmospheric Entry (Part II) Ballistic Atmospheric Entry (Part II) News updates Straight-line (no gravity) ballistic entry based on altitude, rather than density Planetary entries (at least a start) 1 2010 David L. Akin - All rights

More information

Powered Space Flight

Powered Space Flight Powered Space Flight KOIZUMI Hiroyuki ( 小泉宏之 ) Graduate School of Frontier Sciences, Department of Advanced Energy & Department of Aeronautics and Astronautics ( 基盤科学研究系先端エネルギー工学専攻, 工学系航空宇宙工学専攻兼担 ) Scope

More information

SPACE SHUTTLE ROLL MANEUVER

SPACE SHUTTLE ROLL MANEUVER SPACE SHUTTLE ROLL MANEUVER Instructional Objectives Students will analyze space shuttle schematics and data to: demonstrate graph and schematic interpretation skills; apply integration techniques to evaluate

More information

Electric Propulsion System using a Helicon Plasma Thruster (2015-b/IEPC-415)

Electric Propulsion System using a Helicon Plasma Thruster (2015-b/IEPC-415) Electric Propulsion System using a Helicon Plasma Thruster (2015-b/IEPC-415) Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion

More information

Chapter 8 Momentum and Impulse

Chapter 8 Momentum and Impulse Chapter 8 Momentum and Impulse Momentum plays a pivotal role in extending our understanding of Newton s Laws. In fact, Newton s laws were first written in terms of momentum. Later in this chapter, we will

More information

Trajectory Code Validation Slides

Trajectory Code Validation Slides Code Validation Slides 04/12/08 AAE 450 Spring 2008 Simulation Drag Loss Results: Compare to Shuttle (2029633 kg GLOM): 107 m/s Titan IV/Centaur (886420 kg GLOM): 156 m/s (from SMAD) AAE 450 Spring 2008

More information

Bifrost: A 4 th Generation Launch Architecture Concept

Bifrost: A 4 th Generation Launch Architecture Concept Bifrost: A 4 th Generation Launch Architecture Concept Rohrschneider, R.R., Young, D., St.Germain, B., Brown, N., Crowley, J., Maatsch, J., Olds, J.R. (Advisor) Abstract Space Systems Design Lab School

More information

Satellite Engineering

Satellite Engineering Satellite Engineering Universidad de Concepción November 2009 Gaëtan Kerschen Space Structures & Systems Lab University of Liège Satellite Engineering Universidad de Concepción November 2009 Day 3: Satellite

More information

Proton Launch System Mission Planner s Guide SECTION 2. LV Performance

Proton Launch System Mission Planner s Guide SECTION 2. LV Performance Proton Launch System Mission Planner s Guide SECTION 2 LV Performance 2. LV PERFORMANCE 2.1 OVERVIEW This section provides the information needed to make preliminary performance estimates for the Proton

More information

A Few Examples of Limit Proofs

A Few Examples of Limit Proofs A Few Examples of Limit Proofs x (7x 4) = 10 SCRATCH WORK First, we need to find a way of relating x < δ and (7x 4) 10 < ɛ. We will use algebraic manipulation to get this relationship. Remember that the

More information

Ballistic Atmospheric Entry

Ballistic Atmospheric Entry Ballistic Atmospheric Entry Standard atmospheres Orbital decay due to atmospheric drag Straight-line (no gravity) ballistic entry based on atmospheric density 1 2010 David L. Akin - All rights reserved

More information

Lecture 24: Orbital Dynamics, and Introduction to Many-Particle Systems

Lecture 24: Orbital Dynamics, and Introduction to Many-Particle Systems Lecture 4: Orbital Dynamics, and Introduction to Many-Particle Systems We now consider what is involved in changing a satellite s orbit For example, a mission to Mars requires taking a spacecraft from

More information

MAT 107 College Algebra Fall 2013 Name. Final Exam, Version X

MAT 107 College Algebra Fall 2013 Name. Final Exam, Version X MAT 107 College Algebra Fall 013 Name Final Exam, Version X EKU ID Instructor Part 1: No calculators are allowed on this section. Show all work on your paper. Circle your answer. Each question is worth

More information

JPL ISM STP Study Summary

JPL ISM STP Study Summary JPL ISM STP Study Summary Nitin Arora, Jonathan Murphy, Leon Alkalai, Jonathan Sauder and JPL Team-X Study Team Detailed Team-X report can also be provided if needed High-level Team-X Mission Requirements

More information

Seminar 3! Precursors to Space Flight! Orbital Motion!

Seminar 3! Precursors to Space Flight! Orbital Motion! Seminar 3! Precursors to Space Flight! Orbital Motion! FRS 112, Princeton University! Robert Stengel" Prophets with Some Honor" The Human Seed and Social Soil: Rocketry and Revolution" Orbital Motion"

More information