Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design

Size: px
Start display at page:

Download "Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design"

Transcription

1 Lecture #06 September 17, 2015 The rocket equation Mass ratio and performance Structural and payload mass fractions Regression analysis Multistaging Optimal ΔV distribution between stages Trade-off ratios Parallel staging Modular staging David L. Akin - All rights reserved

2 Derivation of the Rocket Equation Momentum at time t: Momentum at time t+δt: Some algebraic manipulation gives: M = mv Take to limits and integrate: Δm V e m v-v e m-δm v M =(m m)(v + v)+ m(v V e ) mfinal m initial m v = mv e dm m = Vfinal V initial dv V e v+δv 2

3 The Rocket Equation Alternate forms Basic definitions/concepts Mass ratio r m final or R m initial m initial m final r m final = e V Ve m ( initial ) mfinal v = V e ln = V e ln r Nondimensional velocity change Velocity ratio 3 m initial V V e

4 Rocket Equation (First Look) Mass Ratio, (M final /M initial ) Typical Range for Launch to Low Earth Orbit Velocity Ratio, (ΔV/Ve)

5 Sources and Categories of Vehicle Mass Payload Propellants Structure Propulsion Avionics Power Mechanisms Thermal Etc. 5

6 Sources and Categories of Vehicle Mass Payload Propellants Inert Mass Structure Propulsion Avionics Power Mechanisms Thermal Etc. 6

7 Basic Vehicle Parameters Basic mass summary Inert mass fraction Payload fraction m o = m pl + m pr + m in δ m in m o = λ m pl m o = Parametric mass ratio r = λ + δ m in m pl + m pr + m in m pl m pl + m pr + m in m o =initial mass m pl =payload mass m pr =propellant mass m in =inert mass 7

8 A Word About Specific Impulse Defined as thrust/propellant used English units: lbs thrust/(lbs prop/sec)=sec Metric units: N thrust/(kg prop/sec)=m/sec Two ways to regard discrepancy - lbs is not mass in English units - should be slugs Isp = thrust/weight flow rate of propellant - if Isp is in seconds, V e = g o I sp If the real intent of specific impulse is I sp = Ṫ m and T = ṁv e then I sp = V e 8

9 Rocket Equation (including Inert Mass) Payload Fraction, (M payload /M initial ) Typical Range for Launch to Low Earth Orbit Inert Mass Fraction δ Velocity Ratio, (ΔV/Ve)

10 Limiting Performance Based on Inert Mass Asymptotic Velocity Ratio, (ΔV/Ve) Typical Feasible Design Range for Inert Mass Fraction Inert Mass Fraction, (M inert /M initial ) 10

11 Regression Analysis of Existing Vehicles Veh/Stage prop mass gross mass Type Propellants Isp vac isp sl sigma eps delta (lbs) (lbs) (sec) (sec) Delta 6925 Stage 2 13,367 15,394 StorabN2O4-A Delta 7925 Stage 2 13,367 15,394 StorabN2O4-A Titan II Stage 2 59,000 65,000 StorabN2O4-A Titan III Stage 2 77,200 83,600 StorabN2O4-A Titan IV Stage 2 77,200 87,000 StorabN2O4-A Proton Stage 3 110, ,000 StorabN2O4-A Titan II Stage 1 260, ,000 StorabN2O4-A Titan III Stage 1 294, ,000 StorabN2O4-A Titan IV Stage 1 340, ,000 StorabN2O4-A Proton Stage 2 330, ,000 StorabN2O4-A Proton Stage 1 904,000 1,004,000 StorabN2O4-A average standard deviation

12 Inert Mass Fractions for Existing LVs Inert Mass Fraction ,000 10,000 Gross Mass (MT) LOX/LH2 LOX/RP-1 Solid Storable 12

13 Regression Analysis Given a set of N data points (x i,y i ) Linear curve fit: y=ax+b find A and B to minimize sum squared error N error = (Ax i + B y i ) 2 Analytical solutions exist, or use Solver in Excel Power law fit: y=bx A error = i=1 Polynomial, exponential, many other fits possible i=1 N [A log(x i )+B log(y i )] 2 13

14 Solution of Least-Squares Linear Regression (error) A A N x 2 i + B i=1 N =2 (Ax i + B y i )x i =0 i=1 N x i i=1 (error) B N x i y i =0 i=1 N =2 (Ax i + B y i )=0 A i=1 N x i + NB i=1 N y i =0 i=1 A = N x i y i x i yi N x 2 i ( x i ) 2 B = yi x 2 i x i xi y i N x 2 i ( x i ) 2 14

15 Regression Analysis - Storables Inert Mass Fraction R 2 = ,000 Gross Mass (MT) 15

16 Regression Values for Design Parameters Vacuum Ve (m/sec) Inert Mass Fraction. Max ΔV (m/sec) LOX/LH ,070 LOX/RP Storables Solids

17 Revised Analysis With ε Instead of δ m in m in + m pr r = + =) = r r = m pl + m in m pl + m pr + m in r = m pl m pr +m in + m in m pr +m in m pl m pr +m in + m pr+m in m pr +m in r = + +1 where m pl m in + m pr 17 = r 1 r

18 Economy of Scale for Stage Size Stage#Inert#Mass#Frac6on#ε# 0.20# 0.18# 0.16# 0.14# 0.12# 0.10# 0.08# 0.06# 0.04# 0.02# 0.00# 1# 10# 100# 1,000# 10,000# Stage#Gross#Mass,#MT# Storable#MER# LOX/RPD1# Storables# LOX/LH2# Cryo#MER# 18

19 Stage Inert Mass Fraction Estimation LOX/LH2 =0.987 (M stage hkgi) storables = (M stage hkgi) Note: storables also pertains to LOX/ hydrocarbon

20 The Rocket Equation for Multiple Stages Assume two stages V 1 = V e1 ln V 2 = V e2 ln Assume V e1 =V e2 =V e ( mfinal1 m initial1 ( mfinal2 m initial2 ) ) = V e1 ln(r 1 ) = V e2 ln(r 2 ) V 1 + V 2 = V e ln(r 1 ) V e ln(r 2 )= V e ln(r 1 r 2 ) 20

21 Continued Look at Multistaging There s a historical tendency to define r 0 =r 1 r 2 V 1 + V 2 = V e ln (r 1 r 2 ) = V e ln (r 0 ) But it s important to remember that it s really V 1 + V 2 = V e ln (r 1 r 2 ) = V e ln m final1 m initial1 m final2 m initial2 And that r 0 has no physical significance, since m final1 = m initial2 r 0 = m final2 m initial1 21

22 Multistage Inert Mass Fraction Total inert mass fraction Convert to dimensionless parameters δ 0 = m in,1 + m in,2 + m in,3 m 0 δ 0 = m in,1 m 0 0 = General form of the equation n stages j 1 0 = + m in,2 m 0,2 m 0,2 m 0 22 j=1 = m in,1 m 0 + m in,2 m 0 + m in,3 m 0,3 m 0,3 m 0,2 m 0,2 m 0 j =1 + m in,3 m 0

23 Multistage Payload Fraction Total payload fraction (3 stage example) λ 0 = m pl m 0 = m pl m 0,3 m 0,3 m 0,2 m 0,2 m 0 Convert to dimensionless parameters λ 0 = λ 3 λ 2 λ 1 Generic form of the equation λ 0 = n stages j=1 λ j 23

24 Effect of Staging 0.25 Inert Mass Fraction δ=0.15 Payload Fraction stage 2 stage 3 stage 4 stage Velocity Ratio (ΔV/Ve) 24

25 Effect of ΔV Distribution 70 1st Stage: Solids 2nd Stage: LOX/LH2 Normalized Mass (kg/kg of payload) Stage 2 ΔV (m/sec) Total mass Stage 2 mass Stage 1 mass 25

26 ΔV Distribution and Design Parameters st Stage: Solids 2nd Stage: LOX/LH delta_0 lambda_0 lambda/delta Stage 2 ΔV (m/sec) 26

27 Lagrange Multipliers Given an objective function y = f(x) subject to constraint function z = g(x) Create a new objective function y = f(x)+ [g(x) z] Solve simultaneous equations y x = 0 y = 0 27

28 Optimum ΔV Distribution Between Stages Maximize payload fraction (2 stage case) subject to constraint function Create a new objective function λ o = λ 0 = λ 1 λ 2 =(r 1 δ 1 )(r 2 δ 2 ) V total = V 1 + V 2 ( e V 1 V e,1 δ 1 )( e V 2 V e,2 δ 2 ) + K [ V 1 + V 2 V total ] Very messy for partial derivatives 28

29 Optimum ΔV Distribution (continued) Use substitute objective function max (λ o ) max [ln (λ o )] Create a new constrained objective function ln (λ o )=ln (r 1 δ 1 )+ln (r 2 δ 2 )+K [ V 1 + V 2 V total ] Take partials and set equal to zero [ln (λ o )] r 1 =0 [ln (λ o )] r 2 =0 [ln (λ o )] K =0 29

30 Optimum ΔV Special Cases Generic partial of objective function [ln (λ o )] r i = 1 r i δ i + K V e,i r i =0 Case 1: δ 1 =δ 2 V e,1 =V e,2 r 1 = r 2 = V 1 = V 2 = V total 2 Same principle holds for n stages r 1 = r 2 = = r n = V 1 = V 2 = = V n = V total n 30

31 Sensitivity to Inert Mass ΔV for multistaged rocket where V tot = n stages k=1 V k = n k=1 m o,k = m pl + m pr,k + m in,k + m f,k = m pl + m in,k + nx j=k+1 V e,k ln nx j=k+1 m o,k m f,k (m pr,j + m in,j ) (m pr,j + m in,j ) 31

32 Finding Payload Sensitivity to Inert Mass Given the equation linking mass to ΔV, take and solve to find m pl m in,k ( V tot ) m pl = ( Vtot )=0 This equation shows the trade-off ratio - Δpayload resulting from a change in inert mass for stage k (for a vehicle with N total stages) dm pl + ( V tot) m in,j dm in,j =0 32 k j=1 V e,j ( N l=1 V e,l ( ) 1 m o,j 1 m f,j ) 1 m o,l 1 m f,l

33 Trade-off Ratio Example: Gemini-Titan II Initial Mass (kg) Stage 1 Stage 2 150,500 32,630 Final Mass (kg) 39, Ve (m/sec) dm

34 Payload Sensitivity to Propellant Mass In a similar manner, solve to find m pl m pr,k = ( Vtot )=0 k j=1 V e,j N l=1 V e,l ( This equation gives the change in payload mass as a function of additional propellant mass (all other parameters held constant) ( ) 1 m o,j ) 1 m o,l 1 m f,l 34

35 Trade-off Ratio Example: Gemini-Titan II Initial Mass (kg) Stage 1 Stage 2 150,500 32,630 Final Mass (kg) 39, Ve (m/sec) dm dm

36 Payload Sensitivity to Exhaust Velocity Use the same technique to find the change in payload resulting from additional exhaust velocity for stage k m pl V e,k = ( Vtot )=0 ( ) k j=1 ln mo,j m f,j N l=1 V e,l ( ) 1 m o,l 1 m f,l This trade-off ratio (unlike the ones for inert and propellant masses) has units - kg/(m/sec) 36

37 Trade-off Ratio Example: Gemini-Titan II Initial Mass (kg) Stage 1 Stage 2 150,500 32,630 Final Mass (kg) 39, Ve (m/sec) dm dm dm (kg/m/sec)

38 Parallel Staging Multiple dissimilar engines burning simultaneously Frequently a result of upgrades to operational systems General case requires brute force numerical performance analysis 38

39 Parallel-Staging Rocket Equation Momentum at time t: M = mv Momentum at time t+δt: (subscript b =boosters; c =core vehicle) M = (m m b m c )(v + v) + m b (v V e,b ) + m c (v V e,c ) Assume thrust (and mass flow rates) constant 39

40 Parallel-Staging Rocket Equation Rocket equation during booster burn V = V e ln m final m initial = V e ln m in,b +m in,c + m pr,c +m 0,2 m in,b +m pr,b +m in,c +m pr,c +m 0,2 χ where = fraction of core propellant remaining after booster burnout, and where V e = V e,bṁ b +V e,c ṁ c ṁ b +ṁ c = V e,bm pr,b +V e,c (1 χ)m pr,c m pr,b +(1 χ)m pr,c 40

41 Analyzing Parallel-Staging Performance Parallel stages break down into pseudo-serial stages: Stage 0 (boosters and core) V 0 = V e ln Stage 1 (core alone) V 1 = V e,c ln Subsequent stages are as before ( ) min,b +m in,c +χm pr,c +m 0,2 m in,b +m pr,b +m in,c +m pr,c +m 0,2 m in,c +m 0,2 m in,c + m pr,c +m 0,2 41

42 Parallel Staging Example: Space Shuttle 2 x solid rocket boosters (data below for single SRB) Gross mass 589,670 kg Empty mass 86,183 kg Isp 269 sec Burn time 124 sec External tank (space shuttle main engines) Gross mass 750,975 kg Empty mass 29,930 kg Isp 455 sec Burn time 480 sec Payload (orbiter + P/L) 125,000 kg 42

43 Shuttle Parallel Staging Example V e,b = gi sp,e =(9.8)(269) = 2636 m sec V e = χ = = (1, 007, 000) (721, 000)(1.7417) 1, 007, , 000(1.7417) V 0 = 2921 ln 862, 000 3, 062, 000 =3702m sec 154, 900 V 1 = 4459 ln 689, 700 =6659m sec V tot =10, 360 m sec 43 V e,c =4459 m sec =2921 m sec

44 Modular Staging Use identical modules to form multiple stages Have to cluster modules on lower stages to make up for nonideal ΔV distributions Advantageous from production and development cost standpoints 44

45 Module Analysis All modules have the same inert mass and propellant mass Because δ varies with payload mass, not all modules have the same δ Introduce two new parameters Conversions m in m in + m pr = ε = δ 1 λ 45 m in m mod σ = σ m in m pr δ 1 δ λ

46 Rocket Equation for Modular Boosters Assuming n modules in stage 1, If all 3 stages use same modules, n j for stage j, r 1 = where ρ pl n(m in )+m o2 n(m in + m pr )+m o2 = r 1 = n 1ε + n 2 + n 3 + ρ pl n 1 + n 2 + n 3 + ρ pl m pl m mod ; m mod = m in + m pr 46 nε + mo2 m mod n + m o2 m mod

47 Example: Conestoga 1620 (EER) Small launch vehicle (1 flight, 1 failure) Payload 900 kg Module gross mass 11,400 kg Module empty mass 1,400 kg Exhaust velocity 2754 m/sec Staging pattern 1st stage - 4 modules 2nd stage - 2 modules 3rd stage - 1 module 4th stage - Star 48V (gross mass 2200 kg, empty mass 140 kg, V e 2842 m/sec) 47

48 Conestoga 1620 Performance 4th stage Δ V V 4 = V e4 ln m f4 = 2842 ln m o4 Treat like three-stage modular vehicle; M pl =3100 kg = m in m mod = = pl = = 3104 m sec m pl = 3100 m mod = n 1 = 4; n 2 = 2; n 3 =1 48

49 Constellation 1620 Performance (cont.) r 1 = n 1 + n 2 + n 3 + pl = n 1 + n 2 + n 3 + pl r 2 = n 2 + n 3 + pl = n 2 + n 3 + pl r 3 = n 3 + pl = n 3 + pl V 1 = 1814 m sec ; V 2 = 2116 m sec V 3 = 3223 m sec ; V 4 = 3104 m V total = 10, 257 m sec sec = = =0.3103

50 Discussion about Modular Vehicles Modularity has several advantages Saves money (smaller modules cost less to develop) Saves money (larger production run = lower cost/ module) Allows resizing launch vehicles to match payloads Trick is to optimize number of stages, number of modules/stage to minimize total number of modules Generally close to optimum by doubling number of modules at each lower stage Have to worry about packing factors, complexity 50

51 OTRAG

52 Today s Tools Mass ratios Estimation of vehicle masses from v and inert mass fractions (both and ) Regression analysis Staging calculations Optimization of v distribution between stages Trade-off ratios Parallel staging calculations Modular vehicle calculations 52

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design Lecture #03 September 5, 2017 The rocket equation Mass ratio and performance Structural and payload mass fractions Regression analysis Multistaging Optimal ΔV distribution between stages Trade-off ratios

More information

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE Launch and Entry Vehicle Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE Launch and Entry Vehicle Design The rocket equation Mass ratio and performance Structural and payload mass fractions Regression analysis Multistaging Optimal ΔV distribution between stages Trade-off ratios Parallel staging Modular staging

More information

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE Launch and Entry Vehicle Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE Launch and Entry Vehicle Design The rest of orbital mechanics The rocket equation Mass ratio and performance Structural and payload mass fractions Regression analysis Multistaging Optimal ΔV distribution between stages Trade-off ratios

More information

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Rocket Performance. ENAE 483/788D - Principles of Space Systems Design Lecture #06 September 18, 2014 The rocket equation Mass ratio and performance Structural and payload mass fractions Regression analysis Multistaging Optimal ΔV distribution between stages Trade-off ratios

More information

Rocket Performance MARYLAND U N I V E R S I T Y O F. Ballistic Entry ENAE Launch and Entry Vehicle Design

Rocket Performance MARYLAND U N I V E R S I T Y O F. Ballistic Entry ENAE Launch and Entry Vehicle Design Rocket Performance Parallel staging Modular staging Standard atmospheres Orbital decay due to drag Straight-line (no gravity) entry based on atmospheric density 1 2014 David L. Akin - All rights reserved

More information

Rocket Performance MARYLAND

Rocket Performance MARYLAND Rocket Perforance The rocket equation Mass ratio and perforance Structural and payload ass fractions Multistaging Optial V distribution between stages Trade-off ratios Parallel staging Modular staging

More information

Parametric Design MARYLAND. The Design Process Regression Analysis Level I Design Example: Project Diana U N I V E R S I T Y O F.

Parametric Design MARYLAND. The Design Process Regression Analysis Level I Design Example: Project Diana U N I V E R S I T Y O F. Parametric Design The Design Process Regression Analysis Level I Design Example: U N I V E R S I T Y O F MARYLAND 2003 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Parametric Design

More information

Propulsion Systems Design

Propulsion Systems Design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 1 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Liquid

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2008 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu 1 Propulsion

More information

Propulsion Systems Design

Propulsion Systems Design Propulsion Systems Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 1 2011 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Propulsion

More information

Mass Estimating Relationships MARYLAND. Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis

Mass Estimating Relationships MARYLAND. Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis Mass Estimating Relationships Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis 2006 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

More information

MARYLAND. The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F.

MARYLAND. The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F. Parametric Design The Design Process Regression Analysis Level I Design Example: UMd Exploration Initiative U N I V E R S I T Y O F MARYLAND 2004 David L. Akin - All rights reserved http://spacecraft.ssl.

More information

Parametric Design MARYLAND. The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F

Parametric Design MARYLAND. The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F Parametric Design The Design Process Level I Design Example: Low-Cost Lunar Exploration U N I V E R S I T Y O F MARYLAND 2005 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Parametric

More information

A little more about costing Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis

A little more about costing Review of iterative design approach Mass Estimating Relationships (MERs) Sample vehicle design analysis A little more about costing Review of iterative design approach (MERs) Sample vehicle design analysis 2004 David L. Akin - All rights reserved http://spacecraft.ssl. umd.edu Internal Rate of Return Discount

More information

Rocket Propulsion Basics Thrust

Rocket Propulsion Basics Thrust Rockets 101: A Quick Primer on Propulsion & Launch Vehicle Technologies Steve Heister, Professor School of Aeronautics and Astronautics Purdue University Presentation to AFSAB, 13 January, 2010 Rocket

More information

Multistage Rockets. Chapter Notation

Multistage Rockets. Chapter Notation Chapter 8 Multistage Rockets 8.1 Notation With current technology and fuels, and without greatly increasing the e ective I sp by air-breathing, a single stage rocket to Earth orbit is still not possible.

More information

The Design Process Level I Design Example: Low-Cost Lunar Exploration Amplification on Initial Concept Review

The Design Process Level I Design Example: Low-Cost Lunar Exploration Amplification on Initial Concept Review Parametric Design The Design Process Level I Design Example: Low-Cost Lunar Exploration Amplification on Initial Concept Review U N I V E R S I T Y O F MARYLAND 2008 David L. Akin - All rights reserved

More information

Rocket Science 102 : Energy Analysis, Available vs Required

Rocket Science 102 : Energy Analysis, Available vs Required Rocket Science 102 : Energy Analysis, Available vs Required ΔV Not in Taylor 1 Available Ignoring Aerodynamic Drag. The available Delta V for a Given rocket burn/propellant load is ( ) V = g I ln 1+ P

More information

Comparison of Return to Launch Site Options for a Reusable Booster Stage

Comparison of Return to Launch Site Options for a Reusable Booster Stage Comparison of Return to Launch Site Options for a Reusable Booster Stage Barry Mark Hellman Space System Design Lab (SSDL) School of Aerospace Engineering USAF ASC/XRE barry.hellman@wpafb.af.mil Advisor

More information

Homework 2, part 2! ii) Calculate and plot design spike contour,

Homework 2, part 2! ii) Calculate and plot design spike contour, Homework 2, part 2! 1) For Aerospike Nozzle use Sonic Throat section, assume axi-symmetric design, full spike length.. For Aerospike Nozzle use Sonic Throat section, assume axisymmetric. design, full spike

More information

Propulsion and Energy Systems. Kimiya KOMURASAKI, Professor, Dept. Aeronautics & Astronautics, The University of Tokyo

Propulsion and Energy Systems. Kimiya KOMURASAKI, Professor, Dept. Aeronautics & Astronautics, The University of Tokyo Propulsion and Energy Systems Kimiya KOMURASAKI, Professor, Dept. Aeronautics & Astronautics, The University of Tokyo Schedule Space propulsion with non-chemical technologies 10/5 1) Space Propulsion Fundamentals

More information

Basic Ascent Performance Analyses

Basic Ascent Performance Analyses Basic Ascent Performance Analyses Ascent Mission Requirements Ideal Burnout Solution Constant & Average Gravity Models Gravity Loss Concept Effect of Drag on Ascent Performance Drag Profile Approximation

More information

PROPULSIONE SPAZIALE. Chemical Rocket Propellant Performance Analysis

PROPULSIONE SPAZIALE. Chemical Rocket Propellant Performance Analysis Chemical Rocket Propellant Performance Analysis Sapienza Activity in ISP-1 Program 15/01/10 Pagina 1 REAL NOZZLES Compared to an ideal nozzle, the real nozzle has energy losses and energy that is unavailable

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Solid rocket motors Liquid rocket engines. Hybrid rocket engines Auxiliary propulsion systems

Propulsion Systems Design MARYLAND. Rocket engine basics Solid rocket motors Liquid rocket engines. Hybrid rocket engines Auxiliary propulsion systems Propulsion Systems Design Rocket engine basics Solid rocket motors Liquid rocket engines Monopropellants Bipropellants Propellant feed systems Hybrid rocket engines Auxiliary propulsion systems 2004 David

More information

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design

Propulsion Systems Design MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design Design Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2005 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Overview of the Design Process

More information

MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design U N I V E R S I T Y O F

MARYLAND. Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design U N I V E R S I T Y O F Rocket engine basics Survey of the technologies Propellant feed systems Propulsion systems design 2004 David L. Akin - All rights reserved http://spacecraft.ssl. umd.edu Overview of the Design Process

More information

The motion of a Rocket

The motion of a Rocket Prepared for submission to JCAP The motion of a Rocket Salah Nasri a United Arab Emirates University, Al-Ain, UAE E-mail: snasri@uaeu.ac.ae Abstract. These are my notes on some selected topics in undergraduate

More information

ENAE 483/788D FINAL EXAMINATION FALL, 2015

ENAE 483/788D FINAL EXAMINATION FALL, 2015 ENAE 48/788D FINAL EXAMINATION FALL, 2015 No phones, computers, or internet-enabled devices. Use the spaces following the questions to write your answers; you can also use the backs of the pages as necessary,

More information

Robotic Mobility Above the Surface

Robotic Mobility Above the Surface Free Space Relative Orbital Motion Airless Major Bodies (moons) 1 2016 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu Propulsive Motion in Free Space Basic motion governed by Newton

More information

Mission to Mars. MAE 598: Design Optimization Final Project. By: Trevor Slawson, Jenna Lynch, Adrian Maranon, and Matt Catlett

Mission to Mars. MAE 598: Design Optimization Final Project. By: Trevor Slawson, Jenna Lynch, Adrian Maranon, and Matt Catlett Mission to Mars MAE 598: Design Optimization Final Project By: Trevor Slawson, Jenna Lynch, Adrian Maranon, and Matt Catlett Motivation Manned missions beyond low Earth orbit have not occurred since Apollo

More information

AAE SOLID ROCKET PROPULSION (SRP) SYSTEMS

AAE SOLID ROCKET PROPULSION (SRP) SYSTEMS 7. SOLID ROCKET PROPULSION (SRP) SYSTEMS Ch7 1 7.1 INTRODUCTION 7.1 INTRODUCTION Ch7 2 APPLICATIONS FOR SRM APPLICATIONS FOR SRM Strap-On Boosters for Space Launch Vehicles, Upper Stage Propulsion System

More information

Applied Thermodynamics - II

Applied Thermodynamics - II Gas Turbines Sudheer Siddapureddy sudheer@iitp.ac.in Department of Mechanical Engineering Jet Propulsion - Classification 1. A heated and compressed atmospheric air, mixed with products of combustion,

More information

Launch Vehicles! Space System Design, MAE 342, Princeton University! Robert Stengel

Launch Vehicles! Space System Design, MAE 342, Princeton University! Robert Stengel Launch Vehicles! Space System Design, MAE 342, Princeton University! Robert Stengel Copyright 2016 by Robert Stengel. All rights reserved. For educational use only. http://www.princeton.edu/~stengel/mae342.html

More information

HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10. Chapter 6. Conservation of Linear Momentum and Collisions. Dr.

HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10. Chapter 6. Conservation of Linear Momentum and Collisions. Dr. HW assignments for Chapter 6 Q 4,5,7,9 P 3,4,6,8,9,10 Chapter 6 Conservation of Linear Momentum and Collisions Dr. Armen Kocharian Momentum and Newton s Laws The linear momentum of an object of mass m

More information

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003

LAUNCH SYSTEMS. Col. John Keesee. 5 September 2003 LAUNCH SYSTEMS Col. John Keesee 5 September 2003 Outline Launch systems characteristics Launch systems selection process Spacecraft design envelope & environments. Each student will Lesson Objectives Understand

More information

Power, Propulsion, and Thermal Preliminary Design Review James Black Matt Marcus Grant McLaughlin Michelle Sultzman

Power, Propulsion, and Thermal Preliminary Design Review James Black Matt Marcus Grant McLaughlin Michelle Sultzman Power, Propulsion, and Thermal Preliminary Design Review James Black Matt Marcus Grant McLaughlin Michelle Sultzman Outline 1. Crew Systems Design Selection 2. Thermal Requirements and Design 3. Power

More information

Rocket Dynamics. Forces on the Rocket

Rocket Dynamics. Forces on the Rocket Rocket Dynamics Forces on the Rockets - Drag Rocket Stability Rocket Equation Specific Impulse Rocket otors F Thrust Forces on the Rocket Equation of otion: Need to minimize total mass to maximize acceleration

More information

Gravity Turn Concept. Curvilinear Coordinate System Gravity Turn Manoeuvre concept Solutions for Constant Pitch Rate

Gravity Turn Concept. Curvilinear Coordinate System Gravity Turn Manoeuvre concept Solutions for Constant Pitch Rate Gravity Turn Concept Curvilinear Coordinate System Gravity Turn Manoeuvre concept Solutions for Constant Pitch Rate Inclined Motion Concept In reality, vertical motion is used only for a very small part

More information

Robotic Mobility Above the Surface

Robotic Mobility Above the Surface Free Space Relative Orbital Motion Airless Major Bodies (moons) Gaseous Environments (Mars, Venus, Titan) Lighter-than- air (balloons, dirigibles) Heavier-than- air (aircraft, helicopters) 1 2012 David

More information

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN

Satellite Orbital Maneuvers and Transfers. Dr Ugur GUVEN Satellite Orbital Maneuvers and Transfers Dr Ugur GUVEN Orbit Maneuvers At some point during the lifetime of most space vehicles or satellites, we must change one or more of the orbital elements. For example,

More information

Chapter 9. Linear Momentum and Collisions

Chapter 9. Linear Momentum and Collisions Chapter 9 Linear Momentum and Collisions Momentum Analysis Models Force and acceleration are related by Newton s second law. When force and acceleration vary by time, the situation can be very complicated.

More information

Exercise 7: Thrust and the Rocket Equation

Exercise 7: Thrust and the Rocket Equation Astronomy 102 Name: Exercise 7: Thrust and the Rocket Equation Parts of this exercise were taken from NASA s Beginner s Guide to Rockets: Rocket Propulsion Activity, edited by Tom Benson. Objective: To

More information

Low Thrust Trajectory Analysis (A Survey of Missions using VASIMR for Flexible Space Exploration - Part 2)

Low Thrust Trajectory Analysis (A Survey of Missions using VASIMR for Flexible Space Exploration - Part 2) (A Survey of Missions using VASIMR for Flexible Space Exploration - Part 2) Prepared by: Andrew V. Ilin Ad Astra Rocket Company 141 W. Bay Area Blvd Webster, TX 77598 In fulfillment of Task Number 5 of

More information

An introduction to the plasma state in nature and in space

An introduction to the plasma state in nature and in space An introduction to the plasma state in nature and in space Dr. L. Conde Departamento de Física Aplicada E.T.S. Ingenieros Aeronáuticos Universidad Politécnica de Madrid The plasma state of condensed matter

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan) Lighter-than- air (balloons, dirigibles) Heavier-than- air (aircraft, rotorcraft) 1 2018 David L. Akin - All rights reserved http://spacecraft.ssl.umd.edu

More information

INNOVATIVE STRATEGY FOR Z9 REENTRY

INNOVATIVE STRATEGY FOR Z9 REENTRY INNOVATIVE STRATEGY FOR Z9 REENTRY Gregor Martens*, Elena Vellutini**, Irene Cruciani* *ELV, Corso Garibaldi, 34 Colleferro (Italy) **Aizoon, Viale Città d Europa 681, 144, Roma (Italy) Abstract Large

More information

SOLUTIONS MANUAL. ROCKET PROPULSION ELEMENTS, 8 th EDITION. By George P. Sutton and Oscar Biblarz. Published by John Wiley & Sons, Inc.

SOLUTIONS MANUAL. ROCKET PROPULSION ELEMENTS, 8 th EDITION. By George P. Sutton and Oscar Biblarz. Published by John Wiley & Sons, Inc. SOLUTIONS MANUAL to ROCKET PROPULSION ELEMENTS, 8 th EDITION By George P. Sutton and Oscar Biblarz Published by John Wiley & Sons, Inc. in 1 This manual is in part an outgrowth of courses taught by Prof.

More information

A COMPARISON OF NUCLEAR THERMAL ROCKETS WITH TRADITIONAL CHEMICAL ROCKETS FOR SPACE TRANSPORT. Joshua T. Hanes

A COMPARISON OF NUCLEAR THERMAL ROCKETS WITH TRADITIONAL CHEMICAL ROCKETS FOR SPACE TRANSPORT. Joshua T. Hanes A COMPARISON OF NUCLEAR THERMAL ROCKETS WITH TRADITIONAL CHEMICAL ROCKETS FOR SPACE TRANSPORT by Joshua T. Hanes A Senior Honors Thesis Submitted to the Faculty of The University of Utah In Partial Fulfillment

More information

Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T.

Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T. Design And Analysis Of Thrust Chamber Of A Cryogenic Rocket Engine S. Senthilkumar 1, Dr. P. Maniiarasan 2,Christy Oomman Jacob 2, T. Vinitha 2 1 Research Scholar, Department of Mechanical Engineering,

More information

Concurrent Trajectory and Vehicle Optimization for an Orbit Transfer. Christine Taylor May 5, 2004

Concurrent Trajectory and Vehicle Optimization for an Orbit Transfer. Christine Taylor May 5, 2004 Concurrent Trajectory and Vehicle Optimization for an Orbit Transfer Christine Taylor May 5, 2004 Presentation Overview Motivation Single Objective Optimization Problem Description Mathematical Formulation

More information

Submitted to Journal of Spacecraft and Rockets. Systems Architecting Methodology for Space Transportation Infrastructure

Submitted to Journal of Spacecraft and Rockets. Systems Architecting Methodology for Space Transportation Infrastructure Systems Architecting Methodology for Space Transportation Infrastructure Journal: Journal of Spacecraft and Rockets Manuscript ID: Draft Manuscript Type: Full Paper Date Submitted by the Author: n/a Complete

More information

Lesson 7. Luis Anchordoqui. Physics 168. Tuesday, October 10, 17

Lesson 7. Luis Anchordoqui. Physics 168. Tuesday, October 10, 17 Lesson 7 Physics 168 1 Eruption of a large volcano on Jupiter s moon When volcano erupts speed of effluence exceeds escape speed of Io and so a stream of particles is projected into space Material in stream

More information

Rockets, Missiles, and Spacecrafts

Rockets, Missiles, and Spacecrafts 36 1 Rockets, Missiles, and Spacecrafts 2 Chinese used rockets in the 12 th century AD against the Mongol attacks. In India Tipu Sultan used rockets against the British army in the 18 th century. The modern

More information

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras

Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Rocket Propulsion Prof. K. Ramamurthi Department of Mechanical Engineering Indian Institute of Technology, Madras Lecture 24 Design Aspects of Solid Propellant Rockets We will continue with solid propellant

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan) Lighter-than- air (balloons, dirigibles) Heavier-than- air (aircraft, rotorcraft) 1 2014 David L. Akin - All rights

More information

AERO2705 Week 4 Rocket Equation ISP and Rocket Fuels Tuesday 22 nd August The University of Sydney

AERO2705 Week 4 Rocket Equation ISP and Rocket Fuels Tuesday 22 nd August The University of Sydney AERO2705 Week 4 Rocket Equation ISP and Rocket Fuels Tuesday 22 nd August The University of Sydney Presenter Mr. Warwick Holmes Executive Director Space Engineering School of Aerospace, Mechanical and

More information

The Launch of Gorizont 45 on the First Proton K /Breeze M

The Launch of Gorizont 45 on the First Proton K /Breeze M The Launch of Gorizont 45 on the First Proton K / Fred D. Rosenberg, Ph.D. Space Control Conference 3 April 2001 FDR -01 1 This work is sponsored by the Air Force under Air Force Contract F19628-00-C-0002

More information

A trendsetting Micro-Launcher for Europe

A trendsetting Micro-Launcher for Europe A trendsetting Micro-Launcher for Europe Farid Gamgami German Aerospace Center (DLR), Space Launcher Systems Analysis (SART) Bremen, Germany Farid.Gamgami@dlr.de ABSTRACT In this paper we analyse a potential,

More information

ENAE 483/788D MIDTERM FALL, 2018 NAME: a 3 = a = 42970] 1. So after one sol, the subspacecraft point would have gone 88773

ENAE 483/788D MIDTERM FALL, 2018 NAME: a 3 = a = 42970] 1. So after one sol, the subspacecraft point would have gone 88773 ENAE 483/788D MIDTERM FALL, 208 NAME: One 8.5 x piece of paper allowed for notes (both sides). No Internet-enabled devices allowed. Put your name on the cover page, and on each page if you disassemble

More information

Astronomy 230 Section 1 MWF B6 Eng Hall. Outline. The future: Special Relativity Summary

Astronomy 230 Section 1 MWF B6 Eng Hall. Outline. The future: Special Relativity Summary Astronomy 230 Section 1 MWF 1400-1450 106 B6 Eng Hall This Class (Lecture 26): Travel Next Class: Travel Research Papers are due on May 5 th. Outline Interstellar travel. What do we have now. What is a

More information

Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium

Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium Propulsion Technology Assessment: Science and Enabling Technologies to Explore the Interstellar Medium January 2015 Les Johnson / NASA MSFC / ED04 www.nasa.gov Mission Statement Interstellar Probe Mission:

More information

Course Overview/Orbital Mechanics

Course Overview/Orbital Mechanics Course Overview/Orbital Mechanics Course Overview Challenges of launch and entry Course goals Web-based Content Syllabus Policies Project Content An overview of orbital mechanics at point five past lightspeed

More information

AAE 251 Formulas. Standard Atmosphere. Compiled Fall 2016 by Nicholas D. Turo-Shields, student at Purdue University. Gradient Layer.

AAE 251 Formulas. Standard Atmosphere. Compiled Fall 2016 by Nicholas D. Turo-Shields, student at Purdue University. Gradient Layer. AAE 51 Formulas Compiled Fall 016 by Nicholas D. Turo-Shields, student at Purdue University Standard Atmosphere p 0 = 1.0135 10 5 Pascals ρ 0 = 1.5 kg m 3 R = 87 J kg K γ = 1.4 for air p = ρrt ; Equation

More information

Powered Space Flight

Powered Space Flight Powered Space Flight KOIZUMI Hiroyuki ( 小泉宏之 ) Graduate School of Frontier Sciences, Department of Advanced Energy & Department of Aeronautics and Astronautics ( 基盤科学研究系先端エネルギー工学専攻, 工学系航空宇宙工学専攻兼担 ) Scope

More information

Chapter 8 Momentum and Impulse

Chapter 8 Momentum and Impulse Chapter 8 Momentum and Impulse Momentum plays a pivotal role in extending our understanding of Newton s Laws. In fact, Newton s laws were first written in terms of momentum. Later in this chapter, we will

More information

Electrically Propelled Cargo Spacecraft for Sustained Lunar Supply Operations

Electrically Propelled Cargo Spacecraft for Sustained Lunar Supply Operations 42nd AIAA/ASME/SAE/ASEE Joint Propulsion Conference & Exhibit 9-12 July 2006, Sacramento, California AIAA 2006-4435 Electrically Propelled Cargo Spacecraft for Sustained Lunar Supply Operations Christian

More information

Conceptual Design of Manned Space Transportation Vehicle (MSTV) Using Laser Thruster in Combination with H-II Rocket

Conceptual Design of Manned Space Transportation Vehicle (MSTV) Using Laser Thruster in Combination with H-II Rocket Conceptual Design of Manned Space Transportation Vehicle (MSTV) Using Laser Thruster in Combination with H-II Rocket Laser Thruster Yoshinari Minami Advanced Sci.-Tech. Rsch. Orgn. (Formerly NEC Space

More information

California State Science Fair

California State Science Fair California State Science Fair Working Model for Model Rocket Altitude Prediction Edward Ruth drruth@ix.netcom.com This is a complete model of all the forces acting on a model rocket in flight. It calculates

More information

Electric Propulsion System using a Helicon Plasma Thruster (2015-b/IEPC-415)

Electric Propulsion System using a Helicon Plasma Thruster (2015-b/IEPC-415) Electric Propulsion System using a Helicon Plasma Thruster (2015-b/IEPC-415) Presented at Joint Conference of 30th International Symposium on Space Technology and Science 34th International Electric Propulsion

More information

Robotic Mobility Atmospheric Flight

Robotic Mobility Atmospheric Flight Robotic Mobility Atmospheric Flight Gaseous planetary environments (Mars, Venus, Titan)! Lighter-than- air (balloons, dirigibles)! Heavier-than- air (aircraft, rotorcraft) 1 2014 David L. Akin - All rights

More information

Investigation of Combined Airbreathing/Rocket. Air Launch of Micro-Satellites from a Combat Aircraft

Investigation of Combined Airbreathing/Rocket. Air Launch of Micro-Satellites from a Combat Aircraft 6th Responsive Space Conference AIAA-RS6-008-5003 Investigation of Combined Airbreathing/Rocket Propulsion for Air Launch of Micro-Satellites from a Combat Aircraft Avichai Socher and Alon Gany Faculty

More information

Proton Launch System Mission Planner s Guide SECTION 2. LV Performance

Proton Launch System Mission Planner s Guide SECTION 2. LV Performance Proton Launch System Mission Planner s Guide SECTION 2 LV Performance 2. LV PERFORMANCE 2.1 OVERVIEW This section provides the information needed to make preliminary performance estimates for the Proton

More information

Characteristics of some monopropellants (Reprinted from H. Koelle, Handbook of Astronautical Engineering, McGraw-Hill, 1961.)

Characteristics of some monopropellants (Reprinted from H. Koelle, Handbook of Astronautical Engineering, McGraw-Hill, 1961.) 16.522, Space Propulsion Prof. Manuel Martinez-Sanchez Lecture 7: Bipropellant Chemical Thrusters and Chemical Propulsion Systems Considerations (Valving, tanks, etc) Characteristics of some monopropellants

More information

A Few Examples of Limit Proofs

A Few Examples of Limit Proofs A Few Examples of Limit Proofs x (7x 4) = 10 SCRATCH WORK First, we need to find a way of relating x < δ and (7x 4) 10 < ɛ. We will use algebraic manipulation to get this relationship. Remember that the

More information

AME 436. Energy and Propulsion. Lecture 11 Propulsion 1: Thrust and aircraft range

AME 436. Energy and Propulsion. Lecture 11 Propulsion 1: Thrust and aircraft range AME 436 Energy and Propulsion Lecture 11 Propulsion 1: Thrust and aircraft range Outline!!!!! Why gas turbines? Computation of thrust Propulsive, thermal and overall efficiency Specific thrust, thrust

More information

Ballistic Atmospheric Entry

Ballistic Atmospheric Entry Ballistic Atmospheric Entry Standard atmospheres Orbital decay due to atmospheric drag Straight-line (no gravity) ballistic entry based on atmospheric density 1 2010 David L. Akin - All rights reserved

More information

Satellite Engineering

Satellite Engineering Satellite Engineering Universidad de Concepción November 2009 Gaëtan Kerschen Space Structures & Systems Lab University of Liège Satellite Engineering Universidad de Concepción November 2009 Day 3: Satellite

More information

Fusion-Enabled Pluto Orbiter and Lander

Fusion-Enabled Pluto Orbiter and Lander Fusion-Enabled Pluto Orbiter and Lander Presented by: Stephanie Thomas DIRECT FUSION DRIVE Team Members Stephanie Thomas Michael Paluszek Princeton Satellite Systems 6 Market St. Suite 926 Plainsboro,

More information

Chapter 4: Spacecraft Propulsion System Selection

Chapter 4: Spacecraft Propulsion System Selection S.1 Introduction - 1 - Chapter 4: Spacecraft Propulsion System Selection The selection of the best propulsion system for a given spacecraft missions is a complex process. Selection criteria employed in

More information

U S ARMY MISSILE COMMAND

U S ARMY MISSILE COMMAND REPORT NO. RF-TR-63..7 COPY NO. 8 143 311 t--... PARAMETRIC DESIGN CURVES FOR SHORT RANGE, r L "HIGH ACCELERATION BALLISTIC ROCKETS c C-- I April 1963 U S ARMY MISSILE COMMAND REDSTONE ARSENAL, ALABAMA

More information

CP1 REVISION LECTURE 1 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017

CP1 REVISION LECTURE 1 INTRODUCTION TO CLASSICAL MECHANICS. Prof. N. Harnew University of Oxford TT 2017 CP1 REVISION LECTURE 1 INTRODUCTION TO CLASSICAL MECHANICS Prof. N. Harnew University of Oxford TT 2017 1 OUTLINE : CP1 REVISION LECTURE 1 : INTRODUCTION TO CLASSICAL MECHANICS 1. Force and work 1.1 Newton

More information

LECTURE 18: NONLINEAR MODELS

LECTURE 18: NONLINEAR MODELS LECTURE 18: NONLINEAR MODELS The basic point is that smooth nonlinear models look like linear models locally. Models linear in parameters are no problem even if they are nonlinear in variables. For example:

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) L05: Orbital Maneuvers Gaëtan Kerschen Space Structures & Systems Lab (S3L) North Korea Launch Vehicle WorldView1 satellite (Google Earth). 0.5m resolution. 2 Course Outline THEMATIC

More information

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013

BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission. with Novel Plasma Propulsion Technology ISSC 2013 BravoSat: Optimizing the Delta-V Capability of a CubeSat Mission with Novel Plasma Propulsion Technology Sara Spangelo, NASA JPL, Caltech Benjamin Longmier, University of Michigan Interplanetary Small

More information

Rocket Propulsion. Combustion chamber Throat Nozzle

Rocket Propulsion. Combustion chamber Throat Nozzle Rocket Propulsion In the section about the rocket equation we explored some of the issues surrounding the performance of a whole rocket. What we didn t explore was the heart of the rocket, the motor. In

More information

Chapter 7 Rocket Propulsion Physics

Chapter 7 Rocket Propulsion Physics Chapter 7 Rocket Propulsion Physics To move any spacecraft off the Earth, or indeed forward at all, there must be a system of propulsion. All rocket propulsion relies on Newton s Third Law of Motion: in

More information

Chapter 8 Momentum and Impulse

Chapter 8 Momentum and Impulse Chapter 8 Momentum and Impulse Momentum plays a pivotal role in extending our understanding of Newton s Laws. In fact, Newton s laws were first written in terms of momentum. Later in this chapter, we will

More information

Launch Vehicle Family Album

Launch Vehicle Family Album Launch Vehicle Family Album T he pictures on the next several pages serve as a partial "family album" of NASA launch vehicles. NASA did not develop all of the vehicles shown, but has employed each in its

More information

BINARY ASTEROID ORBIT MODIFICATION

BINARY ASTEROID ORBIT MODIFICATION 2013 IAA PLANETARY DEFENSE CONFERENCE BEAST BINARY ASTEROID ORBIT MODIFICATION Property of GMV All rights reserved TABLE OF CONTENTS 1. Mission Concept 2. Asteroid Selection 3. Physical Principles 4. Space

More information

Fly Me to the Moon on an SLS Block II

Fly Me to the Moon on an SLS Block II Fly Me to the Moon on an SLS Block II Steven S. Pietrobon, Ph.D. 20 July 2015 The first Lunar mission will be the beginning. Later missions will stay for longer periods on the Moon and continue its exploration.

More information

Congreve Rockets This rockets were invented by Englishman, Sir William Congreve. Congreve successfully demonstrated a solid fuel rocket in 1805, and

Congreve Rockets This rockets were invented by Englishman, Sir William Congreve. Congreve successfully demonstrated a solid fuel rocket in 1805, and Congreve Rockets This rockets were invented by Englishman, Sir William Congreve. Congreve successfully demonstrated a solid fuel rocket in 1805, and the following year his rockets were used in action for

More information

IAC 17 D2.8 A5.4 FLY ME TO THE MOON ON AN SLS BLOCK II

IAC 17 D2.8 A5.4 FLY ME TO THE MOON ON AN SLS BLOCK II FLY ME TO THE MOON ON AN SLS BLOCK II Steven S. Pietrobon, Ph.D. Small World Communications, 6 First Avenue, Payneham South SA 5070, Australia, steven@sworld.com.au We examine how a 140 t to low Earth

More information

Solar Thermal Propulsion

Solar Thermal Propulsion AM A A A01-414 AIAA 2001-77 Solar Thermal Propulsion SOLAR THERMAL PROPULSION FOR AN INTERSTELLAR PROBE Ronald W. Lyman, Mark E. Ewing, Ramesh S. Krishnan, Dean M. Lester, Thiokol Propulsion Brigham City,

More information

Reliability, Redundancy, and Resiliency

Reliability, Redundancy, and Resiliency Lecture #11 October 3, 2017 Review of probability theory Component reliability Confidence Redundancy Reliability diagrams Intercorrelated Failures System resiliency Resiliency in fixed fleets 1 2017 David

More information

PROBLEM SCORE Problem 1 (30 Pts) Problem 2 (30 Pts) Choose Problem #2 or #3! Problem 4 (40 Pts) TOTAL (100 Pts)

PROBLEM SCORE Problem 1 (30 Pts) Problem 2 (30 Pts) Choose Problem #2 or #3! Problem 4 (40 Pts) TOTAL (100 Pts) AAE 439 Exam #1 October 20, 2008 4:30 pm 6:00 pm ARMS B71 or ARMS 1109 NAME: SOLUTIONS Read all problems carefully before attempting to solve them. Your work must be legible, and the organization must

More information

Ballistic Atmospheric Entry (Part II)

Ballistic Atmospheric Entry (Part II) Ballistic Atmospheric Entry (Part II) News updates Straight-line (no gravity) ballistic entry based on altitude, rather than density Planetary entries (at least a start) 1 2010 David L. Akin - All rights

More information

Departures from Ideal Performance for Conical Nozzles and Bell Nozzles, Straight-Cut Throats and Rounded Throats Charles E. Rogers

Departures from Ideal Performance for Conical Nozzles and Bell Nozzles, Straight-Cut Throats and Rounded Throats Charles E. Rogers Departures from Ideal Performance for Conical Nozzles and Bell Nozzles, Straight-Cut Throats and Rounded Throats Charles E. Rogers This article covers departures from ideal performance for conical nozzles

More information

Extended or Composite Systems Systems of Many Particles Deformation

Extended or Composite Systems Systems of Many Particles Deformation Extended or Composite Systems Systems of Many Particles Deformation Lana Sheridan De Anza College Nov 15, 2017 Overview last center of mass example systems of many particles deforming systems Continuous

More information

Trajectory Code Validation Slides

Trajectory Code Validation Slides Code Validation Slides 04/12/08 AAE 450 Spring 2008 Simulation Drag Loss Results: Compare to Shuttle (2029633 kg GLOM): 107 m/s Titan IV/Centaur (886420 kg GLOM): 156 m/s (from SMAD) AAE 450 Spring 2008

More information

Bifrost: A 4 th Generation Launch Architecture Concept

Bifrost: A 4 th Generation Launch Architecture Concept Bifrost: A 4 th Generation Launch Architecture Concept Rohrschneider, R.R., Young, D., St.Germain, B., Brown, N., Crowley, J., Maatsch, J., Olds, J.R. (Advisor) Abstract Space Systems Design Lab School

More information