Reconstructing a Function from its V-line Radon Transform in a D

Size: px
Start display at page:

Download "Reconstructing a Function from its V-line Radon Transform in a D"

Transcription

1 Reconstructing a Function from its V-line Radon Transform in a Disc University of Texas at Arlington Inverse Problems and Application Linköping, Sweden April 5, 2013

2 Acknowledgements The talk is based on results of collaborative work with Sunghwan Moon, Texas A&M University Some current work is being done with Venky Krishnan, Tata Institute of Fundamental Research The work is partially supported by NSF DMS NHARP

3 Single Scattering Optical Tomography (SSOT) Compton Camera Imaging and Other Examples Single Scattering Optical Tomography (SSOT) Uses light, transmitted and scattered through an object, to determine the interior features of that object. If the object has moderate optical thickness it is reasonable to assume the majority of photons scatter once. Using collimated emitters/receivers one can measure the intensity of light scattered along various broken rays. Need to recover the spatially varying coefficients of light absorption and/or light scattering.

4 Single Scattering Optical Tomography (SSOT) Compton Camera Imaging and Other Examples Florescu, Schotland and Markel (2009, 2010, 2011) Mesoscopic Radiative Transport. [ŝ + µ a (r) + µ s (r)] I (r, ŝ) = µ s (r) A(ŝ, ŝ ) I (r, ŝ ) dŝ. (1) I (r, ŝ) is the light intensity at point r in the direction ŝ. µ a (r) and µ s (r) are the absorption and scattering coefficients. A(ŝ, ŝ ) is the probability that a photon travelling in the direction of ŝ is scattered in the direction of ŝ. I (r, ŝ) = I 0 (r, ŝ), ŝ ˆn(r) < 0, r V. (2)

5 Single Scattering Optical Tomography (SSOT) Compton Camera Imaging and Other Examples Florescu, Schotland and Markel (2009, 2010, 2011) Using Born approximation (1), (2) can be reduced to an integral geometry problem: [ ] µs (R 21 ) φ(r 2, ŝ 2, r 1, ŝ 1 ) = µ t [r(l)]dl ln, (3) µ s BR(r 2,ŝ 2,r 1,ŝ 1 ) where [ r21 sin θ 1 sin θ 2 Is (r 2, ŝ 2, r 1, ŝ 1 )dϕŝ2 φ(r 2, ŝ 2, r 1, ŝ 1 ) = ln I 0 µ s A(ŝ 2, ŝ 1 ) ]. (4)

6 Single Scattering Optical Tomography (SSOT) Compton Camera Imaging and Other Examples Florescu, Schotland and Markel (2009, 2010, 2011) So if the scattering coefficient is known, then the reconstruction of the absorption coefficient is reduced to inversion of a generalized Radon transform integrating along the broken rays.

7 Compton Scattering Single Scattering Optical Tomography (SSOT) Compton Camera Imaging and Other Examples cos β = 1 mc2 E (E E)E R. Basko, G. Zeng, and G. Gullberg (1997, 1998) M. Nguyen, T. Truong, et al (2000 s)

8 Broken Rays and Broken Geodesics Single Scattering Optical Tomography (SSOT) Compton Camera Imaging and Other Examples M. Hubenthal J. Ilmavirta M. Lassas M. Salo G. Uhlmann...

9 V-line Radon Transform (VRT) in 2D Definition The V-line Radon transform of function f (x, y) is the integral Rf (β, t) = f ds, (5) BR(β,t) of f along the broken ray BR(β, t) with respect to line measure ds. The problem of inversion is over-determined, so it is natural to consider a restriction of Rf to a two-dimensional set.

10 Geometry: Slab vs Disc Available directions Stability of reconstruction Hardware implementation (?)

11 (G.A. 2012) Theorem If f (x, y) is a smooth function supported in the disc D(0, R sin θ), then f is uniquely determined by Rf (φ, d), φ [0, 2π], d [0, 2R].

12 Inversion Formula Rf (ψ φ, t d ) = Rf (φ, d) + Rf (φ + π, 2R d) Rf (φ, 2R), (6) for all values φ [0, 2π] and d [0, 2R]. f (x, y) = 1 4π 2π 0 H ( Rf t ) (ψ, x cos ψ + y sin ψ) dψ (7) where H is the Hilbert transform defined by Hh (t) = i sgn (r) ĥ(r) eirt dr. (8) 2π R and ĥ(r) is the Fourier transform of h(t), i.e. ĥ(r) = 1 h(t) e irt dt. (9) 2π R

13 Inversion Formula Issues with the support Interior problem Other methods without loss of information Rotation invariance

14 (G.A., S. Moon 2013) Theorem If f (x, y) is a smooth function supported in the disc D(0, R), then f is uniquely determined by Rf (φ, d), φ [0, 2π], d [0, R].

15 Denote g(β, t) := Rf (β, t). f (φ, ρ) = n= f n (ρ) e inφ, g(β, t) = where the Fourier coefficients are given by n= g n (t) e inβ, f n (ρ) = 1 2π f (φ, ρ) e inφ dφ, g n (t) = 1 2π g(β, t) e inβ dβ. 2π 0 2π 0

16 Inversion Formula Mf n (s) = Mg n (s 1), R(s) > 1 (10) 1/(s 1) + Mh n (s 1) where MF denotes the Mellin transform of function F MF (s) = 0 p s 1 F (p) dp, and h n is some fixed function. Hence for any t > 1 we have 1 t+ti f n (ρ) = lim ρ s Mg n (s 1) ds. (11) T 2πi t Ti 1/(s 1) + Mh n (s 1)

17 If 1 < t < 1 sin θ then 1 + t cos[ψ(t)] + t 2 sin[ψ(t)] h n (t) = ( 1) n e inψ(t) 1 + t 2 + 2t cos(ψ(t)) sin θ 1 t 2 sin 2 θ 1 t cos[2θ ψ(t)] + t 2 sin[2θ ψ(t)] e in[2θ ψ(t)] 1 + t 2 2t cos[2θ ψ(t)] sin θ 1 t 2 sin 2 θ, 1 + t cos[ψ(t)] + t 2 sin[ψ(t)] h n (t) = ( 1) n e inψ(t) 1 + t 2 + 2t cos[ψ(t)] sin θ 1 t 2 sin 2 θ, 0 < t 1 and h n (t) 0, for all t > 1 sin θ. Here ψ(t) = arcsin(t sin θ) + θ.

18 Current Work and Open Problems Numerical implementation Stability and microlocal analysis Range description Over-determined setups

19 Thanks for Your Attention!

20 Ambartsoumian, G., Inversion of the V-line Radon transform in a disc and its applications in imaging, Computers and Mathematics with Application, (2013). Ambartsoumian, G., Moon, S., A series formula for inversion of the V-line Radon transform in a disc, Computers and Mathematics with Application, (2012). Florescu, L., Schotland, J.C., Markel, V.A., Single scattering optical tomography, Phys. Rev. E 79, (2009). Florescu, L., Markel, V.A., Schotland, J.C., Single-scattering optical tomography: Simultaneous reconstruction of scattering and absorption, Phys. Rev. E 81, (2010). Florescu, L., Markel, V.A., Schotland, J.C., Inversion formulas for the broken-ray Radon transform, Inverse Problems 27, (2011).

The broken-ray transform and its generalizations

The broken-ray transform and its generalizations The broken-ray transform and its generalizations Gaik Ambartsoumian University of Texas at Arlington 100 Years of the Radon Transform Linz, March 27-31, 2017 Acknowledgements The talk is based on results

More information

Injectivity and Exact Inversion of Ultrasound Operators in the Sph

Injectivity and Exact Inversion of Ultrasound Operators in the Sph Injectivity and Exact Inversion of Ultrasound Operators in the Spherical Geometry University of Texas at Arlington Department of Mathematics Geometric Analysis on Euclidean and Homogeneous Spaces January

More information

ON A CLASS OF GENERALIZED RADON TRANSFORMS AND ITS APPLICATION IN IMAGING SCIENCE

ON A CLASS OF GENERALIZED RADON TRANSFORMS AND ITS APPLICATION IN IMAGING SCIENCE ON A CLASS OF GENERALIZED RADON TRANSFORMS AND ITS APPLICATION IN IMAGING SCIENCE T.T. TRUONG 1 AND M.K. NGUYEN 2 1 University of Cergy-Pontoise, LPTM CNRS UMR 889, F-9532, France e-mail: truong@u-cergy.fr

More information

Inversion of a class of circular and elliptical Radon transforms

Inversion of a class of circular and elliptical Radon transforms Inversion of a class of circular and elliptical Radon transforms Gaik Ambartsoumian and Venkateswaran P. Krishnan Abstract. The paper considers a class of elliptical and circular Radon transforms appearing

More information

Rich Tomography. Bill Lionheart, School of Mathematics, University of Manchester and DTU Compute. July 2014

Rich Tomography. Bill Lionheart, School of Mathematics, University of Manchester and DTU Compute. July 2014 Rich Tomography Bill Lionheart, School of Mathematics, University of Manchester and DTU Compute July 2014 What do we mean by Rich Tomography? Conventional tomography reconstructs one scalar image from

More information

3D Image Reconstruction from Compton camera data

3D Image Reconstruction from Compton camera data 3D Image Reconstruction from Compton camera data Peter Kuchment and Fatma Terzioglu Abstract In this paper, we address analytically and numerically the inversion of the integral transform (cone or Compton

More information

Tomography of Highly Scattering Media with the Method of Rotated Reference Frames. Vadim Markel Manabu Machida George Panasyuk John Schotland

Tomography of Highly Scattering Media with the Method of Rotated Reference Frames. Vadim Markel Manabu Machida George Panasyuk John Schotland Tomography of Highly Scattering Media with the Method of Rotated Reference Frames Vadim Markel Manabu Machida George Panasyuk John Schotland Radiology/Bioengineering UPenn, Philadelphia MOTIVATION (The

More information

Broken-Ray and Star Transforms and their Inversion

Broken-Ray and Star Transforms and their Inversion Broen-Ray and Star Transforms and their Inversion Vadim A Marel, Institut Fresnel Joint wor with Fan Zhao (f. @ UPenn) John Schotland (f. @ Upenn, now @UMich) Lucia Florescu (f. @ UPenn) Interest in using

More information

Tomography and Reconstruction

Tomography and Reconstruction Tomography and Reconstruction Lecture Overview Applications Background/history of tomography Radon Transform Fourier Slice Theorem Filtered Back Projection Algebraic techniques Measurement of Projection

More information

Quadrature Formula for Computed Tomography

Quadrature Formula for Computed Tomography Quadrature Formula for Computed Tomography orislav ojanov, Guergana Petrova August 13, 009 Abstract We give a bivariate analog of the Micchelli-Rivlin quadrature for computing the integral of a function

More information

Non-abelian Radon transform and its applications

Non-abelian Radon transform and its applications Non-abelian Radon transform and its applications Roman Novikov CNRS, Centre de Mathématiques Appliquées, Ecole Polytechnique March 23, 2017 1/25 Consider the equation θ x ψ +A(x,θ)ψ = 0, x R d, θ S d 1,

More information

Inversion of the Broken Ray Transform

Inversion of the Broken Ray Transform University of Central Florida Electronic Theses and Dissertations Doctoral Dissertation (Open Access) Inversion of the Broken Ray Transform 2014 Roman Krylov University of Central Florida Find similar

More information

High-Resolution. Transmission. Electron Microscopy

High-Resolution. Transmission. Electron Microscopy Part 4 High-Resolution Transmission Electron Microscopy 186 Significance high-resolution transmission electron microscopy (HRTEM): resolve object details smaller than 1nm (10 9 m) image the interior of

More information

Monte Carlo Radiation Transfer I

Monte Carlo Radiation Transfer I Monte Carlo Radiation Transfer I Monte Carlo Photons and interactions Sampling from probability distributions Optical depths, isotropic emission, scattering Monte Carlo Basics Emit energy packet, hereafter

More information

arxiv: v2 [math.na] 22 Dec 2016

arxiv: v2 [math.na] 22 Dec 2016 INVERSION OF WEIGHTED DIVERGENT BEAM AND CONE TRANSFORMS arxiv:1612.6772v2 [math.na] 22 Dec 216 Peter Kuchment Department of Mathematics Texas A&M University College Station, TX 77843-3368, USA Fatma Terzioglu

More information

PROPERTIES OF SOME INTEGRAL TRANSFORMS ARISING IN TOMOGRAPHY. A Dissertation SUNGHWAN MOON

PROPERTIES OF SOME INTEGRAL TRANSFORMS ARISING IN TOMOGRAPHY. A Dissertation SUNGHWAN MOON POPETIES OF SOME INTEGAL TANSFOMS AISING IN TOMOGAPHY A Dissertation by SUNGHWAN MOON Submitted to the Office of Graduate and Professional Studies of Texas A&M University in partial fulfillment of the

More information

6. LIGHT SCATTERING 6.1 The first Born approximation

6. LIGHT SCATTERING 6.1 The first Born approximation 6. LIGHT SCATTERING 6.1 The first Born approximation In many situations, light interacts with inhomogeneous systems, in which case the generic light-matter interaction process is referred to as scattering

More information

Method of Rotated Reference Frames

Method of Rotated Reference Frames Method of Rotated Reference Frames Vadim Markel in collaboration with George Panasyuk Manabu Machida John Schotland Radiology/Bioengineering UPenn, Philadelphia Outline MOTIVATION (the inverse problems

More information

Opacity and Optical Depth

Opacity and Optical Depth Opacity and Optical Depth Absorption dominated intensity change can be written as di λ = κ λ ρ I λ ds with κ λ the absorption coefficient, or opacity The initial intensity I λ 0 of a light beam will be

More information

Microlocal Analysis of an Ultrasound Transform with Circular Source and Receiver Trajectories

Microlocal Analysis of an Ultrasound Transform with Circular Source and Receiver Trajectories Contemporary Mathematics Microlocal Analysis of an Ultrasound Transform with Circular Source and Receiver Trajectories G. Ambartsoumian, J. Boman, V. P. Krishnan, and E. T. Quinto Abstract. We consider

More information

Improving Boundary Conditions in Time- Domain Self-Force Calculations

Improving Boundary Conditions in Time- Domain Self-Force Calculations Improving Boundary Conditions in Time- Domain Self-Force Calculations Carlos F. Sopuerta Institute of Space Sciences National Spanish Research Council Work in Collaboration with Anil Zenginoğlu (Caltech)

More information

AppliedMathematics. Inversion of the attenuated V-line transform for SPECT with Compton cameras. Markus Haltmeier, Sunghwan Moon, Daniela Schiefeneder

AppliedMathematics. Inversion of the attenuated V-line transform for SPECT with Compton cameras. Markus Haltmeier, Sunghwan Moon, Daniela Schiefeneder Nr. 27 13. September 216 Leopold-Franzens-Universität Innsbruck Preprint-Series: Department of Mathematics - Applied Mathematics Inversion of the attenuated V-line transform for SPECT with Compton cameras

More information

Lecture 9 February 2, 2016

Lecture 9 February 2, 2016 MATH 262/CME 372: Applied Fourier Analysis and Winter 26 Elements of Modern Signal Processing Lecture 9 February 2, 26 Prof. Emmanuel Candes Scribe: Carlos A. Sing-Long, Edited by E. Bates Outline Agenda:

More information

Inversion of the broken ray transform in the case of energy-dependent attenuation

Inversion of the broken ray transform in the case of energy-dependent attenuation Physics in Medicine & Biology PAPER Inversion of the broken ray transform in the case of energy-dependent attenuation To cite this article: R Krylov and A Katsevich 0 Phys. Med. Biol. Manuscript version:

More information

Microlocal Methods in X-ray Tomography

Microlocal Methods in X-ray Tomography Microlocal Methods in X-ray Tomography Plamen Stefanov Purdue University Lecture I: Euclidean X-ray tomography Mini Course, Fields Institute, 2012 Plamen Stefanov (Purdue University ) Microlocal Methods

More information

Microlocal Analysis of an Ultrasound Transform with Circular Source and Receiver Trajectories

Microlocal Analysis of an Ultrasound Transform with Circular Source and Receiver Trajectories Contemporary Mathematics Microlocal Analysis of an Ultrasound Transform with Circular Source and Receiver Trajectories G. Ambartsoumian, J. Boman, V. P. Krishnan, and E. T. Quinto This article is dedicated

More information

A Direct Method for reconstructing inclusions from Electrostatic Data

A Direct Method for reconstructing inclusions from Electrostatic Data A Direct Method for reconstructing inclusions from Electrostatic Data Isaac Harris Texas A&M University, Department of Mathematics College Station, Texas 77843-3368 iharris@math.tamu.edu Joint work with:

More information

Compton Storage Rings

Compton Storage Rings Compton Polarimetry @ Storage Rings Wolfgang Hillert ELectron Stretcher Accelerator Physics Institute of Bonn University Møller-Polarimeter Compton-Polarimeter Mott-Polarimeter Compton Scattering Differential

More information

Poincaré Duality Angles on Riemannian Manifolds with Boundary

Poincaré Duality Angles on Riemannian Manifolds with Boundary Poincaré Duality Angles on Riemannian Manifolds with Boundary Clayton Shonkwiler Department of Mathematics University of Pennsylvania June 5, 2009 Realizing cohomology groups as spaces of differential

More information

Part 2 Introduction to Microlocal Analysis

Part 2 Introduction to Microlocal Analysis Part 2 Introduction to Microlocal Analysis Birsen Yazıcı & Venky Krishnan Rensselaer Polytechnic Institute Electrical, Computer and Systems Engineering August 2 nd, 2010 Outline PART II Pseudodifferential

More information

- 1 - θ 1. n 1. θ 2. mirror. object. image

- 1 - θ 1. n 1. θ 2. mirror. object. image TEST 5 (PHY 50) 1. a) How will the ray indicated in the figure on the following page be reflected by the mirror? (Be accurate!) b) Explain the symbols in the thin lens equation. c) Recall the laws governing

More information

[1+ m2 c 4 4EE γ. The equations of conservation of energy and momentum are. E + E γ p p γ

[1+ m2 c 4 4EE γ. The equations of conservation of energy and momentum are. E + E γ p p γ Physics 403: Relativity Homework Assignment 2 Due 12 February 2007 1. Inverse Compton scattering occurs whenever a photon scatters off a particle moving with a speed very nearly equal to that of light.

More information

3.6 Applications of Poisson s equation

3.6 Applications of Poisson s equation William J. Parnell: MT3432. Section 3: Green s functions in 2 and 3D 69 3.6 Applications of Poisson s equation The beaut of Green s functions is that the are useful! Let us consider an example here where

More information

1 Assignment 1: Nonlinear dynamics (due September

1 Assignment 1: Nonlinear dynamics (due September Assignment : Nonlinear dynamics (due September 4, 28). Consider the ordinary differential equation du/dt = cos(u). Sketch the equilibria and indicate by arrows the increase or decrease of the solutions.

More information

Compton Camera. Compton Camera

Compton Camera. Compton Camera Diagnostic Imaging II Student Project Compton Camera Ting-Tung Chang Introduction The Compton camera operates by exploiting the Compton Effect. It uses the kinematics of Compton scattering to contract

More information

Earthscope Imaging Science & CIG Seismology Workshop

Earthscope Imaging Science & CIG Seismology Workshop Earthscope Imaging Science & CIG Seismology Introduction to Direct Imaging Methods Alan Levander Department of Earth Science Rice University 1 Two classes of scattered wave imaging systems 1. Incoherent

More information

Mean Intensity. Same units as I ν : J/m 2 /s/hz/sr (ergs/cm 2 /s/hz/sr) Function of position (and time), but not direction

Mean Intensity. Same units as I ν : J/m 2 /s/hz/sr (ergs/cm 2 /s/hz/sr) Function of position (and time), but not direction MCRT: L5 MCRT estimators for mean intensity, absorbed radiation, radiation pressure, etc Path length sampling: mean intensity, fluence rate, number of absorptions Random number generators J Mean Intensity

More information

9 Atomic Coherence in Three-Level Atoms

9 Atomic Coherence in Three-Level Atoms 9 Atomic Coherence in Three-Level Atoms 9.1 Coherent trapping - dark states In multi-level systems coherent superpositions between different states (atomic coherence) may lead to dramatic changes of light

More information

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015)

Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Notes on x-ray scattering - M. Le Tacon, B. Keimer (06/2015) Interaction of x-ray with matter: - Photoelectric absorption - Elastic (coherent) scattering (Thomson Scattering) - Inelastic (incoherent) scattering

More information

A Brief Introduction to Medical Imaging. Outline

A Brief Introduction to Medical Imaging. Outline A Brief Introduction to Medical Imaging Outline General Goals Linear Imaging Systems An Example, The Pin Hole Camera Radiations and Their Interactions with Matter Coherent vs. Incoherent Imaging Length

More information

CANONICAL EQUATIONS. Application to the study of the equilibrium of flexible filaments and brachistochrone curves. By A.

CANONICAL EQUATIONS. Application to the study of the equilibrium of flexible filaments and brachistochrone curves. By A. Équations canoniques. Application a la recherche de l équilibre des fils flexibles et des courbes brachystochrones, Mem. Acad. Sci de Toulouse (8) 7 (885), 545-570. CANONICAL EQUATIONS Application to the

More information

Inversion of the circular Radon transform on an annulus

Inversion of the circular Radon transform on an annulus Inversion of the circular Radon transform on an annulus Gaik Ambartsoumian 1, Rim Gouia-Zarrad 1 and Matthew A Lewis 2 1 Department of Mathematics, University of Texas at Arlington, Arlington, TX 7617-48,

More information

Recent progress on the explicit inversion of geodesic X-ray transforms

Recent progress on the explicit inversion of geodesic X-ray transforms Recent progress on the explicit inversion of geodesic X-ray transforms François Monard Department of Mathematics, University of Washington. Geometric Analysis and PDE seminar University of Cambridge, May

More information

Assignment 4 Solutions [Revision : 1.4]

Assignment 4 Solutions [Revision : 1.4] Assignment 4 Solutions [Revision : 1.4] Q9.7 We typically see a optical distance τ 2/3 through an opaque medium. Using τ = κρs, for constant κ = 0.03 m 2 kg 1 and ρ = 1.2 kgm 3, gives a physical distance

More information

d 2 2 A = [A, d 2 A = 1 2 [[A, H ], dt 2 Visualizing IVR. [Chem. Phys. Lett. 320, 553 (2000)] 5.74 RWF Lecture #

d 2 2 A = [A, d 2 A = 1 2 [[A, H ], dt 2 Visualizing IVR. [Chem. Phys. Lett. 320, 553 (2000)] 5.74 RWF Lecture # MIT Department of Chemistry 5.74, Spring 004: Introductory Quantum Mechanics II Instructor: Prof. Robert Field 5.74 RWF Lecture #15 15 1 Visualizing IVR. [Chem. Phys. Lett. 30, 553 (000)] Readings: Chapter

More information

Efficient Solution Methods for Inverse Problems with Application to Tomography Radon Transform and Friends

Efficient Solution Methods for Inverse Problems with Application to Tomography Radon Transform and Friends Efficient Solution Methods for Inverse Problems with Application to Tomography Radon Transform and Friends Alfred K. Louis Institut für Angewandte Mathematik Universität des Saarlandes 66041 Saarbrücken

More information

PHYS 390 Lecture 23 - Photon gas 23-1

PHYS 390 Lecture 23 - Photon gas 23-1 PHYS 39 Lecture 23 - Photon gas 23-1 Lecture 23 - Photon gas What's Important: radiative intensity and pressure stellar opacity Text: Carroll and Ostlie, Secs. 9.1 and 9.2 The temperature required to drive

More information

Inversions of ray transforms on simple surfaces

Inversions of ray transforms on simple surfaces Inversions of ray transforms on simple surfaces François Monard Department of Mathematics, University of Washington. June 09, 2015 Institut Henri Poincaré - Program on Inverse problems 1 / 42 Outline 1

More information

THE POSSIBILITY OF PRECISE MEASUREMENT OF ABSOLUTE ENERGY OF THE ELECTRON BEAM BY MEANS OF RESONANCE ABSORPTION METHOD R.A.

THE POSSIBILITY OF PRECISE MEASUREMENT OF ABSOLUTE ENERGY OF THE ELECTRON BEAM BY MEANS OF RESONANCE ABSORPTION METHOD R.A. THE POSSIBILITY OF PRECISE MEASUREMENT OF ABSOLUTE ENERGY OF THE ELECTRON BEAM BY MEANS OF RESONANCE ABSORPTION METHOD R.A. Melikian Yerevan Physics Institute, Yerevan, Armenia Abstract In this report

More information

Numerical Methods for geodesic X-ray transforms and applications to open theoretical questions

Numerical Methods for geodesic X-ray transforms and applications to open theoretical questions Numerical Methods for geodesic X-ray transforms and applications to open theoretical questions François Monard Department of Mathematics, University of Washington. Nov. 13, 2014 UW Numerical Analysis Research

More information

Brownian Motion and lorentzian manifolds

Brownian Motion and lorentzian manifolds The case of Jürgen Angst Institut de Recherche Mathématique Avancée Université Louis Pasteur, Strasbourg École d été de Probabilités de Saint-Flour juillet 2008, Saint-Flour 1 Construction of the diffusion,

More information

MCRT L10: Scattering and clarification of astronomy/medical terminology

MCRT L10: Scattering and clarification of astronomy/medical terminology MCRT L10: Scattering and clarification of astronomy/medical terminology What does the scattering? Shape of scattering Sampling from scattering phase functions Co-ordinate frames Refractive index changes

More information

Lorentz Force. Acceleration of electrons due to the magnetic field gives rise to synchrotron radiation Lorentz force.

Lorentz Force. Acceleration of electrons due to the magnetic field gives rise to synchrotron radiation Lorentz force. Set 10: Synchrotron Lorentz Force Acceleration of electrons due to the magnetic field gives rise to synchrotron radiation Lorentz force 0 E x E y E z dp µ dτ = e c F µ νu ν, F µ E x 0 B z B y ν = E y B

More information

Part 2 Introduction to Microlocal Analysis

Part 2 Introduction to Microlocal Analysis Part 2 Introduction to Microlocal Analysis Birsen Yazıcı& Venky Krishnan Rensselaer Polytechnic Institute Electrical, Computer and Systems Engineering March 15 th, 2010 Outline PART II Pseudodifferential(ψDOs)

More information

Reconstructing inclusions from Electrostatic Data

Reconstructing inclusions from Electrostatic Data Reconstructing inclusions from Electrostatic Data Isaac Harris Texas A&M University, Department of Mathematics College Station, Texas 77843-3368 iharris@math.tamu.edu Joint work with: W. Rundell Purdue

More information

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India

NPTEL web course on Complex Analysis. A. Swaminathan I.I.T. Roorkee, India. and. V.K. Katiyar I.I.T. Roorkee, India NPTEL web course on Complex Analysis A. Swaminathan I.I.T. Roorkee, India and V.K. Katiyar I.I.T. Roorkee, India A.Swaminathan and V.K.Katiyar (NPTEL) Complex Analysis 1 / 20 Complex Analysis Module: 10:

More information

Supplementary Information

Supplementary Information 1 Supplementary Information 3 Supplementary Figures 4 5 6 7 8 9 10 11 Supplementary Figure 1. Absorbing material placed between two dielectric media The incident electromagnetic wave propagates in stratified

More information

Travel Time Tomography and Tensor Tomography, I

Travel Time Tomography and Tensor Tomography, I Travel Time Tomography and Tensor Tomography, I Plamen Stefanov Purdue University Mini Course, MSRI 2009 Plamen Stefanov (Purdue University ) Travel Time Tomography and Tensor Tomography, I 1 / 17 Alternative

More information

Inverse Transport Problems (Generalized) Stability Estimates. Guillaume Bal

Inverse Transport Problems (Generalized) Stability Estimates. Guillaume Bal Inverse Transport Problems (Generalized) Stability Estimates Guillaume Bal Department of Applied Physics & Applied Mathematics Columbia University Joint with Alexandre Jollivet Data Acquisition in CT-scan

More information

Offshore Hydromechanics Module 1

Offshore Hydromechanics Module 1 Offshore Hydromechanics Module 1 Dr. ir. Pepijn de Jong 4. Potential Flows part 2 Introduction Topics of Module 1 Problems of interest Chapter 1 Hydrostatics Chapter 2 Floating stability Chapter 2 Constant

More information

EE 4372 Tomography. Carlos E. Davila, Dept. of Electrical Engineering Southern Methodist University

EE 4372 Tomography. Carlos E. Davila, Dept. of Electrical Engineering Southern Methodist University EE 4372 Tomography Carlos E. Davila, Dept. of Electrical Engineering Southern Methodist University EE 4372, SMU Department of Electrical Engineering 86 Tomography: Background 1-D Fourier Transform: F(

More information

Optical Imaging Chapter 5 Light Scattering

Optical Imaging Chapter 5 Light Scattering Optical Imaging Chapter 5 Light Scattering Gabriel Popescu University of Illinois at Urbana-Champaign Beckman Institute Quantitative Light Imaging Laboratory http://light.ece.uiuc.edu Principles of Optical

More information

Numerical Heat and Mass Transfer

Numerical Heat and Mass Transfer Master Degree in Mechanical Engineering Numerical Heat and Mass Transfer 11-Radiative Heat Transfer Fausto Arpino f.arpino@unicas.it Nature of Thermal Radiation ü Thermal radiation refers to radiation

More information

Anti Compton effect (1). A.M.shehada. Division of physics, Sciences college, Damascus university, Syria

Anti Compton effect (1). A.M.shehada.   Division of physics, Sciences college, Damascus university, Syria Anti Compton effect (1). A.M.shehada. E-mail : abdullahsh137@yahoo.com Division of physics, Sciences college, Damascus university, Syria Introduction : In the usual Compton effect, coming photon ( have

More information

University of Cyprus. Reflectance and Diffuse Spectroscopy

University of Cyprus. Reflectance and Diffuse Spectroscopy University of Cyprus Biomedical Imaging and Applied Optics Reflectance and Diffuse Spectroscopy Spectroscopy What is it? from the Greek: spectro = color + scope = look at or observe = measuring/recording

More information

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate

PHY492: Nuclear & Particle Physics. Lecture 4 Nature of the nuclear force. Reminder: Investigate PHY49: Nuclear & Particle Physics Lecture 4 Nature of the nuclear force Reminder: Investigate www.nndc.bnl.gov Topics to be covered size and shape mass and binding energy charge distribution angular momentum

More information

Fundamental Stellar Parameters

Fundamental Stellar Parameters Fundamental Stellar Parameters Radiative Transfer Specific Intensity, Radiative Flux and Stellar Luminosity Observed Flux, Emission and Absorption of Radiation Radiative Transfer Equation, Solution and

More information

Redundancy and inversion of the Compton transform

Redundancy and inversion of the Compton transform Annals of the University of Bucharest (mathematical series) 4 (LXII) (213), 141 154 Redundancy and inversion of the Compton transform Voichita Maxim Abstract - Data acquired with a Compton gamma-camera

More information

Radon Transform An Introduction

Radon Transform An Introduction Radon Transform An Introduction Yi-Hsuan Lin The Radon transform is widely applicable to tomography, the creation of an image from the scattering data associated to crosssectional scans of an object. If

More information

arxiv: v1 [math.dg] 24 Feb 2017

arxiv: v1 [math.dg] 24 Feb 2017 GEODESIC X-RAY TOMOGRAPHY FOR PIECEWISE CONSTANT FUNCTIONS ON NONTRAPPING MANIFOLDS JOONAS ILMAVIRTA, JERE LEHTONEN, AND MIKKO SALO arxiv:1702.07622v1 [math.dg] 24 Feb 2017 Abstract. We show that on a

More information

Lecture 2: Transfer Theory

Lecture 2: Transfer Theory Lecture 2: Transfer Theory Why do we study transfer theory? The light we detect arrives at us in two steps: - first, it is created by some radiative process (e.g., blackbody, synchrotron, etc etc ) -

More information

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering

Applied Nuclear Physics (Fall 2006) Lecture 19 (11/22/06) Gamma Interactions: Compton Scattering .101 Applied Nuclear Physics (Fall 006) Lecture 19 (11//06) Gamma Interactions: Compton Scattering References: R. D. Evans, Atomic Nucleus (McGraw-Hill New York, 1955), Chaps 3 5.. W. E. Meyerhof, Elements

More information

Interaction theory Photons. Eirik Malinen

Interaction theory Photons. Eirik Malinen Interaction theory Photons Eirik Malinen Introduction Interaction theory Dosimetry Radiation source Ionizing radiation Atoms Ionizing radiation Matter - Photons - Charged particles - Neutrons Ionizing

More information

ELEMENTARY APPLICATIONS OF FOURIER ANALYSIS

ELEMENTARY APPLICATIONS OF FOURIER ANALYSIS ELEMENTARY APPLICATIONS OF FOURIER ANALYSIS COURTOIS Abstract. This paper is intended as a brief introduction to one of the very first applications of Fourier analysis: the study of heat conduction. We

More information

INVESTIGATIONS OF THE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES LONGITUDINAL CHARGE

INVESTIGATIONS OF THE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES LONGITUDINAL CHARGE INVESTIGATIONS OF THE LONGITUDINAL CHARGE DISTRIBUTION IN VERY SHORT ELECTRON BUNCHES Markus Hüning III. Physikalisches Institut RWTH Aachen IIIa and DESY Invited talk at the DIPAC 2001 Methods to obtain

More information

Lecture 16 Light transmission and optical detectors

Lecture 16 Light transmission and optical detectors Lecture 6 Light transmission and optical detectors Charged particle traversing through a material can generate signal in form of light via electromagnetic interactions with orbital electrons of the atoms

More information

MATHEMATICS 200 April 2010 Final Exam Solutions

MATHEMATICS 200 April 2010 Final Exam Solutions MATHEMATICS April Final Eam Solutions. (a) A surface z(, y) is defined by zy y + ln(yz). (i) Compute z, z y (ii) Evaluate z and z y in terms of, y, z. at (, y, z) (,, /). (b) A surface z f(, y) has derivatives

More information

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11)

Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11) Stars AS4023: Stellar Atmospheres (13) Stellar Structure & Interiors (11) Kenneth Wood, Room 316 kw25@st-andrews.ac.uk http://www-star.st-and.ac.uk/~kw25 What is a Stellar Atmosphere? Transition from dense

More information

ROI Reconstruction in CT

ROI Reconstruction in CT Reconstruction in CT From Tomo reconstruction in the 21st centery, IEEE Sig. Proc. Magazine (R.Clackdoyle M.Defrise) L. Desbat TIMC-IMAG September 10, 2013 L. Desbat Reconstruction in CT Outline 1 CT Radiology

More information

Physics 504, Lecture 22 April 19, Frequency and Angular Distribution

Physics 504, Lecture 22 April 19, Frequency and Angular Distribution Last Latexed: April 16, 010 at 11:56 1 Physics 504, Lecture April 19, 010 Copyright c 009 by Joel A Shapiro 1 Freuency and Angular Distribution We have found the expression for the power radiated in a

More information

arxiv:gr-qc/ v1 29 Jun 1998

arxiv:gr-qc/ v1 29 Jun 1998 Uniformly accelerated sources in electromagnetism and gravity V. Pravda and A. Pravdová Department of Theoretical Physics, Faculty of Mathematics and Physics, Charles University, V Holešovičkıach, 18 Prague

More information

Møller Polarimetry for PV Experiments at 12 GeV

Møller Polarimetry for PV Experiments at 12 GeV Outline E.Chudakov Jan 15, 2010, MOLLER Review Møller Polarimetry 1 Møller Polarimetry for PV Experiments at 12 GeV E.Chudakov 1 1 JLab MOLLER Review Outline E.Chudakov Jan 15, 2010, MOLLER Review Møller

More information

Topics. EM spectrum. X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

Topics. EM spectrum. X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 24 X-Rays/CT Lecture Topics X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

More information

Vectors in Special Relativity

Vectors in Special Relativity Chapter 2 Vectors in Special Relativity 2.1 Four - vectors A four - vector is a quantity with four components which changes like spacetime coordinates under a coordinate transformation. We will write the

More information

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie

Quantum Mechanics II Lecture 11 (www.sp.phy.cam.ac.uk/~dar11/pdf) David Ritchie Quantum Mechanics II Lecture (www.sp.phy.cam.ac.u/~dar/pdf) David Ritchie Michaelmas. So far we have found solutions to Section 4:Transitions Ĥ ψ Eψ Solutions stationary states time dependence with time

More information

Model Question Paper ENGINEERING PHYSICS (14PHY12/14PHY22) Note: Answer any FIVE full questions, choosing one full question from each module.

Model Question Paper ENGINEERING PHYSICS (14PHY12/14PHY22) Note: Answer any FIVE full questions, choosing one full question from each module. Model Question Paper ENGINEERING PHYSICS (14PHY1/14PHY) Time: 3 hrs. Max. Marks: 100 Note: Answer any FIVE full questions, choosing one full question from each module. MODULE 1 1) a. Explain in brief Compton

More information

An inverse scattering problem in random media

An inverse scattering problem in random media An inverse scattering problem in random media Pedro Caro Joint work with: Tapio Helin & Matti Lassas Computational and Analytic Problems in Spectral Theory June 8, 2016 Outline Introduction and motivation

More information

LECTURES ON MICROLOCAL CHARACTERIZATIONS IN LIMITED-ANGLE

LECTURES ON MICROLOCAL CHARACTERIZATIONS IN LIMITED-ANGLE LECTURES ON MICROLOCAL CHARACTERIZATIONS IN LIMITED-ANGLE TOMOGRAPHY Jürgen Frikel 4 LECTURES 1 Today: Introduction to the mathematics of computerized tomography 2 Mathematics of computerized tomography

More information

Longitudinal Beam Dynamics

Longitudinal Beam Dynamics Longitudinal Beam Dynamics Shahin Sanaye Hajari School of Particles and Accelerators, Institute For Research in Fundamental Science (IPM), Tehran, Iran IPM Linac workshop, Bahman 28-30, 1396 Contents 1.

More information

System Modeling for Gamma Ray Imaging Systems

System Modeling for Gamma Ray Imaging Systems System Modeling for Gamma Ray Imaging Systems Daniel J. Lingenfelter and Jeffrey A. Fessler COMMUNICATIONS & SIGNAL PROCESSING LABORATORY Department of Electrical Engineering and Computer Science The University

More information

The Compton Effect. Martha Buckley MIT Department of Physics, Cambridge, MA (Dated: November 26, 2002)

The Compton Effect. Martha Buckley MIT Department of Physics, Cambridge, MA (Dated: November 26, 2002) The Compton Effect Martha Buckley MIT Department of Physics, Cambridge, MA 02139 marthab@mit.edu (Dated: November 26, 2002) We measured the angular dependence of the energies of 661.6 kev photons scattered

More information

EEE4101F / EEE4103F Radiation Interactions & Detection

EEE4101F / EEE4103F Radiation Interactions & Detection EEE4101F / EEE4103F Radiation Interactions & Detection 1. Interaction of Radiation with Matter Dr. Steve Peterson 5.14 RW James Department of Physics University of Cape Town steve.peterson@uct.ac.za March

More information

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle

Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle Quantum Mechanics for Mathematicians: Energy, Momentum, and the Quantum Free Particle Peter Woit Department of Mathematics, Columbia University woit@math.columbia.edu November 28, 2012 We ll now turn to

More information

PHI PSI 08. Federico Nguyen. International Workshop on e+e- collisions from Phi to Psi

PHI PSI 08. Federico Nguyen. International Workshop on e+e- collisions from Phi to Psi PHI PSI 08 Laboratori Nazionali di Frascati (Roma), April 8 th 008 International Workshop on e+e- collisions from Phi to Psi A precise new KLOE measurement of F! with ISR and extraction of a µ!! for [0.35,0.95]

More information

SOLID STATE 9. Determination of Crystal Structures

SOLID STATE 9. Determination of Crystal Structures SOLID STATE 9 Determination of Crystal Structures In the diffraction experiment, we measure intensities as a function of d hkl. Intensities are the sum of the x-rays scattered by all the atoms in a crystal.

More information

Nosé-Hoover Thermostats

Nosé-Hoover Thermostats Nosé- Nosé- Texas A & M, UT Austin, St. Olaf College October 29, 2013 Physical Model Nosé- q Figure: Simple Oscillator p Physical Model Continued Heat Bath T p Nosé- q Figure: Simple Oscillator in a heat

More information

Preliminaries: what you need to know

Preliminaries: what you need to know January 7, 2014 Preliminaries: what you need to know Asaf Pe er 1 Quantum field theory (QFT) is the theoretical framework that forms the basis for the modern description of sub-atomic particles and their

More information

Twisting versus bending in quantum waveguides

Twisting versus bending in quantum waveguides Twisting versus bending in quantum waveguides David KREJČIŘÍK Nuclear Physics Institute, Academy of Sciences, Řež, Czech Republic http://gemma.ujf.cas.cz/ david/ Based on: [Chenaud, Duclos, Freitas, D.K.]

More information

Passage of particles through matter

Passage of particles through matter Passage of particles through matter Alexander Khanov PHYS6260: Experimental Methods is HEP Oklahoma State University September 11, 2017 Delta rays During ionization, the energy is transferred to electrons

More information

Topics. EM spectrum. X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

Topics. EM spectrum. X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection Bioengineering 28A Principles of Biomedical Imaging Fall Quarter 25 X-Rays/CT Lecture Topics X-Rays Computed Tomography Direct Inverse and Iterative Inverse Backprojection Projection Theorem Filtered Backprojection

More information