Gravity Turn Concept. Curvilinear Coordinate System Gravity Turn Manoeuvre concept Solutions for Constant Pitch Rate

Size: px
Start display at page:

Download "Gravity Turn Concept. Curvilinear Coordinate System Gravity Turn Manoeuvre concept Solutions for Constant Pitch Rate"

Transcription

1 Gravity Turn Concept Curvilinear Coordinate System Gravity Turn Manoeuvre concept Solutions for Constant Pitch Rate

2 Inclined Motion Concept In reality, vertical motion is used only for a very small part of the overall ascent mission and for the most part, ascent trajectory is inclined & curvilinear in nature. This is mainly because one of the terminal constraint is that the inclination of the velocity vector with respect to the local horizon is required to be close to zero. Considering Earth s curvature, the rocket needs to undergo large flight path angle changes (~110 0 ) during the ascent mission. This requirement calls for a different methodology of trajectory design & solution.

3 Effect of Inclination A curvilinear flight path requires motion in a plane and therefore, needs models for a planar motion. Also, thrust is used mainly for velocity increments and is always along the flight path, so that a normal force is needed to produce the curvilinear path. Consider a rocket having inclination with the vertical. L Y θ u s, v s F c X T mg u n, v n

4 Curvilinear Motion Model Consider the following schematic of a planar motion. s ds V = lim = V = sɺ uˆs t 0 t dt Acceleration: d d a= V = (Vuˆs ) dt dt duˆs ɺ ɺ a = Vus + V = Vus + V θɺun dt a = a s + an ( )

5 Planar Motion Equations The equations of planar motion are as follows. dv mas = m = mg ɺ 0I sp mg cosθ dt dθ man = mv = mg sin θ dt In this case, the resulting trajectory is called gravity turn trajectory, as g alone is responsible for (dθ/dt). The above non-linear time-varying differential equations contains three unknowns i.e. V, θ and m(t) (the design input), for which no general solutions exist.

6 Special Analytical Solutions Special analytical solutions to the gravity turn equations are possible which, while restricting the overall degree of freedom, provide immense practical utility. In addition, lot of insight can be obtained by analyzing the equations themselves. In a kinematic sense, the gravity turn equations can be rewritten as, mg ɺ 0Isp g sin ( t) Vɺ ɶ θ = gɶ cos θ ( t); ɺ θ = m( t) V ( t) Also, it is possible to obtain V and θ, if m(t) is specified, or vice versa. This is the basis for Pitch Program in launch vehicle mission design.

7 Case 1: Constant Pitch Rate In this case, rocket is commanded to track a specified pitch rate i.e. (dθ/dt), which is achieved through an independent pitch rate tracking control system. This results in the second equation providing the velocity solution, which is then used in the first equation to obtain the required burn profile {m(t)} or pitch program. ɺ gɶ sinθ θ = q0 θ ( t) = q0t + θ0; V ( t) = ; Vɺ = gɶ cosθ q dm 2gɶ cosθdt m 2gɶ = = θ m g I m q g I 0 ln (sin sin 0) 0 sp 0 0 sp 0 θ

8 Case 1: Constant Pitch Rate As q 0 is constant at all times including the initial time, we can write, q gɶ sinθ = 0 or θ = 0, V =0 not admissible V0 This means that gravity turn manoeuvre can be started only from a non-zero pitch down angle, after it acquires a minimum forward speed. This requirement is usually met by giving a pitch kick to the vehicle at appropriate time to initiate manoeuvre and usually happens after acquiring some altitude.

9 Case 1: Constant Pitch Rate The altitude profile can be obtained by resolving the velocity V in vertical direction as follows. dh dh V cosθ g sinθ cosθ = V cosθ = = ɶ dt d θ q q dh g sin 2θ g h( θ ) (cos 2θ cos 2 θ ) h dθ = ɶ 2q = ɶ 4q Can θ(t) be more than 90 0? What would such a condition represent? What is the impact on the burn rate and total propellant mass?

10 Case 1: Constant Pitch Rate Another trajectory parameter of interest is the final flight path angle, which can be evaluated as, θ b sin g q I sp m ln sinθ = + 0 2gɶ mb Burnout time & horizontal distance are as follows. θb ( θb θ0) dx 1 tb = ; = V sin x x0 = g 2 ( 1 cos 2 ) d q0 dt 2q ɶ 0 θ θ θ θ ( sin 2θ sin 2θ ) gɶ b 0 x( θ ) = 2 ( θb θ0 ) + x( θ0) 2q0 2 0

11 Constant Pitch Rate Example First stage of the Chinese Long March rocket has the following lift off parameters. m 0 = 79.4 Tons, m p = 60 Tons, I sp = 241 s, g 0 = 9.81m/s 2, Payload mass = 9.4 Tons, β 0 = 600 kg/s (until t i ), t i = 10s, (1) Determine the trajectory parameters at end of 10s. V i = km/s, h i = km, (2) Determine terminal parameters in case the rocket executes the gravity turn for a further 90s. θ i = 5 o. V t = km/s, h t = 35.0 km, m t = 39.3 Tons, θ t = 55.3 o, q 0 = o /s, t b = 90 s, x t = 25.6 km.

12 Constant Pitch Rate Example (3) Also, determine if all the propellant can be burnt to reach 90 o? If yes, give final burnout parameters. If no, give reasons as well as the final burnout mass. No. m t = 36.5 Tons. (4) What should beθ i if all fuel is to be burnt? (θ b = 90 o ) q 0 = 0.32 o /s,θ i = 2.87 o, t b = s.

13 Summary Gravity turn trajectories take much longer time, but result in lower velocities in denser atmosphere and also reduce the energy loss due to gravity. Constant pitch rate solution is simple to obtain in closed form, though requiring initial conditions consistent with the amount of propellant to be burnt.

Basic Ascent Performance Analyses

Basic Ascent Performance Analyses Basic Ascent Performance Analyses Ascent Mission Requirements Ideal Burnout Solution Constant & Average Gravity Models Gravity Loss Concept Effect of Drag on Ascent Performance Drag Profile Approximation

More information

Rocket Science 102 : Energy Analysis, Available vs Required

Rocket Science 102 : Energy Analysis, Available vs Required Rocket Science 102 : Energy Analysis, Available vs Required ΔV Not in Taylor 1 Available Ignoring Aerodynamic Drag. The available Delta V for a Given rocket burn/propellant load is ( ) V = g I ln 1+ P

More information

Rocket Performance MARYLAND U N I V E R S I T Y O F. Ballistic Entry ENAE Launch and Entry Vehicle Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Ballistic Entry ENAE Launch and Entry Vehicle Design Rocket Performance Parallel staging Modular staging Standard atmospheres Orbital decay due to drag Straight-line (no gravity) entry based on atmospheric density 1 2014 David L. Akin - All rights reserved

More information

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN Satellite Orbital Maneuvers and Transfers Dr Ugur GUVEN Orbit Maneuvers At some point during the lifetime of most space vehicles or satellites, we must change one or more of the orbital elements. For example,

More information

Minimum Time Ascent Phase Trajectory Optimization using Steepest Descent Method

Minimum Time Ascent Phase Trajectory Optimization using Steepest Descent Method IJCTA, 9(39), 2016, pp. 71-76 International Science Press Closed Loop Control of Soft Switched Forward Converter Using Intelligent Controller 71 Minimum Time Ascent Phase Trajectory Optimization using

More information

3 Space curvilinear motion, motion in non-inertial frames

3 Space curvilinear motion, motion in non-inertial frames 3 Space curvilinear motion, motion in non-inertial frames 3.1 In-class problem A rocket of initial mass m i is fired vertically up from earth and accelerates until its fuel is exhausted. The residual mass

More information

First Year Physics: Prelims CP1. Classical Mechanics: Prof. Neville Harnew. Problem Set III : Projectiles, rocket motion and motion in E & B fields

First Year Physics: Prelims CP1. Classical Mechanics: Prof. Neville Harnew. Problem Set III : Projectiles, rocket motion and motion in E & B fields HT017 First Year Physics: Prelims CP1 Classical Mechanics: Prof Neville Harnew Problem Set III : Projectiles, rocket motion and motion in E & B fields Questions 1-10 are standard examples Questions 11-1

More information

VARIABLE MASS PROBLEMS

VARIABLE MASS PROBLEMS VARIABLE MASS PROBLEMS Question 1 (**) A rocket is moving vertically upwards relative to the surface of the earth. The motion takes place close to the surface of the earth and it is assumed that g is the

More information

Rocket Propulsion Basics Thrust

Rocket Propulsion Basics Thrust Rockets 101: A Quick Primer on Propulsion & Launch Vehicle Technologies Steve Heister, Professor School of Aeronautics and Astronautics Purdue University Presentation to AFSAB, 13 January, 2010 Rocket

More information

Study of Required Thrust Profile Determination of a Three Stages Small Launch Vehicle

Study of Required Thrust Profile Determination of a Three Stages Small Launch Vehicle Journal of Physics: Conference Series PAPER OPEN ACCESS Study of Required Thrust Profile Determination of a Three Stages Small Launch Vehicle To cite this article: A Fariz et al 218 J. Phys.: Conf. Ser.

More information

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003 LAUNCH SYSTEMS Col. John Keesee 5 September 2003 Outline Launch systems characteristics Launch systems selection process Spacecraft design envelope & environments. Each student will Lesson Objectives Understand

More information

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2)

PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) PLANAR KINETIC EQUATIONS OF MOTION (Section 17.2) We will limit our study of planar kinetics to rigid bodies that are symmetric with respect to a fixed reference plane. As discussed in Chapter 16, when

More information

Lesson 7. Luis Anchordoqui. Physics 168. Tuesday, October 10, 17

Lesson 7. Luis Anchordoqui. Physics 168. Tuesday, October 10, 17 Lesson 7 Physics 168 1 Eruption of a large volcano on Jupiter s moon When volcano erupts speed of effluence exceeds escape speed of Io and so a stream of particles is projected into space Material in stream

More information

Multistage Rockets. Chapter Notation

Multistage Rockets. Chapter Notation Chapter 8 Multistage Rockets 8.1 Notation With current technology and fuels, and without greatly increasing the e ective I sp by air-breathing, a single stage rocket to Earth orbit is still not possible.

More information

Physics 430, Classical Mechanics Exam 1, 2010 Oct 05

Physics 430, Classical Mechanics Exam 1, 2010 Oct 05 Physics 430, Classical Mechanics Eam, 00 Oct 05 Name Instructions: No books, notes, or cheat sheet allowed. You may use a calculator, but no other electronic devices during the eam. Please turn your cell

More information

Resistance is Futile

Resistance is Futile Resistance is Futile Joseph Hays 16 May 2014 Page 1 of 24 Abstract When introductory physics books consider projectile motion, they often suggest that the reader assume air resistance is negligible; an

More information

Rockets, Missiles, and Spacecrafts

Rockets, Missiles, and Spacecrafts 36 1 Rockets, Missiles, and Spacecrafts 2 Chinese used rockets in the 12 th century AD against the Mongol attacks. In India Tipu Sultan used rockets against the British army in the 18 th century. The modern

More information

Linear Momentum, Center of Mass, Conservation of Momentum, and Collision.

Linear Momentum, Center of Mass, Conservation of Momentum, and Collision. PHYS1110H, 2011 Fall. Shijie Zhong Linear Momentum, Center of Mass, Conservation of Momentum, and Collision. Linear momentum. For a particle of mass m moving at a velocity v, the linear momentum for the

More information

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers

Chapter 9b: Numerical Methods for Calculus and Differential Equations. Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Chapter 9b: Numerical Methods for Calculus and Differential Equations Initial-Value Problems Euler Method Time-Step Independence MATLAB ODE Solvers Acceleration Initial-Value Problems Consider a skydiver

More information

Problem Set 4 Momentum and Continuous Mass Flow Solutions

Problem Set 4 Momentum and Continuous Mass Flow Solutions MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Physics Physics 8.01 Fall 2012 Problem Set 4 Momentum and Continuous Mass Flow Solutions Problem 1: a) Explain why the total force on a system of particles

More information

2. KINEMATICS. By Liew Sau Poh

2. KINEMATICS. By Liew Sau Poh 2. KINEMATICS By Liew Sau Poh 1 OBJECTIVES 2.1 Linear motion 2.2 Projectiles 2.3 Free falls and air resistance 2 OUTCOMES Derive and use equations of motion with constant acceleration Sketch and use the

More information

AAE 251 Formulas. Standard Atmosphere. Compiled Fall 2016 by Nicholas D. Turo-Shields, student at Purdue University. Gradient Layer.

AAE 251 Formulas. Standard Atmosphere. Compiled Fall 2016 by Nicholas D. Turo-Shields, student at Purdue University. Gradient Layer. AAE 51 Formulas Compiled Fall 016 by Nicholas D. Turo-Shields, student at Purdue University Standard Atmosphere p 0 = 1.0135 10 5 Pascals ρ 0 = 1.5 kg m 3 R = 87 J kg K γ = 1.4 for air p = ρrt ; Equation

More information

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded Code No: R05322106 Set No. 1 1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded rocket nozzles. (b) While on its way into orbit a space shuttle with an initial mass

More information

How Small Can a Launch Vehicle Be?

How Small Can a Launch Vehicle Be? UCRL-CONF-213232 LAWRENCE LIVERMORE NATIONAL LABORATORY How Small Can a Launch Vehicle Be? John C. Whitehead July 10, 2005 41 st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Tucson, AZ Paper

More information

Physics 20 Homework 3 SIMS 2016

Physics 20 Homework 3 SIMS 2016 Physics 20 Homework 3 SIMS 2016 Due: Thursday, August 25 th Special thanks to Sebastian Fischetti for problems 1, 5, and 6. Edits in red made by Keith Fratus. 1. The ballistic pendulum is a device used

More information

Investigation of Combined Airbreathing/Rocket. Air Launch of Micro-Satellites from a Combat Aircraft

Investigation of Combined Airbreathing/Rocket. Air Launch of Micro-Satellites from a Combat Aircraft 6th Responsive Space Conference AIAA-RS6-008-5003 Investigation of Combined Airbreathing/Rocket Propulsion for Air Launch of Micro-Satellites from a Combat Aircraft Avichai Socher and Alon Gany Faculty

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. PH105-004 Exam 1 A Name CWID MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) An object starts its motion with a constant velocity of 2.0 m/s toward

More information

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) = 2t + 1; D) = 2 - t;

MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. B) = 2t + 1; D) = 2 - t; Eam Name MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Calculate the derivative of the function. Then find the value of the derivative as specified.

More information

Multistage Rocket Performance Project Two

Multistage Rocket Performance Project Two 41 Multistage Rocket Performance Project Two Charles R. O Neill School of Mechanical and Aerospace Engineering Oklahoma State University Stillwater, OK 74078 Project Two in MAE 3293 Compressible Flow December

More information

Friction and Motion. Prof. Paul Eugenio 13 Sep Friction (cont.) Motion: kinetics and dynamics Vertical jump Energy conservation

Friction and Motion. Prof. Paul Eugenio 13 Sep Friction (cont.) Motion: kinetics and dynamics Vertical jump Energy conservation Friction and Motion Friction (cont.) Motion: kinetics and dynamics Vertical jump Energy conservation Ukulele means jumping flea Prof. Paul Eugenio 13 Sep 2018 Lecture 5 Reactive, Normal, and Friction Forces

More information

CALCULATION OF THE CHARACTERISTICS OF A UAV LAUNCH FROM A RAMP

CALCULATION OF THE CHARACTERISTICS OF A UAV LAUNCH FROM A RAMP AVIATION ISSN 1648-7788 / eissn 18-4180 014 Volume 18(4): 178 184 doi:10.3846/16487788.014.985476 CALCULATION OF THE CHARACTERISTICS OF A UAV LAUNCH FROM A RAMP Valeriy SILKOV 1, Andrii ZIRKA Central Scientific-Research

More information

Advanced Descent Solution and Trajectory Generation Scheme for Precise and Safe Lunar Landing Mission

Advanced Descent Solution and Trajectory Generation Scheme for Precise and Safe Lunar Landing Mission Advanced Descent Solution and Trajectory Generation Scheme for Precise and Safe Lunar Landing Mission Ibrahim M. Mehedi Department of Electrical Engineering and Information Systems, The University of Tokyo,

More information

2-D Kinematics. In general, we have the following 8 equations (4 per dimension): Notes Page 1 of 7

2-D Kinematics. In general, we have the following 8 equations (4 per dimension): Notes Page 1 of 7 2-D Kinematics The problem we run into with 1-D kinematics, is that well it s one dimensional. We will now study kinematics in two dimensions. Obviously the real world happens in three dimensions, but

More information

Concurrent Trajectory and Vehicle Optimization for an Orbit Transfer. Christine Taylor May 5, 2004

Concurrent Trajectory and Vehicle Optimization for an Orbit Transfer. Christine Taylor May 5, 2004 Concurrent Trajectory and Vehicle Optimization for an Orbit Transfer Christine Taylor May 5, 2004 Presentation Overview Motivation Single Objective Optimization Problem Description Mathematical Formulation

More information

Quiz Number 3 PHYSICS March 11, 2009

Quiz Number 3 PHYSICS March 11, 2009 Instructions Write your name, student ID and name of your TA instructor clearly on all sheets and fill your name and student ID on the bubble sheet. Solve all multiple choice questions. No penalty is given

More information

Modelling of a Tennis Ball Server

Modelling of a Tennis Ball Server Mechanical Analysis and Design ME 2104 Lecture 6 Modelling of a Tennis Ball Server Prof Ahmed Kovacevic Department of Mechanical Engineering and Aeronautics Room CG25, Phone: 8780, E-Mail: a.kovacevic@city.ac.uk

More information

V sphere = 4 3 πr3. a c = v2. F c = m v2. F s = k s. F ds. = dw dt. P W t. K linear 1 2 mv2. U s = 1 2 kx2 E = K + U. p mv

V sphere = 4 3 πr3. a c = v2. F c = m v2. F s = k s. F ds. = dw dt. P W t. K linear 1 2 mv2. U s = 1 2 kx2 E = K + U. p mv v = v i + at x = x i + v i t + 1 2 at2 v 2 = v 2 i + 2a x F = ma F = dp dt P = mv R = v2 sin(2θ) g v dx dt a dv dt = d2 x dt 2 x = r cos(θ) V sphere = 4 3 πr3 a c = v2 r = rω2 F f = µf n F c = m v2 r =

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan)! Lighter-than- air (balloons, dirigibles)! Heavier-than- air (aircraft, rotorcraft) 1 2014 David L. Akin - All rights

More information

Dynamics of Systems of Particles. Hasbun, Ch 11 Thornton & Marion, Ch 9

Dynamics of Systems of Particles. Hasbun, Ch 11 Thornton & Marion, Ch 9 Dynamics of Systems of Particles Hasbun, Ch 11 Thornton & Marion, Ch 9 Center of Mass Discrete System Center of Mass R CM 1 m i r i M i v CM = RCM 1 m i v i M a CM = v CM = RCM 1 M i m i a i i Center of

More information

Homework 2, part 2! ii) Calculate and plot design spike contour,

Homework 2, part 2! ii) Calculate and plot design spike contour, Homework 2, part 2! 1) For Aerospike Nozzle use Sonic Throat section, assume axi-symmetric design, full spike length.. For Aerospike Nozzle use Sonic Throat section, assume axisymmetric. design, full spike

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan) Lighter-than- air (balloons, dirigibles) Heavier-than- air (aircraft, rotorcraft) 1 2018 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

More information

Announcements. Principle of Work and Energy - Sections Engr222 Spring 2004 Chapter Test Wednesday

Announcements. Principle of Work and Energy - Sections Engr222 Spring 2004 Chapter Test Wednesday Announcements Test Wednesday Closed book 3 page sheet sheet (on web) Calculator Chap 12.6-10, 13.1-6 Principle of Work and Energy - Sections 14.1-3 Today s Objectives: Students will be able to: a) Calculate

More information

The Launch of Gorizont 45 on the First Proton K /Breeze M

The Launch of Gorizont 45 on the First Proton K /Breeze M The Launch of Gorizont 45 on the First Proton K / Fred D. Rosenberg, Ph.D. Space Control Conference 3 April 2001 FDR -01 1 This work is sponsored by the Air Force under Air Force Contract F19628-00-C-0002

More information

Chapter 4. Motion in Two Dimensions. Position and Displacement. General Motion Ideas. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions. Position and Displacement. General Motion Ideas. Motion in Two Dimensions Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Using + or signs is not always sufficient to fully describe motion in more than one dimension Vectors can be used to more fully describe motion

More information

Chapter 3: Kinematics in Two Dimensions

Chapter 3: Kinematics in Two Dimensions Chapter 3: Kinematics in Two Dimensions Vectors and Scalars A scalar is a number with units. It can be positive, negative, or zero. Time: 100 s Distance and speed are scalars, although they cannot be negative

More information

Optimal Control based Time Optimal Low Thrust Orbit Raising

Optimal Control based Time Optimal Low Thrust Orbit Raising Optimal Control based Time Optimal Low Thrust Orbit Raising Deepak Gaur 1, M. S. Prasad 2 1 M. Tech. (Avionics), Amity Institute of Space Science and Technology, Amity University, Noida, U.P., India 2

More information

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION

INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION INTRODUCTION & RECTILINEAR KINEMATICS: CONTINUOUS MOTION (Sections 12.1-12.2) Today s Objectives: Students will be able to find the kinematic quantities (position, displacement, velocity, and acceleration)

More information

Calculus of Variations Summer Term 2016

Calculus of Variations Summer Term 2016 Calculus of Variations Summer Term 2016 Lecture 14 Universität des Saarlandes 28. Juni 2016 c Daria Apushkinskaya (UdS) Calculus of variations lecture 14 28. Juni 2016 1 / 31 Purpose of Lesson Purpose

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan) Lighter-than- air (balloons, dirigibles) Heavier-than- air (aircraft, rotorcraft) 1 2014 David L. Akin - All rights

More information

KINEMATICS OF A PARTICLE. Prepared by Engr. John Paul Timola

KINEMATICS OF A PARTICLE. Prepared by Engr. John Paul Timola KINEMATICS OF A PARTICLE Prepared by Engr. John Paul Timola Particle has a mass but negligible size and shape. bodies of finite size, such as rockets, projectiles, or vehicles. objects can be considered

More information

p net (1) v combined

p net (1) v combined PHY 309 K. Solutions for Problem set # 9. Non-textbook problem #I: N,y v truck W E,x v car p truck p net (1) v combined S The collision in question is totally inelastic after the collision, the two vehicles

More information

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time)

HIGHER SCHOOL CERTIFICATE EXAMINATION MATHEMATICS 3 UNIT (ADDITIONAL) AND 3/4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) HIGHER SCHOOL CERTIFICATE EXAMINATION 000 MATHEMATICS UNIT (ADDITIONAL) AND /4 UNIT (COMMON) Time allowed Two hours (Plus 5 minutes reading time) DIRECTIONS TO CANDIDATES Attempt ALL questions. ALL questions

More information

Simple and convenient analytical formulas for studying the projectile motion in midair

Simple and convenient analytical formulas for studying the projectile motion in midair Revista Brasileira de Ensino de Física, vol 40, nº 1, e1308 (018) wwwscielobr/rbef DOI: http://dxdoiorg/101590/1806-916-rbef-017-0145 Articles cb Licença Creative Commons Simple and convenient analytical

More information

Chapter 13. Kinetics of Particles: Energy and Momentum Methods Introduction Work of a Force Kinetic Energy of a Particle. Principle of Work & Energy

Chapter 13. Kinetics of Particles: Energy and Momentum Methods Introduction Work of a Force Kinetic Energy of a Particle. Principle of Work & Energy Chapter 3. Kinetics of Particles: Energy and Momentum Methods Introduction Work of a Force Kinetic Energy of a Particle. Principle of Work & Energy pplications of the Principle of Work & Energy Power and

More information

Ballistic Atmospheric Entry

Ballistic Atmospheric Entry Ballistic Atmospheric Entry Standard atmospheres Orbital decay due to atmospheric drag Straight-line (no gravity) ballistic entry based on atmospheric density 1 2010 David L. Akin - All rights reserved

More information

Examples. 1. (Solution) (a) Suppose f is an increasing function, and let A(x) = x

Examples. 1. (Solution) (a) Suppose f is an increasing function, and let A(x) = x Math 31A Final Exam Practice Problems Austin Christian December 1, 15 Here are some practice problems for the final. You ll notice that these problems all come from material since the last exam. You are,

More information

Differential Equations: Homework 2

Differential Equations: Homework 2 Differential Equations: Homework Alvin Lin January 08 - May 08 Section.3 Exercise The direction field for provided x 0. dx = 4x y is shown. Verify that the straight lines y = ±x are solution curves, y

More information

Obliqe Projection. A body is projected from a point with different angles of projections 0 0, 35 0, 45 0, 60 0 with the horizontal bt with same initial speed. Their respective horizontal ranges are R,

More information

Integration Techniques

Integration Techniques Review for the Final Exam - Part - Solution Math Name Quiz Section The following problems should help you review for the final exam. Don t hesitate to ask for hints if you get stuck. Integration Techniques.

More information

California State Science Fair

California State Science Fair California State Science Fair Working Model for Model Rocket Altitude Prediction Edward Ruth drruth@ix.netcom.com This is a complete model of all the forces acting on a model rocket in flight. It calculates

More information

CP1 REVISION LECTURE 1 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 1 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 1 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 1 : INTRODUCTION TO CLASSICAL MECHANICS 1. Force and work 1.1 Newton

More information

Kinetic Energy and Work

Kinetic Energy and Work Kinetic Energy and Work 8.01 W06D1 Today s Readings: Chapter 13 The Concept of Energy and Conservation of Energy, Sections 13.1-13.8 Announcements Problem Set 4 due Week 6 Tuesday at 9 pm in box outside

More information

Newton s 3 rd Law. Book page 48-49

Newton s 3 rd Law. Book page 48-49 Newton s 3 rd Law Book page 48-49 14/9/2016 cgrahamphysics.com 2016 Newton s 2 nd Law problem Newton s second law does not always work: - does not work when applied to atoms and molecules - does not work

More information

Optimized Trajectory Shaping Guidance for an Air-to-Ground Missile Launched from a Gunship. Craig Phillips Ernie Ohlmeyer Shane Sorenson

Optimized Trajectory Shaping Guidance for an Air-to-Ground Missile Launched from a Gunship. Craig Phillips Ernie Ohlmeyer Shane Sorenson Optimized Trajectory Shaping Guidance for an Air-to-Ground Missile Launched from a Gunship Craig Phillips Ernie Ohlmeyer Shane Sorenson Overview Mission Scenario Notional Munition Concept Guidance Laws

More information

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion

AH Mechanics Checklist (Unit 1) AH Mechanics Checklist (Unit 1) Rectilinear Motion Rectilinear Motion No. kill Done 1 Know that rectilinear motion means motion in 1D (i.e. along a straight line) Know that a body is a physical object 3 Know that a particle is an idealised body that has

More information

3.4 Projectile Motion

3.4 Projectile Motion 3.4 Projectile Motion Projectile Motion A projectile is anything launched, shot or thrown---i.e. not self-propelled. Examples: a golf ball as it flies through the air, a kicked soccer ball, a thrown football,

More information

W = mgh joule and mass (m) = volume density =

W = mgh joule and mass (m) = volume density = 1. A rain drop of radius 2 mm falls from a height of 500 m above the ground. It falls with decreasing acceleration due to viscous resistance of the air until at half its original height, it attains its

More information

Dynamic - Engineering Mechanics 131

Dynamic - Engineering Mechanics 131 Dynamic - Engineering Mechanics 131 Stefan Damkjar Winter of 2012 2 Contents 1 General Principles 7 1.1 Mechanics..................................... 7 1.2 Fundamental Concepts..............................

More information

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES (Section 13.5)

EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES (Section 13.5) EQUATIONS OF MOTION: NORMAL AND TANGENTIAL COORDINATES (Section 13.5) Today s Objectives: Students will be able to apply the equation of motion using normal and tangential coordinates. APPLICATIONS Race

More information

Physics. TOPIC : Newton s law of Motion

Physics. TOPIC : Newton s law of Motion OPIC : ewton s law of Motion Date : Marks : 10 mks ime : ½ hr 1. A person sitting in an open car moving at constant velocity throws a ball vertically up into air. Outside the car In the car to the side

More information

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion

FORCES. Integrated Science Unit 8. I. Newton s Laws of Motion Integrated Science Unit 8 FORCES I. Newton s Laws of Motion A. Newton s First Law Sir Isaac Newton 1643 1727 Lincolnshire, England 1. An object at rest remains at rest, and an object in motion maintains

More information

Lecture 6, September 1, 2017

Lecture 6, September 1, 2017 Engineering Mathematics Fall 07 Lecture 6, September, 07 Escape Velocity Suppose we have a planet (or any large near to spherical heavenly body) of radius R and acceleration of gravity at the surface of

More information

Chapter 5 Gravitation Chapter 6 Work and Energy

Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 Gravitation Chapter 6 Work and Energy Chapter 5 (5.6) Newton s Law of Universal Gravitation (5.7) Gravity Near the Earth s Surface Chapter 6 (today) Work Done by a Constant Force Kinetic Energy,

More information

dt 2 x = r cos(θ) y = r sin(θ) r = x 2 + y 2 tan(θ) = y x A circle = πr 2

dt 2 x = r cos(θ) y = r sin(θ) r = x 2 + y 2 tan(θ) = y x A circle = πr 2 v = v i + at a dv dt = d2 x dt 2 A sphere = 4πr 2 x = x i + v i t + 1 2 at2 x = r cos(θ) V sphere = 4 3 πr3 v 2 = v 2 i + 2a x F = ma R = v2 sin(2θ) g y = r sin(θ) r = x 2 + y 2 tan(θ) = y x a c = v2 r

More information

PROBLEM SCORE Problem 1 (30 Pts) Problem 2 (30 Pts) Choose Problem #2 or #3! Problem 4 (40 Pts) TOTAL (100 Pts)

PROBLEM SCORE Problem 1 (30 Pts) Problem 2 (30 Pts) Choose Problem #2 or #3! Problem 4 (40 Pts) TOTAL (100 Pts) AAE 439 Exam #1 October 20, 2008 4:30 pm 6:00 pm ARMS B71 or ARMS 1109 NAME: SOLUTIONS Read all problems carefully before attempting to solve them. Your work must be legible, and the organization must

More information

General Physics I Spring Applying Newton s Laws

General Physics I Spring Applying Newton s Laws General Physics I Spring 2011 Applying Newton s Laws 1 Equilibrium An object is in equilibrium if the net force acting on it is zero. According to Newton s first law, such an object will remain at rest

More information

Physics 351, Spring 2017, Homework #2. Due at start of class, Friday, January 27, 2017

Physics 351, Spring 2017, Homework #2. Due at start of class, Friday, January 27, 2017 Physics 351, Spring 2017, Homework #2. Due at start of class, Friday, January 27, 2017 Course info is at positron.hep.upenn.edu/p351 When you finish this homework, remember to visit the feedback page at

More information

CHAPTER 3 PERFORMANCE

CHAPTER 3 PERFORMANCE PERFORMANCE 3.1 Introduction The LM-3A performance figures given in this chapter are based on the following assumptions: Launching from XSLC (Xichang Satellite Launch Center, Sichuan Province, China),

More information

Motion in Two Dimensions. 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3.

Motion in Two Dimensions. 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3. Motion in Two Dimensions 1.The Position, Velocity, and Acceleration Vectors 2.Two-Dimensional Motion with Constant Acceleration 3.Projectile Motion The position of an object is described by its position

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 10. Interplanetary Trajectories Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation 2 6. Interplanetary Trajectories 6.1 Patched conic method 6.2 Lambert s problem

More information

dt 2 x = r cos(θ) y = r sin(θ) r = x 2 + y 2 tan(θ) = y x A circle = πr 2

dt 2 x = r cos(θ) y = r sin(θ) r = x 2 + y 2 tan(θ) = y x A circle = πr 2 v = v i + at a dv dt = d2 x dt 2 A sphere = 4πr 2 x = x i + v i t + 1 2 at2 x = r cos(θ) V sphere = 4 3 πr3 v 2 = v 2 i + 2a x F = ma R = v2 sin(2θ) g y = r sin(θ) r = x 2 + y 2 tan(θ) = y x a c = v2 r

More information

TERMINAL ATTITUDE-CONSTRAINED GUIDANCE AND CONTROL FOR LUNAR SOFT LANDING

TERMINAL ATTITUDE-CONSTRAINED GUIDANCE AND CONTROL FOR LUNAR SOFT LANDING IAA-AAS-DyCoSS2-14 -02-05 TERMINAL ATTITUDE-CONSTRAINED GUIDANCE AND CONTROL FOR LUNAR SOFT LANDING Zheng-Yu Song, Dang-Jun Zhao, and Xin-Guang Lv This work concentrates on a 3-dimensional guidance and

More information

UAV Coordinate Frames and Rigid Body Dynamics

UAV Coordinate Frames and Rigid Body Dynamics Brigham Young University BYU ScholarsArchive All Faculty Publications 24-- UAV oordinate Frames and Rigid Body Dynamics Randal Beard beard@byu.edu Follow this and additional works at: https://scholarsarchive.byu.edu/facpub

More information

ENGI 2422 First Order ODEs - Separable Page 3-01

ENGI 2422 First Order ODEs - Separable Page 3-01 ENGI 4 First Order ODEs - Separable Page 3-0 3. Ordinary Differential Equations Equations involving only one independent variable and one or more dependent variables, together with their derivatives with

More information

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition)

Lectures Chapter 6 (Cutnell & Johnson, Physics 7 th edition) PH 201-4A spring 2007 Work and Energy Lectures 16-17 Chapter 6 (Cutnell & Johnson, Physics 7 th edition) 1 Work and Energy: Work done by a constant force Constant pushing force F pointing in the same direction

More information

W = F x W = Fx cosθ W = Fx. Work

W = F x W = Fx cosθ W = Fx. Work Ch 7 Energy & Work Work Work is a quantity that is useful in describing how objects interact with other objects. Work done by an agent exerting a constant force on an object is the product of the component

More information

Simulating Track/Sprocket and Track/Wheel/Terrain Contact in Tracked Vehicles

Simulating Track/Sprocket and Track/Wheel/Terrain Contact in Tracked Vehicles Simulating Track/Sprocket and Track/Wheel/Terrain Contact in Tracked Vehicles Z.-D. Ma C. Scholar N. C. Perkins University of Michigan Objective Efficient simulation of vehicle response including track

More information

Yung Tae Kim (Physics PhD) Physicist and Educator Puget Sound Community School Seattle, WA

Yung Tae Kim (Physics PhD) Physicist and Educator Puget Sound Community School Seattle, WA PHYSICIST PROFILE Yung Tae Kim (Physics PhD) Physicist and Educator Puget Sound Community School Seattle, WA Why Physics? Tae, who enjoyed mathematics in high school, signed up for an honors physics class

More information

CHAPTER 1. Introduction

CHAPTER 1. Introduction CHAPTER 1 Introduction Linear geometric control theory was initiated in the beginning of the 1970 s, see for example, [1, 7]. A good summary of the subject is the book by Wonham [17]. The term geometric

More information

The Rocket Equation. Lukas Lundin. 26th January 2016

The Rocket Equation. Lukas Lundin. 26th January 2016 The Rocket Equation Lukas Lundin 26th January 2016 Abstract In this project we study the basics of rocket propulsion and rocket motion in the vicinity of the Earth. Furthermore we will compare dierent

More information

An Overview of Mechanics

An Overview of Mechanics An Overview of Mechanics Mechanics: The study of how bodies react to forces acting on them. Statics: The study of bodies in equilibrium. Dynamics: 1. Kinematics concerned with the geometric aspects of

More information

IAC-13,C4,P,44.p1,x17254 THE DYNAMIC OPERATON OF A HIGH Q EMDRIVE MICROWAVE THRUSTER. Roger Shawyer C.Eng. MIET. FRAeS. SPR Ltd UK

IAC-13,C4,P,44.p1,x17254 THE DYNAMIC OPERATON OF A HIGH Q EMDRIVE MICROWAVE THRUSTER. Roger Shawyer C.Eng. MIET. FRAeS. SPR Ltd UK IAC-13,C4,P,44.p1,x1754 THE DYNAMIC OPERATON OF A HIGH Q EMDRIVE MICROWAVE THRUSTER Roger Shawyer C.Eng. MIET. FRAeS SPR Ltd UK sprltd@emdrive.com ABSTRACT The static operation of an EmDrive microwave

More information

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1

Physics 111. Lecture 15 (Walker: 7.1-2) Work & Energy March 2, Wednesday - Midterm 1 Physics 111 Lecture 15 (Walker: 7.1-2) Work & Energy March 2, 2009 Wednesday - Midterm 1 Lecture 15 1/25 Work Done by a Constant Force The definition of work, when the force is parallel to the displacement:

More information

Chapter 3 Acceleration

Chapter 3 Acceleration Chapter 3 Acceleration Slide 3-1 Chapter 3: Acceleration Chapter Goal: To extend the description of motion in one dimension to include changes in velocity. This type of motion is called acceleration. Slide

More information

PHYSICS 110A : CLASSICAL MECHANICS HW 1 SOLUTIONS. r = R vt

PHYSICS 110A : CLASSICAL MECHANICS HW 1 SOLUTIONS. r = R vt PHYSICS 11A : CLASSICAL MECHANICS HW 1 SOLUTIONS 2) Taylor 1.46 a) The equations of motion for the puck are: r = R vt φ = Assuming the puck is launched from the position φ =. Technically with the polar

More information

Chapter 7 Rocket Propulsion Physics

Chapter 7 Rocket Propulsion Physics Chapter 7 Rocket Propulsion Physics To move any spacecraft off the Earth, or indeed forward at all, there must be a system of propulsion. All rocket propulsion relies on Newton s Third Law of Motion: in

More information

03. Simple Dynamical Systems

03. Simple Dynamical Systems University of Rhode Island DigitalCommons@URI Classical Dynamics Physics Course Materials 2015 03. Simple Dynamical Systems Gerhard Müller University of Rhode Island, gmuller@uri.edu Creative Commons License

More information

Target tracking and classification for missile using interacting multiple model (IMM)

Target tracking and classification for missile using interacting multiple model (IMM) Target tracking and classification for missile using interacting multiple model (IMM Kyungwoo Yoo and Joohwan Chun KAIST School of Electrical Engineering Yuseong-gu, Daejeon, Republic of Korea Email: babooovv@kaist.ac.kr

More information

Homework 3: Kinematics and Dynamics of Particles Due Friday Feb 15, 2019

Homework 3: Kinematics and Dynamics of Particles Due Friday Feb 15, 2019 EN4: Dnamics and Vibrations Homework 3: Kinematics and Dnamics of Particles Due Frida Feb 15, 19 School of Engineering rown Universit Please submit our solutions to the MTL coding problems 4, 5, 6 b uploading

More information

Session 6: Analytical Approximations for Low Thrust Maneuvers

Session 6: Analytical Approximations for Low Thrust Maneuvers Session 6: Analytical Approximations for Low Thrust Maneuvers As mentioned in the previous lecture, solving non-keplerian problems in general requires the use of perturbation methods and many are only

More information