Rocket Performance MARYLAND U N I V E R S I T Y O F. Ballistic Entry ENAE Launch and Entry Vehicle Design

Size: px
Start display at page:

Download "Rocket Performance MARYLAND U N I V E R S I T Y O F. Ballistic Entry ENAE Launch and Entry Vehicle Design"

Transcription

1 Rocket Performance Parallel staging Modular staging Standard atmospheres Orbital decay due to drag Straight-line (no gravity) entry based on atmospheric density David L. Akin - All rights reserved

2 Parallel Staging Multiple dissimilar engines burning simultaneously Frequently a result of upgrades to operational systems General case requires brute force numerical performance analysis 2

3 Parallel-Staging Rocket Equation Momentum at time t: M = mv Momentum at time t+δt: (subscript b =boosters; c =core vehicle) M = (m m b m c )(v + v) + m b (v V e,b ) + m c (v V e,c ) Assume thrust (and mass flow rates) constant 3

4 Parallel-Staging Rocket Equation Rocket equation during booster burn V = V e ln mfinal m initial = V min,b +m e ln in,c + m pr,c +m 0,2 m in,b +m pr,b +m in,c +m pr,c +m 0,2 where χ= fraction of core propellant remaining after booster burnout, and where V e = V e,bṁ b +V e,c ṁ c ṁ b +ṁ c = V e,bm pr,b +V e,c (1 χ)m pr,c m pr,b +(1 χ)m pr,c 4

5 Analyzing Parallel-Staging Performance Parallel stages break down into pseudo-serial stages: Stage 0 (boosters and core) V 0 = V e ln Stage 1 (core alone) V 1 = Subsequent stages are as before ( ) min,b +m in,c +χm pr,c +m 0,2 m in,b +m pr,b +m in,c +m pr,c +m 0,2 V e,c ln m in,c +m 0,2 m in,c + m pr,c +m 0,2 5

6 Parallel Staging Example: Space Shuttle 2 x solid rocket boosters (data below for single SRB) Gross mass 589,670 kg Empty mass 86,183 kg Ve 2636 m/sec Burn time 124 sec External tank (space shuttle main engines) Gross mass 750,975 kg Empty mass 29,930 kg Ve 4459 m/sec Burn time 480 sec Payload (orbiter + P/L) 125,000 kg 6

7 Shuttle Parallel Staging Example V e = V e,b = 2636 m sec χ = V e,c =4459 m sec = (1, 007, 000) (721, 000)(1.7417) 1, 007, , 000(1.7417) =2921 m sec V 0 = 2921 ln V 1 = 4459 ln 862, 000 3, 062, 000 =3702m sec 154, , 700 =6659m sec V tot =10, 360 m sec 7

8 Modular Staging Use identical modules to form multiple stages Have to cluster modules on lower stages to make up for nonideal ΔV distributions Advantageous from production and development cost standpoints 8

9 Module Analysis All modules have the same inert mass and propellant mass Because δ varies with payload mass, not all modules have the same δ! Use module-oriented parameters ε Conversions m in m in + m pr ε = δ 1 λ σ m in m pr σ = δ 1 δ λ 9

10 Rocket Equation for Modular Boosters Assuming n modules in stage 1, r 1 = n(m in )+m o2 n(m in + m pr )+m o2 = nε + mo2 m mod n + m o2 m mod If all 3 stages use same modules, n j for stage j, where r 1 = n 1ε + n 2 + n 3 + ρ pl n 1 + n 2 + n 3 + ρ pl ρ pl m pl ; m mod = m in + m pr m mod 10

11 Example: Conestoga 1620 (EER) Small launch vehicle (1 flight, 1 failure) Payload 900 kg Module gross mass 11,400 kg Module empty mass 1,400 kg Exhaust velocity 2754 m/sec Staging pattern 1st stage - 4 modules 2nd stage - 2 modules 3rd stage - 1 module 4th stage - Star 48V (gross mass 2200 kg, empty mass 140 kg, V e 2842 m/sec) 11

12 Conestoga 1620 Performance 4th stage V V 4 = V e4 ln m f4 = 2842 ln m o4 Treat like three-stage modular vehicle; M pl =3100 kg = m in m mod = = pl = = 3104 m sec m pl = 3100 m mod = n 1 = 4; n 2 = 2; n 3 =1 12

13 Constellation 1620 Performance (cont.) r 1 = n 1 + n 2 + n 3 + pl = n 1 + n 2 + n 3 + pl r 2 = n 2 + n 3 + pl = n 2 + n 3 + pl r 3 = n 3 + pl = n 3 + pl V 1 = 1814 m sec ; V 2 = 2116 m sec V 3 = 3223 m sec ; V 4 = 3104 m V total = 10, 257 m sec sec = = =0.3103

14 Discussion about Modular Vehicles Modularity has several advantages Saves money (smaller modules cost less to develop) Saves money (larger production run = lower cost/ module) Allows resizing launch vehicles to match payloads Trick is to optimize number of stages, number of modules/stage to minimize total number of modules Generally close to optimum by doubling number of modules at each lower stage Have to worry about packing factors, complexity 14

15 OTRAG

16 Modular Example Let s build a launch vehicle out of seven Space Shuttle Solid Rocket Boosters M in =86,180 kg M pr =503,500 kg ε m in m in + m pr = σ m in m pr = Look at possible approaches to sequential firing 16

17 Modular Sequencing - SRB Example Assume no payload All seven firing at once - ΔV tot =5138 m/sec sequence - ΔV tot =9087 m/sec sequence - ΔV tot =9175 m/sec sequence - ΔV tot =9250 m/sec sequence - ΔV tot =9408 m/sec sequence - ΔV tot =9418 m/sec Sequence limited by need to balance thrust laterally 17

18 Atmospheric Density with Altitude Ref: V. L. Pisacane and R. C. Moore, Fundamentals of Space Systems Oxford University Press,

19 Energy Loss Due to Atmospheric Drag Drag D 1 2 v2 Ac D Drag acceleration a d = D m = m c D A v2 2 Ac D m <== Ballistic Coefficient a d = v2 2 orbital energy E = µ 2a de dt = µ da 2a 2 dt 19

20 Energy Loss Due to Atmospheric Drag Since drag is highest at perigee, the first effect of atmospheric drag is to circularize the orbit (high perigee drag lowers apogee) de drag dt = a d v v 2 circ = µ a de drag dt = v2 2 µ a de drag dt = µ a 2 µ a = µ 3 2 a 2 20

21 Derivation of Orbital Decay Due to Drag Set orbital energy variation equal to energy lost by drag = o e µ da 2a 2 dt = 2 µ a da dt = µa 3 2 h hs a = h + r E = da dt = dh dt dh dt = µ (h + r E ) o e h hs 21

22 Derivation of Orbital Decay (2) This is a separable differential equation... 1 re + h e h hs dh = µ o dt h re + h e h hs dh = h o 1 µ o t t o dt Assume 1 re h r E + h h o e h hs dh = re for r E h µ o (t t o ) 22

23 Derivation of Orbital Decay (3) h s e h hs e h o hs re = µ o (t t o ) e h hs h(t) = h s ln e h o hs Note that some variables typically use km, and others are in meters - you have to make sure unit conversions are done properly to make this work out correctly! e h o hs = 23 µre o (t t o ) h s µre o (t t o ) h s

24 Orbit Decay from Atmospheric Drag Altitude (km) β=500 β=1500 β= Time (sec) 24

25 Time Until Orbital Decay e h hs e h o hs = µre h s o (t t o ) To find the time remaining (t o =0) until the orbit reaches any given critical altitude, some algebra gives t(h crit )= h s p e h o hs µre o h crit e hs t(h crit ) / 25

26 Decay Time to r=120 km Altitude (km) β=500 β=1500 β= Decay Time (yrs) 26

27 (no lift) s = distance along the flight path dv dt = g sin D m dv dt = dv ds ds dt = V dv ds = 1 2 d(v 2 ) ds D mg horizontal v, s 1 2 d(v 2 ) ds = g sin D m Drag D 1 2 v2 Ac D 1 2 sin 2 d(v 2 ) ds = g sin v 2 2m Ac D d(v 2 ) dh = g sin v 2 2m Ac D ds dh ds = dh sin 27

28 (2) Exponential atmosphere = o e h hs d o = e h hs dh h s = o e o h hs dh h s = o dh h s dh = hs d sin 2 sin 2 d(v 2 ) d d(v 2 ) dh = g sin v 2 2m Ac D v 2 = g sin 2 h s Ac D m d(v 2 ) d = 2gh s 28 + h sv 2 sin Ac D m

29 (3) Let m c D A Ballistic Coe cient d(v 2 ) d h s sin v2 = 2gh s Assume mg D to get homogeneous ODE Use d(v 2 ) d h s sin v2 = 0 v 2 as integration variable d(v 2 ) v 2 = h s sin d v v e d(v 2 ) v 2 = h s sin 0 d v e = velocity at entry 29

30 (4) Note that the effect of ignoring gravity is that there is no force perpendicular to velocity vector constant flight path angle γ straight line trajectories ln v2 v 2 e = 2 ln v v e = h s sin v v e = exp h s 2 sin v v e = exp h s o 2 sin o Check units: m kg m 3 kg m 2 30

31 Earth Entry, γ=-60 v/v e / o Beta=100 kg/m^

32 What About Peak Deceleration? To find n max, set d dt d 2 v dt 2 = 1 2 d 2 v dt 2 = 1 2 n dv dt = dv dt v2 2 = d2 v dt 2 = 0 2v dv dt 2 2 v v2 d dt + v 2 d dt = 0 = 0 2 v 3 = v 2 d dt 2 v = d dt 32

33 Peak Deceleration (2) From exponential atmosphere, d dt = From geometry, dh dt = v sin d dt = o h s e v h s sin 2 v = h hs dh dt = dh h s dt 2 v = v sin h s d dt Remember that this refers to the conditions at max deceleration nmax = hs sin 33

34 Critical β for Deceleration Before Impact At surface, = o Value of at which vehicle hits crit = oh s sin ground at point of maximum deceleration How large is maximum deceleration? dv dt = v2 2 dv = v2 dt max 2 dv = n v2 max dt max 2 sin h s = 1 2 v 2 h s sin Note that this value of v is actually v nmax 34

35 Peak Deceleration (3) From page 14, v nmax v e dv dt max = 1 2 v v e = exp 35 h s 2 sin h s = exp sin 2 sin h s 2 v e e 1 2 = e 1 2 h s sin = v2 e sin 2h s e Note that the velocity at which maximum deceleration occurs is always a fixed fraction of the entry velocity - it doesn t depend on ballistic coefficient, flight path angle, or anything else! Also, the magnitude of the maximum deceleration is not a function of ballistic coefficient - it is dependent on the entry trajectory (v e and γ) but not spacecraft parameters (i.e., ballistic coefficient).

36 Terminal Velocity Full form of ODE - d v 2 d h s sin v2 = 2gh s At terminal velocity, v = constant v T h s sin v2 T = 2gh s v 2 T = 2g sin 36

37 Cannon Ball γ= diameter sphere, c D =0.2, V E =6000 m/sec Iron Aluminum Balsa Wood Weight 40 lb 15.6 lb 14.5 oz β (kg/m 2 ) ρmd (kg/m 3 ) hmd (m) ,300 32,500 Vimpact (m/s) * Vterm (m/sec) *Artifact of assumption that D 37 mg

38 Atmospheric Density with Altitude Pressure=the integral of the atmospheric density in the column above the reference area = f(h) P o = Z 1 o gdh = o g Z 1 o e h hs dh = o gh s he h hs = o gh s [0 1] i 1 o Earth: o = kg m 3 ; h s = 7524m; P o = o gh s P o (calc) = 90, 400 Pa; P o (act) = 101, 300 Pa o, P o 38

39 Nondimensional Ballistic Coefficient v v e = exp h s o 2 sin o Po =exp 2 g sin Let b = g (Nondimensional form of ballistic coe cient) o h s P o Note that we are using the estimated value of P o = o gh s, not the actual surface pressure. v 1 = exp v e 2 sin o o crit = oh s sin crit = 1 sin 39

40 Entry Velocity Trends, γ=-90 Density Ratio Velocity Ratio

Ballistic Atmospheric Entry

Ballistic Atmospheric Entry Ballistic Atmospheric Entry Standard atmospheres Orbital decay due to atmospheric drag Straight-line (no gravity) ballistic entry based on atmospheric density 1 2010 David L. Akin - All rights reserved

More information

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE Launch and Entry Vehicle Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE Launch and Entry Vehicle Design The rest of orbital mechanics The rocket equation Mass ratio and performance Structural and payload mass fractions Regression analysis Multistaging Optimal ΔV distribution between stages Trade-off ratios

More information

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE Launch and Entry Vehicle Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE Launch and Entry Vehicle Design The rocket equation Mass ratio and performance Structural and payload mass fractions Regression analysis Multistaging Optimal ΔV distribution between stages Trade-off ratios Parallel staging Modular staging

More information

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design Lecture #03 September 5, 2017 The rocket equation Mass ratio and performance Structural and payload mass fractions Regression analysis Multistaging Optimal ΔV distribution between stages Trade-off ratios

More information

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design Lecture #06 September 17, 2015 The rocket equation Mass ratio and performance Structural and payload mass fractions Regression analysis Multistaging Optimal ΔV distribution between stages Trade-off ratios

More information

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design Lecture #06 September 18, 2014 The rocket equation Mass ratio and performance Structural and payload mass fractions Regression analysis Multistaging Optimal ΔV distribution between stages Trade-off ratios

More information

Ballistic Atmospheric Entry

Ballistic Atmospheric Entry Ballistic Atmosperic Entry Straigt-line (no gravity) ballistic entry based on density and altitude Planetary entries (at least a start) Basic equations of planar motion 206 David L. Akin - All rigts reserved

More information

Ballistic Atmospheric Entry (Part II)

Ballistic Atmospheric Entry (Part II) Ballistic Atmospheric Entry (Part II) News updates Straight-line (no gravity) ballistic entry based on altitude, rather than density Planetary entries (at least a start) 1 2010 David L. Akin - All rights

More information

Rocket Performance MARYLAND

Rocket Performance MARYLAND Rocket Perforance The rocket equation Mass ratio and perforance Structural and payload ass fractions Multistaging Optial V distribution between stages Trade-off ratios Parallel staging Modular staging

More information

Basic Ascent Performance Analyses

Basic Ascent Performance Analyses Basic Ascent Performance Analyses Ascent Mission Requirements Ideal Burnout Solution Constant & Average Gravity Models Gravity Loss Concept Effect of Drag on Ascent Performance Drag Profile Approximation

More information

Rocket Science 102 : Energy Analysis, Available vs Required

Rocket Science 102 : Energy Analysis, Available vs Required Rocket Science 102 : Energy Analysis, Available vs Required ΔV Not in Taylor 1 Available Ignoring Aerodynamic Drag. The available Delta V for a Given rocket burn/propellant load is ( ) V = g I ln 1+ P

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan) Lighter-than- air (balloons, dirigibles) Heavier-than- air (aircraft, rotorcraft) 1 2014 David L. Akin - All rights

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan)! Lighter-than- air (balloons, dirigibles)! Heavier-than- air (aircraft, rotorcraft) 1 2014 David L. Akin - All rights

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan) Lighter-than- air (balloons, dirigibles) Heavier-than- air (aircraft, rotorcraft) 1 2018 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

More information

Robotic Mobility Above the Surface

Robotic Mobility Above the Surface Free Space Relative Orbital Motion Airless Major Bodies (moons) 1 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Propulsive Motion in Free Space Basic motion governed by Newton

More information

Gravity Turn Concept. Curvilinear Coordinate System Gravity Turn Manoeuvre concept Solutions for Constant Pitch Rate

Gravity Turn Concept. Curvilinear Coordinate System Gravity Turn Manoeuvre concept Solutions for Constant Pitch Rate Gravity Turn Concept Curvilinear Coordinate System Gravity Turn Manoeuvre concept Solutions for Constant Pitch Rate Inclined Motion Concept In reality, vertical motion is used only for a very small part

More information

Robotic Mobility Above the Surface

Robotic Mobility Above the Surface Free Space Relative Orbital Motion Airless Major Bodies (moons) Gaseous Environments (Mars, Venus, Titan) Lighter-than- air (balloons, dirigibles) Heavier-than- air (aircraft, helicopters) 1 2012 David

More information

Rocket Propulsion Basics Thrust

Rocket Propulsion Basics Thrust Rockets 101: A Quick Primer on Propulsion & Launch Vehicle Technologies Steve Heister, Professor School of Aeronautics and Astronautics Purdue University Presentation to AFSAB, 13 January, 2010 Rocket

More information

Parametric Design MARYLAND. The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F

Parametric Design MARYLAND. The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F Parametric Design The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F MARYLAND 2005 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Parametric

More information

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN Satellite Orbital Maneuvers and Transfers Dr Ugur GUVEN Orbit Maneuvers At some point during the lifetime of most space vehicles or satellites, we must change one or more of the orbital elements. For example,

More information

MARYLAND. The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F.

MARYLAND. The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F. Parametric Design The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F MARYLAND 2004 David L. Akin - All rights reserved http://spacecraft.ssl.

More information

ENAE 483/788D FINAL EXAMINATION FALL, 2015

ENAE 483/788D FINAL EXAMINATION FALL, 2015 ENAE 48/788D FINAL EXAMINATION FALL, 2015 No phones, computers, or internet-enabled devices. Use the spaces following the questions to write your answers; you can also use the backs of the pages as necessary,

More information

Orbital Mechanics MARYLAND U N I V E R S I T Y O F. Orbital Mechanics. ENAE 483/788D - Principles of Space Systems Design

Orbital Mechanics MARYLAND U N I V E R S I T Y O F. Orbital Mechanics. ENAE 483/788D - Principles of Space Systems Design Planetary launch and entry overview Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers Time in orbit Interplanetary trajectories

More information

Mass Estimating Relationships MARYLAND. Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis

Mass Estimating Relationships MARYLAND. Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis Mass Estimating Relationships Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis 2006 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

More information

Chapter 9. Linear Momentum and Collisions

Chapter 9. Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Momentum Analysis Models Force and acceleration are related by Newton s second law. When force and acceleration vary by time, the situation can be very complicated.

More information

Parametric Design MARYLAND. The Design Process Regression Analysis Level I Design Example: Project Diana U N I V E R S I T Y O F.

Parametric Design MARYLAND. The Design Process Regression Analysis Level I Design Example: Project Diana U N I V E R S I T Y O F. Parametric Design The Design Process Regression Analysis Level I Design Example: U N I V E R S I T Y O F MARYLAND 2003 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Parametric Design

More information

Seminar 3! Precursors to Space Flight! Orbital Motion!

Seminar 3! Precursors to Space Flight! Orbital Motion! Seminar 3! Precursors to Space Flight! Orbital Motion! FRS 112, Princeton University! Robert Stengel" Prophets with Some Honor" The Human Seed and Social Soil: Rocketry and Revolution" Orbital Motion"

More information

Title: Space flight landing a Space Shuttle

Title: Space flight landing a Space Shuttle Title: Space flight landing a Space Shuttle Topics: exponentials, derivatives, temperature, speed, distance and time, air density, energy conversion Time: 35 minutes Age: 6+ Differentiation: Higher level:

More information

Multistage Rockets. Chapter Notation

Multistage Rockets. Chapter Notation Chapter 8 Multistage Rockets 8.1 Notation With current technology and fuels, and without greatly increasing the e ective I sp by air-breathing, a single stage rocket to Earth orbit is still not possible.

More information

The Design Process Level I Design Example: Low-Cost Lunar Exploration Amplification on Initial Concept Review

The Design Process Level I Design Example: Low-Cost Lunar Exploration Amplification on Initial Concept Review Parametric Design The Design Process Level I Design Example: Low-Cost Lunar Exploration Amplification on Initial Concept Review U N I V E R S I T Y O F MARYLAND 2008 David L. Akin - All rights reserved

More information

Course Overview/Orbital Mechanics

Course Overview/Orbital Mechanics Course Overview/Orbital Mechanics Course Overview Challenges of launch and entry Course goals Web-based Content Syllabus Policies Project Content An overview of orbital mechanics at point five past lightspeed

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2008 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu 1 Propulsion

More information

MARYLAND U N I V E R S I T Y O F. The Space Environment. Principles of Space Systems Design

MARYLAND U N I V E R S I T Y O F. The Space Environment. Principles of Space Systems Design Gravitation Electromagnetic Radiation Atmospheric Particles Solar Wind Particles Ionizing Radiation Micrometeoroids/Orbital Debris Spacecraft Charging Planetary Environments 2003 David L. Akin - All rights

More information

VARIABLE MASS PROBLEMS

VARIABLE MASS PROBLEMS VARIABLE MASS PROBLEMS Question 1 (**) A rocket is moving vertically upwards relative to the surface of the earth. The motion takes place close to the surface of the earth and it is assumed that g is the

More information

The Space Environment

The Space Environment Lecture #07 - September 18, 2018 Course schedule updates Planetary environments Gravitation Electromagnetic radiation Atmospheric particles Newtonian flow Solar wind particles Ionizing radiation Micrometeoroids/orbital

More information

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded

1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded Code No: R05322106 Set No. 1 1. (a) Describe the difference between over-expanded, under-expanded and ideallyexpanded rocket nozzles. (b) While on its way into orbit a space shuttle with an initial mass

More information

A little more about costing Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis

A little more about costing Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis A little more about costing Review of iterative design approach (MERs) Sample vehicle design analysis 2004 David L. Akin - All rights reserved http://spacecraft.ssl. umd.edu Internal Rate of Return Discount

More information

2. KINEMATICS. By Liew Sau Poh

2. KINEMATICS. By Liew Sau Poh 2. KINEMATICS By Liew Sau Poh 1 OBJECTIVES 2.1 Linear motion 2.2 Projectiles 2.3 Free falls and air resistance 2 OUTCOMES Derive and use equations of motion with constant acceleration Sketch and use the

More information

Orbital Mechanics MARYLAND U N I V E R S I T Y O F. Orbital Mechanics. ENAE 483/788D - Principles of Space Systems Design

Orbital Mechanics MARYLAND U N I V E R S I T Y O F. Orbital Mechanics. ENAE 483/788D - Principles of Space Systems Design Lecture #05 September 15, 2015 Planetary launch and entry overview Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers Time in orbit

More information

Orbital Mechanics MARYLAND

Orbital Mechanics MARYLAND Orbital Mechanics Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers Time in orbit Interplanetary trajectories Planetary launch and

More information

PROBLEM SCORE Problem 1 (30 Pts) Problem 2 (30 Pts) Choose Problem #2 or #3! Problem 4 (40 Pts) TOTAL (100 Pts)

PROBLEM SCORE Problem 1 (30 Pts) Problem 2 (30 Pts) Choose Problem #2 or #3! Problem 4 (40 Pts) TOTAL (100 Pts) AAE 439 Exam #1 October 20, 2008 4:30 pm 6:00 pm ARMS B71 or ARMS 1109 NAME: SOLUTIONS Read all problems carefully before attempting to solve them. Your work must be legible, and the organization must

More information

Investigation of Combined Airbreathing/Rocket. Air Launch of Micro-Satellites from a Combat Aircraft

Investigation of Combined Airbreathing/Rocket. Air Launch of Micro-Satellites from a Combat Aircraft 6th Responsive Space Conference AIAA-RS6-008-5003 Investigation of Combined Airbreathing/Rocket Propulsion for Air Launch of Micro-Satellites from a Combat Aircraft Avichai Socher and Alon Gany Faculty

More information

Propulsion Systems Design

Propulsion Systems Design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 1 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Liquid

More information

Rocket Dynamics. Forces on the Rocket

Rocket Dynamics. Forces on the Rocket Rocket Dynamics Forces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors F Thrust Forces on the Rocket Equation of otion: Need to minimize total mass to maximize acceleration

More information

Problem Set. Assignment #1. Math 3350, Spring Feb. 6, 2004 ANSWERS

Problem Set. Assignment #1. Math 3350, Spring Feb. 6, 2004 ANSWERS Problem Set Assignment #1 Math 3350, Spring 2004 Feb. 6, 2004 ANSWERS i Problem 1. [Section 1.4, Problem 4] A rocket is shot straight up. During the initial stages of flight is has acceleration 7t m /s

More information

What is the Optimum Engine Thrust Profile?

What is the Optimum Engine Thrust Profile? ISSUE 471 June 12th, 2018 IN THIS ISSUE What is the Optimum Engine Thrust Profile? https://www.apogeerockets.com/rocket_kits/skill_level_4_kits/micro-sentra_srb By Steve Ainsworth Introduction The Goddard

More information

Orbital Mechanics MARYLAND. Orbital Mechanics. ENAE 483/788D - Principles of Space Systems Design

Orbital Mechanics MARYLAND. Orbital Mechanics. ENAE 483/788D - Principles of Space Systems Design Lecture #08 September 22, 2016 Planetary launch and entry overview Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers Time in orbit

More information

Ulrich Walter. Astronautics. The Physics of Space Flight. 2nd, Enlarged and Improved Edition

Ulrich Walter. Astronautics. The Physics of Space Flight. 2nd, Enlarged and Improved Edition Ulrich Walter Astronautics The Physics of Space Flight 2nd, Enlarged and Improved Edition Preface to Second Edition Preface XVII Acknowledgments XIX List of Symbols XXI XV 1 Rocket Fundamentals 1 1.1 Rocket

More information

High-Power Rocketry. Calculating the motion of a rocket for purely vertical flight.

High-Power Rocketry. Calculating the motion of a rocket for purely vertical flight. High-Power Rocketry Calculating the motion of a rocket for purely vertical flight. Phase I Boost phase: motor firing (rocket losing mass), going upwards faster and faster (accelerating upwards) Phase II

More information

p net (1) v combined

p net (1) v combined PHY 309 K. Solutions for Problem set # 9. Non-textbook problem #I: N,y v truck W E,x v car p truck p net (1) v combined S The collision in question is totally inelastic after the collision, the two vehicles

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2005 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Overview of the Design Process

More information

Propulsion Systems Design

Propulsion Systems Design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 1 2011 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Propulsion

More information

California State Science Fair

California State Science Fair California State Science Fair Working Model for Model Rocket Altitude Prediction Edward Ruth drruth@ix.netcom.com This is a complete model of all the forces acting on a model rocket in flight. It calculates

More information

First Year Physics: Prelims CP1. Classical Mechanics: Prof. Neville Harnew. Problem Set III : Projectiles, rocket motion and motion in E & B fields

First Year Physics: Prelims CP1. Classical Mechanics: Prof. Neville Harnew. Problem Set III : Projectiles, rocket motion and motion in E & B fields HT017 First Year Physics: Prelims CP1 Classical Mechanics: Prof Neville Harnew Problem Set III : Projectiles, rocket motion and motion in E & B fields Questions 1-10 are standard examples Questions 11-1

More information

Aeromaneuvering/Entry, Descent, Landing

Aeromaneuvering/Entry, Descent, Landing Aeromaneuvering/Entry, Descent, Landing Aeromaneuvering Case study: Mars EDL Case study: Mars Exploration Rovers Case study: Mars Science Laboratory U N I V E R S I T Y O F MARYLAND 2012 David L. Akin

More information

Projectile Motion. Conceptual Physics 11 th Edition. Projectile Motion. Projectile Motion. Projectile Motion. This lecture will help you understand:

Projectile Motion. Conceptual Physics 11 th Edition. Projectile Motion. Projectile Motion. Projectile Motion. This lecture will help you understand: Conceptual Physics 11 th Edition Projectile motion is a combination of a horizontal component, and Chapter 10: PROJECTILE AND SATELLITE MOTION a vertical component. This lecture will help you understand:

More information

Separable warhead mathematical model of Supersonic & Hypersonic Re-entry Vehicles

Separable warhead mathematical model of Supersonic & Hypersonic Re-entry Vehicles 16 th International Conference on AEROSPACE SCIENCES & AVIATION TECHNOLOGY, ASAT - 16 May 26-28, 2015, E-Mail: asat@mtc.edu.eg Military Technical College, Kobry Elkobbah, Cairo, Egypt Tel : +(202) 24025292

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Solid rocket motors Liquid rocket engines. Hybrid rocket engines Auxiliary propulsion systems

Propulsion Systems Design MARYLAND. Rocket engine basics Solid rocket motors Liquid rocket engines. Hybrid rocket engines Auxiliary propulsion systems Propulsion Systems Design Rocket engine basics Solid rocket motors Liquid rocket engines Monopropellants Bipropellants Propellant feed systems Hybrid rocket engines Auxiliary propulsion systems 2004 David

More information

Conceptual Physics 11 th Edition

Conceptual Physics 11 th Edition Conceptual Physics 11 th Edition Chapter 10: PROJECTILE AND SATELLITE MOTION This lecture will help you understand: Projectile Motion Fast-Moving Projectiles Satellites Circular Satellite Orbits Elliptical

More information

18. Linearization: the phugoid equation as example

18. Linearization: the phugoid equation as example 79 18. Linearization: the phugoid equation as example Linearization is one of the most important and widely used mathematical terms in applications to Science and Engineering. In the context of Differential

More information

Massachusetts Institute of Technology - Physics Department

Massachusetts Institute of Technology - Physics Department Massachusetts Institute of Technology - Physics Department Physics - 8.01 Assignment #4 October 6, 1999. It is strongly recommended that you read about a subject before it is covered in lectures. Lecture

More information

V sphere = 4 3 πr3. a c = v2. F c = m v2. F s = k s. F ds. = dw dt. P W t. K linear 1 2 mv2. U s = 1 2 kx2 E = K + U. p mv

V sphere = 4 3 πr3. a c = v2. F c = m v2. F s = k s. F ds. = dw dt. P W t. K linear 1 2 mv2. U s = 1 2 kx2 E = K + U. p mv v = v i + at x = x i + v i t + 1 2 at2 v 2 = v 2 i + 2a x F = ma F = dp dt P = mv R = v2 sin(2θ) g v dx dt a dv dt = d2 x dt 2 x = r cos(θ) V sphere = 4 3 πr3 a c = v2 r = rω2 F f = µf n F c = m v2 r =

More information

Spacecraft Environment! Launch Phases and Loading Issues-1

Spacecraft Environment! Launch Phases and Loading Issues-1 Spacecraft Environment! Space System Design, MAE 342, Princeton University! Robert Stengel! Atmospheric characteristics! Loads on spacecraft! Near-earth and space environment! Spacecraft charging! Orbits

More information

Conceptual Physical Science 6 th Edition

Conceptual Physical Science 6 th Edition 1 2 1 Conceptual Physical Science 6 th Edition Chapter 4: GRAVITY, PROJECTILES, AND SATELLITES Sections 4.1, 4.5-4.9 only 3 2017 Pearson Education, Inc. This lecture will help you understand: The Universal

More information

Lecture D30 - Orbit Transfers

Lecture D30 - Orbit Transfers J. Peraire 16.07 Dynamics Fall 004 Version 1.1 Lecture D30 - Orbit Transfers In this lecture, we will consider how to transfer from one orbit, or trajectory, to another. One of the assumptions that we

More information

CP1 REVISION LECTURE 1 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 1 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 1 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 1 : INTRODUCTION TO CLASSICAL MECHANICS 1. Force and work 1.1 Newton

More information

Conceptual Physics Fundamentals

Conceptual Physics Fundamentals Conceptual Physics Fundamentals Chapter 6: GRAVITY, PROJECTILES, AND SATELLITES This lecture will help you understand: The Universal Law of Gravity The Universal Gravitational Constant, G Gravity and Distance:

More information

How Small Can a Launch Vehicle Be?

How Small Can a Launch Vehicle Be? UCRL-CONF-213232 LAWRENCE LIVERMORE NATIONAL LABORATORY How Small Can a Launch Vehicle Be? John C. Whitehead July 10, 2005 41 st AIAA/ASME/SAE/ASEE Joint Propulsion Conference and Exhibit Tucson, AZ Paper

More information

Figure 1 Answer: = m

Figure 1 Answer: = m Q1. Figure 1 shows a solid cylindrical steel rod of length =.0 m and diameter D =.0 cm. What will be increase in its length when m = 80 kg block is attached to its bottom end? (Young's modulus of steel

More information

The motion of a Rocket

The motion of a Rocket Prepared for submission to JCAP The motion of a Rocket Salah Nasri a United Arab Emirates University, Al-Ain, UAE E-mail: snasri@uaeu.ac.ae Abstract. These are my notes on some selected topics in undergraduate

More information

Linear Momentum, Center of Mass, Conservation of Momentum, and Collision.

Linear Momentum, Center of Mass, Conservation of Momentum, and Collision. PHYS1110H, 2011 Fall. Shijie Zhong Linear Momentum, Center of Mass, Conservation of Momentum, and Collision. Linear momentum. For a particle of mass m moving at a velocity v, the linear momentum for the

More information

MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design U N I V E R S I T Y O F

MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design U N I V E R S I T Y O F Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2004 David L. Akin - All rights reserved http://spacecraft.ssl. umd.edu Overview of the Design Process

More information

MARYLAND U N I V E R S I T Y O F. Orbital Mechanics. Principles of Space Systems Design

MARYLAND U N I V E R S I T Y O F. Orbital Mechanics. Principles of Space Systems Design Energy and velocity in orbit Elliptical orbit parameters Orbital elements Coplanar orbital transfers Noncoplanar transfers Time and flight path angle as a function of orbital position Relative orbital

More information

Flight and Orbital Mechanics

Flight and Orbital Mechanics Flight and Orbital Mechanics Lecture slides Challenge the future 1 Flight and Orbital Mechanics Lecture hours 3, 4 Minimum time to climb Mark Voskuijl Semester 1-2012 Delft University of Technology Challenge

More information

Review of Linear Momentum And Rotational Motion

Review of Linear Momentum And Rotational Motion Physics 7B-1 (C/D) Professor Cebra (Guest Lecturer) Winter 2010 Lecture 7 Review of Linear Momentum And Rotational Motion Slide 1 of 36 Slides 3-19 were discussed in the 7:30 Lecture Slides 6-27 were discussed

More information

LAUNCHES AND LAUNCH VEHICLES. Dr. Marwah Ahmed

LAUNCHES AND LAUNCH VEHICLES. Dr. Marwah Ahmed LAUNCHES AND LAUNCH VEHICLES Dr. Marwah Ahmed Outlines 2 Video (5:06 min) : https://youtu.be/8t2eyedy7p4 Introduction Expendable Launch Vehicles (ELVs) Placing Satellite into GEO Orbit Introduction 3 Introduction

More information

EF 151 Final Exam, Fall, 2011 Page 1 of 11

EF 151 Final Exam, Fall, 2011 Page 1 of 11 EF 5 Final Exam, Fall, 0 Page of Instructions Do not open or turn over the exam until instructed to do so. Name, and section will be written on the st page of the exam after time starts. Do not leave your

More information

Honors Physics Acceleration and Projectile Review Guide

Honors Physics Acceleration and Projectile Review Guide Honors Physics Acceleration and Projectile Review Guide Major Concepts 1 D Motion on the horizontal 1 D motion on the vertical Relationship between velocity and acceleration Difference between constant

More information

3.4 Projectile Motion

3.4 Projectile Motion 3.4 Projectile Motion Projectile Motion A projectile is anything launched, shot or thrown---i.e. not self-propelled. Examples: a golf ball as it flies through the air, a kicked soccer ball, a thrown football,

More information

Page 2. Example Example Example Jerk in a String Example Questions B... 39

Page 2. Example Example Example Jerk in a String Example Questions B... 39 Page 1 Dynamics Newton's Laws...3 Newton s First Law... 3 Example 1... 3 Newton s Second Law...4 Example 2... 5 Questions A... 6 Vertical Motion...7 Example 3... 7 Example 4... 9 Example 5...10 Example

More information

16.07 Dynamics. Problem Set 3

16.07 Dynamics. Problem Set 3 NAME :..................... Massachusetts Institute of Technology 16.07 Dynamics Problem Set 3 Out date: Sept 17, 2007 Due date: Sept 26, 2007 Problem 1 Problem 2 Problem 3 Problem 4 Study Time Time Spent

More information

Lecture 24: Orbital Dynamics, and Introduction to Many-Particle Systems

Lecture 24: Orbital Dynamics, and Introduction to Many-Particle Systems Lecture 4: Orbital Dynamics, and Introduction to Many-Particle Systems We now consider what is involved in changing a satellite s orbit For example, a mission to Mars requires taking a spacecraft from

More information

Homework 2, part 2! ii) Calculate and plot design spike contour,

Homework 2, part 2! ii) Calculate and plot design spike contour, Homework 2, part 2! 1) For Aerospike Nozzle use Sonic Throat section, assume axi-symmetric design, full spike length.. For Aerospike Nozzle use Sonic Throat section, assume axisymmetric. design, full spike

More information

Chapter 6: Systems in Motion

Chapter 6: Systems in Motion Chapter 6: Systems in Motion The celestial order and the beauty of the universe compel me to admit that there is some excellent and eternal Being, who deserves the respect and homage of men Cicero (106

More information

V Requirements for a Gun Assisted Launch to Circular Orbit

V Requirements for a Gun Assisted Launch to Circular Orbit V Requirements for a Gun Assisted Launch to Circular Orbit Gerry Flanagan The Alna Space Program May 12, 2011 Introduction and Assumptions An earth-based gun can be used to send a projectile into space,

More information

First Order ODEs (cont). Modeling with First Order ODEs

First Order ODEs (cont). Modeling with First Order ODEs First Order ODEs (cont). Modeling with First Order ODEs September 11 15, 2017 Bernoulli s ODEs Yuliya Gorb Definition A first order ODE is called a Bernoulli s equation iff it is written in the form y

More information

5 Projectile Motion. Projectile motion can be described by the horizontal and vertical components of motion.

5 Projectile Motion. Projectile motion can be described by the horizontal and vertical components of motion. Projectile motion can be described by the horizontal and vertical components of motion. In the previous chapter we studied simple straight-line motion linear motion. Now we extend these ideas to nonlinear

More information

Chapter 4 DYNAMICS OF FLUID FLOW

Chapter 4 DYNAMICS OF FLUID FLOW Faculty Of Engineering at Shobra nd Year Civil - 016 Chapter 4 DYNAMICS OF FLUID FLOW 4-1 Types of Energy 4- Euler s Equation 4-3 Bernoulli s Equation 4-4 Total Energy Line (TEL) and Hydraulic Grade Line

More information

ENAE 483/788D MIDTERM FALL, 2018 NAME: a 3 = a = 42970] 1. So after one sol, the subspacecraft point would have gone 88773

ENAE 483/788D MIDTERM FALL, 2018 NAME: a 3 = a = 42970] 1. So after one sol, the subspacecraft point would have gone 88773 ENAE 483/788D MIDTERM FALL, 208 NAME: One 8.5 x piece of paper allowed for notes (both sides). No Internet-enabled devices allowed. Put your name on the cover page, and on each page if you disassemble

More information

The Launch of Gorizont 45 on the First Proton K /Breeze M

The Launch of Gorizont 45 on the First Proton K /Breeze M The Launch of Gorizont 45 on the First Proton K / Fred D. Rosenberg, Ph.D. Space Control Conference 3 April 2001 FDR -01 1 This work is sponsored by the Air Force under Air Force Contract F19628-00-C-0002

More information

Mission to Mars. MAE 598: Design Optimization Final Project. By: Trevor Slawson, Jenna Lynch, Adrian Maranon, and Matt Catlett

Mission to Mars. MAE 598: Design Optimization Final Project. By: Trevor Slawson, Jenna Lynch, Adrian Maranon, and Matt Catlett Mission to Mars MAE 598: Design Optimization Final Project By: Trevor Slawson, Jenna Lynch, Adrian Maranon, and Matt Catlett Motivation Manned missions beyond low Earth orbit have not occurred since Apollo

More information

Gravitational Fields Review

Gravitational Fields Review Gravitational Fields Review 2.1 Exploration of Space Be able to: o describe planetary motion using Kepler s Laws o solve problems using Kepler s Laws o describe Newton s Law of Universal Gravitation o

More information

AAE SOLID ROCKET PROPULSION (SRP) SYSTEMS

AAE SOLID ROCKET PROPULSION (SRP) SYSTEMS 7. SOLID ROCKET PROPULSION (SRP) SYSTEMS Ch7 1 7.1 INTRODUCTION 7.1 INTRODUCTION Ch7 2 APPLICATIONS FOR SRM APPLICATIONS FOR SRM Strap-On Boosters for Space Launch Vehicles, Upper Stage Propulsion System

More information

Comparison of Return to Launch Site Options for a Reusable Booster Stage

Comparison of Return to Launch Site Options for a Reusable Booster Stage Comparison of Return to Launch Site Options for a Reusable Booster Stage Barry Mark Hellman Space System Design Lab (SSDL) School of Aerospace Engineering USAF ASC/XRE barry.hellman@wpafb.af.mil Advisor

More information

Some Questions We ll Address Today

Some Questions We ll Address Today Some Questions We ll Address Today What makes a rocket go? How can a rocket work in outer space? How do things get into orbit? What s s special about geo-synchronous orbit? How does the force of gravity

More information

Chapter 4. Motion in Two Dimensions

Chapter 4. Motion in Two Dimensions Chapter 4 Motion in Two Dimensions Projectile Motion An object may move in both the x and y directions simultaneously. This form of two-dimensional motion we will deal with is called projectile motion.

More information

Math 114 Spring 2013 Final Exam

Math 114 Spring 2013 Final Exam 1. Assume the acceleration of gravity is 10 m/sec downwards. A cannonball is fired at ground level. If the cannon ball rises to a height of 80 meters and travels a distance of 0 meters before it hits the

More information

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003 LAUNCH SYSTEMS Col. John Keesee 5 September 2003 Outline Launch systems characteristics Launch systems selection process Spacecraft design envelope & environments. Each student will Lesson Objectives Understand

More information

AP Physics C Textbook Problems

AP Physics C Textbook Problems AP Physics C Textbook Problems Chapter 13 Pages 412 416 HW-16: 03. A 200-kg object and a 500-kg object are separated by 0.400 m. Find the net gravitational force exerted by these objects on a 50.0-kg object

More information

Chapter 10. Projectile and Satellite Motion

Chapter 10. Projectile and Satellite Motion Chapter 10 Projectile and Satellite Motion Which of these expresses a vector quantity? a. 10 kg b. 10 kg to the north c. 10 m/s d. 10 m/s to the north Which of these expresses a vector quantity? a. 10

More information