CHAPTER 4 STRESS AND STRAIN

Size: px
Start display at page:

Download "CHAPTER 4 STRESS AND STRAIN"

Transcription

1 CHPTER STRESS ND STRIN EXERCISE, Page 95. If a oid tone i dropped into the ea and come to ret at a depth of 5000 m beow the urface of the ea, what wi be the tre in the tone? Take the denity of eawater 00 kg/m and g 9.8 m/. Stre in tone, σ ρgh MN/m. oid bar of ength m conit of three horter ection firmy joined together. uming the foowing appy, determine the change in ength of the bar when it i ubjected to an axia pu of 50 kn. ume Young moduu, E 0 N / m. Section Length (m) Diameter (mm) m, m and m σ F MN/m, σ F MN/m and σ F MN/m δ

2 the change in ength of bar, δ.98 0 m 0.98 mm. If the bar of Probem were made from three different materia with the foowing eatic modui, determine the change in ength of the bar: Section E ( N / m ) δ δ m.8 mm. circuar-ection oid bar of inear taper i ubjected to an axia pu of 0. MN, a how. If E 0 N / m, by how much wi the bar extend? W d u E d m Hence, u m u () bar extenion, u 0.79 mm Proof of formua for thi probem

3 t x, d d 0 ( + 7x) W W t x, σ d / 0 7x 7W σ 7x 7W t x, ε 7x 0 x and δu Thu, u. 0 7x x.0 W W x 8 W 0 7x dx ( 7 x) u m 0.79 mm 5. If a oid tone i dropped into the ea and come to ret at a depth of 000 m beow the urface of the ea, what wi be the tre in the tone? ume that denity of ea water 00 kg/m and g 9.8 m/.

4 Stre in tone, σ ρgh MPa. oid bar of ength 0.7 m conit of three horter ection firmy joined together. uming the foowing appy, determine the change in ength of the bar when it i ubjected to an axia pu of 0 kn. ume that Young moduu, E 0 N / m. Section Length (m) Diameter (mm) and m,.0 m m σ F MN/m, σ F MN/m and σ F MN/m δ the change in ength of bar, δ m 0.55 mm 7. If the bar of quetion were made from three different materia with the foowing eatic modui, determine the change in ength of the bar. Section EN / m

5 δ δ m.058 mm 8. circuar-ection oid bar of inear taper i ubjected to an axia pu of 0. MN, a hown. If E 0 N / m, by how much wi the bar expand? From equation () of Probem, W d u E d m Hence, u m bar extenion, u.59 mm

6 EXERCISE 5, Page 0. If the bar of quetion in Practie Exercie, page 95, were prevented from moving axiay by two rigid wa and ubjected to a temperature rie of 0 C, what woud be the maximum tre in the bar? ume the 0. MN oad i not acting. ume that coefficient of inear expanion, α 5 0 / C. Free expanion αt m From equation () in the oution to Probem, Exercie, W u W T.5 0 u W T o that from which, W T 88 N t the maer end, 88 maximum tre in bar, σ MN/m. If the bar in Probem, Exercie, were prevented from moving axiay by two rigid wa and ubjected to a temperature rie of 0ºC, what woud be the maximum tre in the bar? ume the 0. MN oad i not acting, and α 50 / C. Free expanion αt m From equation () in the oution to Probem, Exercie, W u W T.5 0 u W T o that from which, W T 788 N

7 t the maer end, 788 maximum tre in bar, σ MN/m

8 EXERCISE, Page 08. n eectrica cabe conit of a copper core urrounded co-axiay by a tee heath, o that the two can be aumed to act a a compound bar. If the cabe hang down a vertica minehaft, determine the maximum permiibe ength of the cabe, auming the foowing appy: c 0 m E ectiona area of copper, c 0 N / m eatic moduu of copper, c 890 kg/m denity of copper, maximum permiibe tre in copper 0 MN/m, 0. 0 m E ectiona area of tee, 0 N / m eatic moduu of tee, 780 kg/m denity of tee, maximum permiibe tre in tee 00 MN/m g 9.8 m/ W (ρ c c +ρ ) g ( ) 9.8 Compatibiity W 0. δ c δ ε c ε c E c E Ec 0 from which, σ c E 0 σ c 0.5σ

9 σ c i the deign criterion, σ c 0 MN/m and σ 0 MN/m Equiibrium W σ c c + σ or 0. ( ) ( ) 0. the maximum permiibe ength of the cabe, 0.5 m. How much wi the cabe of quetion tretch, owing to ef-weight? verage tre in copper 5 MN/m Therefore, average train Hence, cabe tretch, δ m mm Check: σ V (tee) 0 MN/m ε V (tee).5 0 and δ m mm. If a weight of 00kN were owered into the ea, via a tee cabe of cro-ectiona area 8 0 m, what woud be the maximum permiibe depth that the weight coud be owered if the foowing appy? Denity of tee 780 kg/m, denity of ea water 00 kg/m, maximum permiibe tre in tee 00MN/m, g 9.8 m/ ny buoyancy acting on the weight itef may be negected. W (00,000 + (780 00) 8 0 g)

10 W 00, () However, W σ Equating equation () and () give: 0 0,000 N () 0,000 00, the maximum permiibe depth, 0000/5.8 8 m. weighte rigid horizonta beam i upported by two vertica wire, a hown. If the foowing appy, determine the poition from the eft that a weight W can be upended, o that the bar wi remain horizonta when the wire tretch. Left wire: cro-ectiona area, eatic moduu E, ength Right wire: cro-ectiona area, eatic moduu E, ength δ δ ε ε E E or E Taking moment about the right wire give: F W ( x) E () F W ( x) 5

11 σ σ W ( x) W ( x) 7 () F + F W σ + σ W W ( x) E W from equation () and () E W ( x) W ( x) E W E 0.5 ( x) ( x) and x x x n eectrica cabe conit of a copper core urrounded co-axiay by a tee heath, o that the two can be aumed top act a a compound bar. If the cabe hang down a vertica minehaft, determine the maximum permiibe ength of the cabe, auming the foowing appy: c c 0 m E ectiona area of copper, c 0 N / m eatic moduu of copper, 890kg / m denity of copper, maximum permiibe tre in copper 0MN / m, 0. 0 m E ectiona area of tee, 0 N / m eatic moduu of tee, 780kg / m denity of tee, maximum permiibe tre in tee 00MN / m, g 9.8 m/ W (ρ c c +ρ ) g ( ) 9.8 W 8.5

12 Compatibiity δ c δ ε c ε c E c E Ec 0 from which, σ c E 0 σ c 0.5σ σ c i the deign criterion, σ c 0 MN/m and σ 0 MN/m Equiibrium W σ c c + σ or 8.5 ( ) ( ) 8.5 the maximum permiibe ength of the cabe, 59.7 m. How much wi the cabe of quetion 5 tretch, owing to ef-weight? verage tre in copper 5 MN/m Therefore, average train Hence, cabe tretch, δ m 5.9 mm Check: σ V (tee) 0 MN/m ε V (tee).5 and δ m 5.9 mm

13 7. If a weight of 95 kn were owered into the ea via a tee cabe of cro-ectiona area 8 0 m what woud be the maximum permiibe depth that the weight coud be owered if the foowing appy? Denity of tee 780 kg/m Denity of ea water 00 kg/m Maximum permiibe tre in tee 00MN / m g 9.8 m/ ny buoyancy acting on the weight itef may be negected. W ( (780 00) 8 0 g) W () However, W σ Equating equation () and () give: 0 0,000 N () 0, the maximum permiibe depth, 5000/5.8 m 8. weighte rigid horizonta beam i upported by two vertica wire, a hown. If the foowing appy, determine the poition from the eft that a weight W can upended, o that the bar wi remain horizonta when the wire tretch. Left wire: cro-ectiona area, eatic moduu E, ength Right wire: cro-ectiona area.5, eatic moduu E, ength δ δ

14 ε ε 8 E E or E E 9 () Taking moment about the right wire give: F W ( x) F W ( x) 0 σ σ W ( x) W ( x) () Reoving verticay give: F + F W σ + σ W W ( x) E W from equation () and () E W ( x) W ( x) E W E 0.5 or ( x) ( x) ( x) ( x) ( x) ( x) and x x x 0.75

O -x 0. 4 kg. 12 cm. 3 kg

O -x 0. 4 kg. 12 cm. 3 kg Anwer, Key { Homework 9 { Rubin H andau 1 Thi print-out houd have 18 quetion. Check that it i compete before eaving the printer. Ao, mutipe-choice quetion may continue on the net coumn or page: nd a choice

More information

ELASTICITY PREVIOUS EAMCET QUESTIONS ENGINEERING

ELASTICITY PREVIOUS EAMCET QUESTIONS ENGINEERING ELASTICITY PREVIOUS EAMCET QUESTIONS ENGINEERING. If the ratio of engths, radii and young s modui of stee and brass wires shown in the figure are a, b and c respectivey, the ratio between the increase

More information

Work and energy method. Exercise 1 : Beam with a couple. Exercise 1 : Non-linear loaddisplacement. Exercise 2 : Horizontally loaded frame

Work and energy method. Exercise 1 : Beam with a couple. Exercise 1 : Non-linear loaddisplacement. Exercise 2 : Horizontally loaded frame Work and energy method EI EI T x-axis Exercise 1 : Beam with a coupe Determine the rotation at the right support of the construction dispayed on the right, caused by the coupe T using Castigiano s nd theorem.

More information

Easticity. The strain produced in the stretched spring is ) Voume Strain ) Shearing Strain 3) Tensie Strain 4) None of the above. A body subjected to strain a number of times does not obey Hooke's aw due

More information

3.10 Implications of Redundancy

3.10 Implications of Redundancy 118 IB Structures 2008-9 3.10 Impications of Redundancy An important aspect of redundant structures is that it is possibe to have interna forces within the structure, with no externa oading being appied.

More information

Software Verification

Software Verification EXAMPLE 17 Crack Width Analyi The crack width, wk, i calculated uing the methodology decribed in the Eurocode EN 1992-1-1:2004, Section 7.3.4, which make ue of the following expreion: (1) w = ( ),max ε

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur odue 2 naysis of Staticay ndeterminate Structures by the atri Force ethod Version 2 E T, Kharagpur esson 12 The Three-oment Equations- Version 2 E T, Kharagpur nstructiona Objectives fter reading this

More information

HO 25 Solutions. = s. = 296 kg s 2. = ( kg) s. = 2π m k and T = 2π ω. kg m = m kg. = 2π. = ω 2 A = 2πf

HO 25 Solutions. = s. = 296 kg s 2. = ( kg) s. = 2π m k and T = 2π ω. kg m = m kg. = 2π. = ω 2 A = 2πf HO 5 Soution 1.) haronic ociator = 0.300 g with an idea pring T = 0.00 T = π T π π o = = ( 0.300 g) 0.00 = 96 g = 96 N.) haronic ociator = 0.00 g and idea pring = 140 N F = x = a = d x dt o the dipaceent

More information

Mechanics 3. Elastic strings and springs

Mechanics 3. Elastic strings and springs Chapter assessment Mechanics 3 Eastic strings and springs. Two identica ight springs have natura ength m and stiffness 4 Nm -. One is suspended verticay with its upper end fixed to a ceiing and a partice

More information

Lecture 6: Moderately Large Deflection Theory of Beams

Lecture 6: Moderately Large Deflection Theory of Beams Structura Mechanics 2.8 Lecture 6 Semester Yr Lecture 6: Moderatey Large Defection Theory of Beams 6.1 Genera Formuation Compare to the cassica theory of beams with infinitesima deformation, the moderatey

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String ecture Notes for Math 251: ODE and PDE. ecture 3: 1.7 Wave Equation and Vibrations of an Eastic String Shawn D. Ryan Spring 212 ast Time: We studied other Heat Equation probems with various other boundary

More information

CE601-Structura Anaysis I UNIT-IV SOPE-DEFECTION METHOD 1. What are the assumptions made in sope-defection method? (i) Between each pair of the supports the beam section is constant. (ii) The joint in

More information

Instructional Objectives:

Instructional Objectives: Instructiona Objectives: At te end of tis esson, te students soud be abe to understand: Ways in wic eccentric oads appear in a weded joint. Genera procedure of designing a weded joint for eccentric oading.

More information

Physics 111. Thursday, Dec. 9, 3-5pm and 7-9pm. Announcements. Tuesday, December 7, Stress Strain. For the rest of the semester

Physics 111. Thursday, Dec. 9, 3-5pm and 7-9pm. Announcements. Tuesday, December 7, Stress Strain. For the rest of the semester ics day, ember 7, 004 Ch 17: Kinetic Theory Stress Strain Ch 18: 1st Law of Thermodynamics nd Law of Thermodynamics or the rest of the semester Thursday,. 9, 3-5pm and 7-9pm Monday,. 13, 004 10:30 am 1:30

More information

Interaction Diagram - Tied Reinforced Concrete Column (Using CSA A )

Interaction Diagram - Tied Reinforced Concrete Column (Using CSA A ) Interaction Diagram - Tied Reinforced Concrete Column (Uing CSA A23.3-14) Interaction Diagram - Tied Reinforced Concrete Column Develop an interaction diagram for the quare tied concrete column hown in

More information

Methods for calculation of the coupling coefficients in the Coupling Cavity Model of arbitrary chain of resonators

Methods for calculation of the coupling coefficients in the Coupling Cavity Model of arbitrary chain of resonators Method for cacuation of the couping coefficient in the Couping Cavity Mode of arbitrary chain of reonator M.I. Ayzaty V.V.Mytrocheno Nationa Science Center Kharov Intitute of Phyic and echnoogy (NSC KIP)

More information

PROBLEMS. Apago PDF Enhancer

PROBLEMS. Apago PDF Enhancer PROLMS 15.105 900-mm rod rests on a horizonta tabe. force P appied as shown produces the foowing acceerations: a 5 3.6 m/s 2 to the right, a 5 6 rad/s 2 countercockwise as viewed from above. etermine the

More information

CHAPTER 9. Columns and Struts

CHAPTER 9. Columns and Struts CHATER 9 Coumns and Struts robem. Compare the ratio of the strength of soid stee coumn to that of the hoow stee coumn of the same cross-sectiona area. The interna diameter of the hoow coumn is /th of the

More information

Energy Approach-Based Simulation of Structural Materials High-Cycle Fatigue

Energy Approach-Based Simulation of Structural Materials High-Cycle Fatigue IOP Conference Serie: Materia Science and Engineering PAPER OPEN ACCESS Energy Approach-Baed Simuation of Structura Materia High-Cyce Fatigue To cite thi artice: A F Baayev et a 016 IOP Conf. Ser.: Mater.

More information

UI FORMULATION FOR CABLE STATE OF EXISTING CABLE-STAYED BRIDGE

UI FORMULATION FOR CABLE STATE OF EXISTING CABLE-STAYED BRIDGE UI FORMULATION FOR CABLE STATE OF EXISTING CABLE-STAYED BRIDGE Juan Huang, Ronghui Wang and Tao Tang Coege of Traffic and Communications, South China University of Technoogy, Guangzhou, Guangdong 51641,

More information

Strain Energy in Linear Elastic Solids

Strain Energy in Linear Elastic Solids Strain Energ in Linear Eastic Soids CEE L. Uncertaint, Design, and Optimiation Department of Civi and Environmenta Engineering Duke Universit Henri P. Gavin Spring, 5 Consider a force, F i, appied gradua

More information

MATRIX ANALYSIS OF V- OR Y-SUPPORTED CONTINUOUS BRIDGE GIRDERS

MATRIX ANALYSIS OF V- OR Y-SUPPORTED CONTINUOUS BRIDGE GIRDERS MATRIX ANALYSIS OF V- OR Y-SUPPORTED CONTINUOUS BRIDGE GIRDERS Géza Tai Pá Róza Idikó Schotter ABSTRACT Advantageou moment ditribution can be achieved by V- or Y-upported bridge The tructura mode i a continuou

More information

UNITS FOR THERMOMECHANICS

UNITS FOR THERMOMECHANICS UNITS FOR THERMOMECHANICS 1. Conitent Unit. Every calculation require a conitent et of unit. Hitorically, one et of unit wa ued for mechanic and an apparently unrelated et of unit wa ued for heat. For

More information

CHAPTER VII FRICTION

CHAPTER VII FRICTION CHAPTER VII FRICTION 1- The block brake conit of a pin-connected lever and friction block at B. The coefficient of tatic friction between the wheel and the lever i and a torque of i applied to the wheel.

More information

should the warm BPMs in LHC be coated with a 100 micron copper layer? (question by Gerhard Schneider)

should the warm BPMs in LHC be coated with a 100 micron copper layer? (question by Gerhard Schneider) shoud the warm BPMs in LHC be coated with a micron copper ayer? (question by Gerhard Schneider) 46 BPMs per beam (6 BPMSW, 8 BPMW, 4 BPMWA, 8 BPMWB) Average beta Injection Top Horizonta beta Vertica beta

More information

Materials compatibility Ternary phase diagrams

Materials compatibility Ternary phase diagrams //06 Materia compatibiity ernary phae diagram..06, Epoo ernary (, xi)-diagram Department of Eectrica Engineering and utomation //06 //06 ernary (, xi)-diagram ibb phae rue: P P = number of phae = degree

More information

APPENDIX C FLEXING OF LENGTH BARS

APPENDIX C FLEXING OF LENGTH BARS Fexing of ength bars 83 APPENDIX C FLEXING OF LENGTH BARS C.1 FLEXING OF A LENGTH BAR DUE TO ITS OWN WEIGHT Any object ying in a horizonta pane wi sag under its own weight uness it is infinitey stiff or

More information

Measurement of acceleration due to gravity (g) by a compound pendulum

Measurement of acceleration due to gravity (g) by a compound pendulum Measurement of acceeration due to gravity (g) by a compound penduum Aim: (i) To determine the acceeration due to gravity (g) by means of a compound penduum. (ii) To determine radius of gyration about an

More information

STRESS-STRAIN DIAGRAM

STRESS-STRAIN DIAGRAM CHAPTER 7 STRESS-STRAIN DIAGRAM AND STRENGTH PARAMETERS 7.1 STRESS-STRAIN BEHAVIOUR OF MATERIA All engineering material do not how ame ort of behaviour when ubjected to tenion a well a compreion. There

More information

Module 22: Simple Harmonic Oscillation and Torque

Module 22: Simple Harmonic Oscillation and Torque Modue : Simpe Harmonic Osciation and Torque.1 Introduction We have aready used Newton s Second Law or Conservation of Energy to anayze systems ike the boc-spring system that osciate. We sha now use torque

More information

Lecture 9. Stability of Elastic Structures. Lecture 10. Advanced Topic in Column Buckling

Lecture 9. Stability of Elastic Structures. Lecture 10. Advanced Topic in Column Buckling Lecture 9 Stabiity of Eastic Structures Lecture 1 Advanced Topic in Coumn Bucking robem 9-1: A camped-free coumn is oaded at its tip by a oad. The issue here is to find the itica bucking oad. a) Suggest

More information

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE)

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) Cass XI TARGET : JEE Main/Adv PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) ALP ADVANCED LEVEL LPROBLEMS ROTATION- Topics Covered: Rigid body, moment of inertia, parae and perpendicuar axes theorems,

More information

Problem Set 6: Solutions

Problem Set 6: Solutions University of Aabama Department of Physics and Astronomy PH 102 / LeCair Summer II 2010 Probem Set 6: Soutions 1. A conducting rectanguar oop of mass M, resistance R, and dimensions w by fas from rest

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL ENGINEERING. Question Bank. Sub. Code/Name: CE1303 Structural Analysis-I

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL ENGINEERING. Question Bank. Sub. Code/Name: CE1303 Structural Analysis-I KINGS COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL ENGINEERING Question Bank Sub. Code/Name: CE1303 Structura Anaysis-I Year: III Sem:V UNIT-I DEFLECTION OF DETERMINATE STRUCTURES 1.Why is it necessary to

More information

Candidate Number. General Certificate of Education Advanced Level Examination January 2012

Candidate Number. General Certificate of Education Advanced Level Examination January 2012 entre Number andidate Number Surname Other Names andidate Signature Genera ertificate of Education dvanced Leve Examination January 212 Physics PHY4/1 Unit 4 Fieds and Further Mechanics Section Tuesday

More information

СРАВНИТЕЛЕН АНАЛИЗ НА МОДЕЛИ НА ГРЕДИ НА ЕЛАСТИЧНА ОСНОВА COMPARATIVE ANALYSIS OF ELASTIC FOUNDATION MODELS FOR BEAMS

СРАВНИТЕЛЕН АНАЛИЗ НА МОДЕЛИ НА ГРЕДИ НА ЕЛАСТИЧНА ОСНОВА COMPARATIVE ANALYSIS OF ELASTIC FOUNDATION MODELS FOR BEAMS СРАВНИТЕЛЕН АНАЛИЗ НА МОДЕЛИ НА ГРЕДИ НА ЕЛАСТИЧНА ОСНОВА Милко Стоянов Милошев 1, Константин Савков Казаков 2 Висше Строително Училище Л. Каравелов - София COMPARATIVE ANALYSIS OF ELASTIC FOUNDATION MODELS

More information

PHYSICS LOCUS / / d dt. ( vi) mass, m moment of inertia, I. ( ix) linear momentum, p Angular momentum, l p mv l I

PHYSICS LOCUS / / d dt. ( vi) mass, m moment of inertia, I. ( ix) linear momentum, p Angular momentum, l p mv l I 6 n terms of moment of inertia, equation (7.8) can be written as The vector form of the above equation is...(7.9 a)...(7.9 b) The anguar acceeration produced is aong the direction of appied externa torque.

More information

CABLE SUPPORTED STRUCTURES

CABLE SUPPORTED STRUCTURES CABLE SUPPORTED STRUCTURES STATIC AND DYNAMIC ANALYSIS OF CABLES 3/22/2005 Prof. dr Stanko Brcic 1 Cabe Supported Structures Suspension bridges Cabe-Stayed Bridges Masts Roof structures etc 3/22/2005 Prof.

More information

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the

two equations that govern the motion of the fluid through some medium, like a pipe. These two equations are the Fluid and Fluid Mechanic Fluid in motion Dynamic Equation of Continuity After having worked on fluid at ret we turn to a moving fluid To decribe a moving fluid we develop two equation that govern the motion

More information

Shear Stress. Horizontal Shear in Beams. Average Shear Stress Across the Width. Maximum Transverse Shear Stress. = b h

Shear Stress. Horizontal Shear in Beams. Average Shear Stress Across the Width. Maximum Transverse Shear Stress. = b h Shear Stre Due to the preence of the hear force in beam and the fact that t xy = t yx a horizontal hear force exit in the beam that tend to force the beam fiber to lide. Horizontal Shear in Beam The horizontal

More information

International Journal of Advanced Engineering and Management Research Vol. 2 Issue 5, ISSN:

International Journal of Advanced Engineering and Management Research Vol. 2 Issue 5, ISSN: Internationa Journa of Advanced Engineering and Management Reearch Vo. 2 Iue 5, 2017 http://ijaemr.com/ ISSN: 2456-3676 STUDY ON TEMPERATURE FIELD DISTRIBUTION OF HOT MELT WELDING OF PE100 ZHANG Ao-peng

More information

1) For a block of mass m to slide without friction up a rise of height h, the minimum initial speed of the block must be

1) For a block of mass m to slide without friction up a rise of height h, the minimum initial speed of the block must be v m 1) For a bock of mass m to side without friction up a rise of height h, the minimum initia speed of the bock must be a ) gh b ) gh d ) gh e ) gh c ) gh P h b 3 15 ft 3) A man pus a pound crate up a

More information

1 Equations of Motion 3: Equivalent System Method

1 Equations of Motion 3: Equivalent System Method 8 Mechanica Vibrations Equations of Motion : Equivaent System Method In systems in which masses are joined by rigid ins, evers, or gears and in some distributed systems, various springs, dampers, and masses

More information

MECHANICAL PROPERTIES OF 3D RE-ENTRANT AUXETIC CELLULAR STRUCTURES

MECHANICAL PROPERTIES OF 3D RE-ENTRANT AUXETIC CELLULAR STRUCTURES 21 t International Conference on Compoite Material i an, 20-25 th Augut 2017 MECHANICAL PROPERTIES OF D RE-ENTRANT AUETIC CELLULAR STRUCTURES in-tao Wang, Bing Wang, iao-wen Li, Li Ma* * Center for Compoite

More information

Numerical methods for PDEs FEM - abstract formulation, the Galerkin method

Numerical methods for PDEs FEM - abstract formulation, the Galerkin method Patzhater für Bid, Bid auf Titefoie hinter das Logo einsetzen Numerica methods for PDEs FEM - abstract formuation, the Gaerkin method Dr. Noemi Friedman Contents of the course Fundamentas of functiona

More information

STRUCTURAL ANALYSIS - I UNIT-I DEFLECTION OF DETERMINATE STRUCTURES

STRUCTURAL ANALYSIS - I UNIT-I DEFLECTION OF DETERMINATE STRUCTURES STRUCTURL NLYSIS - I UNIT-I DEFLECTION OF DETERMINTE STRUCTURES 1. Why is it necessary to compute defections in structures? Computation of defection of structures is necessary for the foowing reasons:

More information

Christian Linde Olsen Griffith University, Faculty of Engineering and Information Technology, Gold Coast Campus.

Christian Linde Olsen Griffith University, Faculty of Engineering and Information Technology, Gold Coast Campus. 1 Abtract Rubble Mound Breakwater Chritian Linde Olen Griffith Univerity, Faculty of Engineering and Information Technology, Gold Coat Campu. 1. Abtract The paper deal with the deign of a rubble mound

More information

Exam 1 Solutions. +4q +2q. +2q +2q

Exam 1 Solutions. +4q +2q. +2q +2q PHY6 9-8-6 Exam Solution y 4 3 6 x. A central particle of charge 3 i urrounded by a hexagonal array of other charged particle (>). The length of a ide i, and charge are placed at each corner. (a) [6 point]

More information

Torsion and shear stresses due to shear centre eccentricity in SCIA Engineer Delft University of Technology. Marijn Drillenburg

Torsion and shear stresses due to shear centre eccentricity in SCIA Engineer Delft University of Technology. Marijn Drillenburg Torsion and shear stresses due to shear centre eccentricity in SCIA Engineer Deft University of Technoogy Marijn Drienburg October 2017 Contents 1 Introduction 2 1.1 Hand Cacuation....................................

More information

FEA CODE WITH MATLAB. Finite Element Analysis of an Arch ME 5657 FINITE ELEMENT METHOD. Submitted by: ALPAY BURAK DEMIRYUREK

FEA CODE WITH MATLAB. Finite Element Analysis of an Arch ME 5657 FINITE ELEMENT METHOD. Submitted by: ALPAY BURAK DEMIRYUREK FEA CODE WITH MATAB Finite Element Analysis of an Arch ME 5657 FINITE EEMENT METHOD Submitted by: APAY BURAK DEMIRYUREK This report summarizes the finite element analysis of an arch-beam with using matlab.

More information

1D Heat Propagation Problems

1D Heat Propagation Problems Chapter 1 1D Heat Propagation Probems If the ambient space of the heat conduction has ony one dimension, the Fourier equation reduces to the foowing for an homogeneous body cρ T t = T λ 2 + Q, 1.1) x2

More information

ME 141. Engineering Mechanics

ME 141. Engineering Mechanics ME 141 Engineering Mechanic Lecture 14: Plane motion of rigid bodie: Force and acceleration Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: hakil@me.buet.ac.bd, hakil6791@gmail.com

More information

Deformation Capacity of Structural Concrete in Disturbed Regions

Deformation Capacity of Structural Concrete in Disturbed Regions ACI STRUCTURAL JOURNAL Tite no. 08-S5 TECHNICAL PAPER Deformation Capacity of Structura Concrete in Diturbed Region by Sung-Gu Hong, Namhee K. Hong, and Sang-Ki Jang The deign of tructura concrete in diturbed

More information

A Comparative Study of Least-Squares and the Weak- Form Galerkin Finite Element Models for the Nonlinear Analysis of Timoshenko Beams

A Comparative Study of Least-Squares and the Weak- Form Galerkin Finite Element Models for the Nonlinear Analysis of Timoshenko Beams Journa of Soid Mechanic Vo., No. () pp. -4 A Comparative Study of eat-square and the Weak- Form Gaerkin Finite Eement Mode for the Noninear Anayi of Timohenko Beam W. Kim, J.N. Reddy,* Department of Mechanica

More information

Finite Element Truss Problem

Finite Element Truss Problem 6. rue Uing FEA Finite Element ru Problem We tarted thi erie of lecture looking at tru problem. We limited the dicuion to tatically determinate tructure and olved for the force in element and reaction

More information

SECTION x2 x > 0, t > 0, (8.19a)

SECTION x2 x > 0, t > 0, (8.19a) SECTION 8.5 433 8.5 Application of aplace Tranform to Partial Differential Equation In Section 8.2 and 8.3 we illutrated the effective ue of aplace tranform in olving ordinary differential equation. The

More information

DYNAMIC RESPONSE OF CIRCULAR FOOTINGS ON SATURATED POROELASTIC HALFSPACE

DYNAMIC RESPONSE OF CIRCULAR FOOTINGS ON SATURATED POROELASTIC HALFSPACE 3 th Word Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 4 Paper No. 38 DYNAMIC RESPONSE OF CIRCULAR FOOTINGS ON SATURATED POROELASTIC HALFSPACE Bo JIN SUMMARY The dynamic responses

More information

Session : Electrodynamic Tethers

Session : Electrodynamic Tethers Session : Eectrodynaic Tethers Eectrodynaic tethers are ong, thin conductive wires depoyed in space that can be used to generate power by reoving kinetic energy fro their orbita otion, or to produce thrust

More information

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web: Ph:

Delhi Noida Bhopal Hyderabad Jaipur Lucknow Indore Pune Bhubaneswar Kolkata Patna Web:     Ph: Seria : 0 GH1_ME Strength of Materia_1019 Dehi Noida hopa Hyderabad Jaipur Lucknow Indore une hubaneswar Kokata atna Web: E-mai: info@madeeasy.in h: 011-5161 LSS TEST 019-00 MEHNIL ENGINEERING Subject

More information

Notes 32 Magnetic Force and Torque

Notes 32 Magnetic Force and Torque ECE 3318 Appied Eectricity and Magnetism Spring 18 Prof. David R. Jackson Dept. of ECE Notes 3 Magnetic orce and Torque 1 orce on Wire q Singe charge: = q( v ) v (derivation omitted) Wire: = d C d orce

More information

LINEAR AND GEOMETRICALLY NONLINEAR ANALYSIS OF IN-PLANE THIN SHALLOW ARCHES

LINEAR AND GEOMETRICALLY NONLINEAR ANALYSIS OF IN-PLANE THIN SHALLOW ARCHES 8th GACM Internationa Congre on Computationa Mechanic Voo, 12 Juy 15 Juy 215 LIEA AD GEOMETICALLY OLIEA AALYSIS OF I-PLAE THI SHALLOW ACHES George C. Tiata 1 and ick G. Babouko 2 1 Schoo of Civi Engineering

More information

Riser Dynamic Analysis Using WKB-Based Dynamic Stiffness Method

Riser Dynamic Analysis Using WKB-Based Dynamic Stiffness Method Rier ynamic Anayi Uing WKB-Baed ynamic Stiffne Method The MIT Facuty ha made thi artice openy avaiabe. Peae hare how thi acce benefit you. Your tory matter. Citation A Pubihed Pubiher Cheng, Yongming,

More information

ρ water = 1000 kg/m 3 = 1.94 slugs/ft 3 γ water = 9810 N/m 3 = 62.4 lbs/ft 3

ρ water = 1000 kg/m 3 = 1.94 slugs/ft 3 γ water = 9810 N/m 3 = 62.4 lbs/ft 3 CEE 34 Aut 004 Midterm # Anwer all quetion. Some data that might be ueful are a follow: ρ water = 1000 kg/m 3 = 1.94 lug/ft 3 water = 9810 N/m 3 = 6.4 lb/ft 3 1 kw = 1000 N-m/ 1. (10) A 1-in. and a 4-in.

More information

Physics Dynamics: Springs

Physics Dynamics: Springs F A C U L T Y O F E D U C A T I O N Department of Curricuum and Pedagogy Physics Dynamics: Springs Science and Mathematics Education Research Group Supported by UBC Teaching and Learning Enhancement Fund

More information

TAM 212 Worksheet 9: Cornering and banked turns

TAM 212 Worksheet 9: Cornering and banked turns Name: Group members: TAM 212 Worksheet 9: Cornering and banked turns The aim of this worksheet is to understand how vehices drive around curves, how sipping and roing imit the maximum speed, and how banking

More information

PHYS 110B - HW #1 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #1 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased PHYS 110B - HW #1 Fa 2005, Soutions by David Pace Equations referenced as Eq. # are from Griffiths Probem statements are paraphrased [1.] Probem 6.8 from Griffiths A ong cyinder has radius R and a magnetization

More information

Chapter 4 ( ) ( ) F Fl F y = = + Solving for k. k kt. y = = + +

Chapter 4 ( ) ( ) F Fl F y = = + Solving for k. k kt. y = = + + Chapter 4 4- For a torsion bar, k T T/ F/, and so F/k T. For a cantiever, k F/δ,δ F/k. For the assemby, k F/y, or, y F/k + δ Thus F F F y + k kt k Soving for k kkt k ns. k + kt + kt k 4- For a torsion

More information

lb ( psi)( in ) (29 10 psi)(5.9641in ) E (29 10 psi)( ) psi

lb ( psi)( in ) (29 10 psi)(5.9641in ) E (29 10 psi)( ) psi P POBLM 2.5.5 ft 18 in. 1 The.5-ft concrete pot i reinforced with ix teel bar, each with a 1 -in. diameter. 8 Knowing that 2 10 pi and c =.2 10 pi, determine the normal tree in the teel and in the concrete

More information

Green-Kubo formulas with symmetrized correlation functions for quantum systems in steady states: the shear viscosity of a fluid in a steady shear flow

Green-Kubo formulas with symmetrized correlation functions for quantum systems in steady states: the shear viscosity of a fluid in a steady shear flow Green-Kubo formula with ymmetrized correlation function for quantum ytem in teady tate: the hear vicoity of a fluid in a teady hear flow Hirohi Matuoa Department of Phyic, Illinoi State Univerity, Normal,

More information

University of California, Berkeley Physics 7A Spring 2009 (Yury Kolomensky) SOLUTIONS TO PRACTICE PROBLEMS FOR THE FINAL EXAM

University of California, Berkeley Physics 7A Spring 2009 (Yury Kolomensky) SOLUTIONS TO PRACTICE PROBLEMS FOR THE FINAL EXAM 1 University of Caifornia, Bereey Physics 7A Spring 009 (Yury Koomensy) SOLUIONS O PRACICE PROBLEMS FOR HE FINAL EXAM Maximum score: 00 points 1. (5 points) Ice in a Gass You are riding in an eevator hoding

More information

Candidate Number. General Certificate of Education Advanced Level Examination June 2010

Candidate Number. General Certificate of Education Advanced Level Examination June 2010 Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initias Genera Certificate of Education Advanced Leve Examination June 2010 Question 1 2 Mark Physics

More information

A typical reinforced concrete floor system is shown in the sketches below.

A typical reinforced concrete floor system is shown in the sketches below. CE 433, Fall 2006 Flexure Anali for T- 1 / 7 Cat-in-place reinforced concrete tructure have monolithic lab to beam and beam to column connection. Monolithic come from the Greek word mono (one) and litho

More information

CHAPTER 3 LITERATURE REVIEW ON LIQUEFACTION ANALYSIS OF GROUND REINFORCEMENT SYSTEM

CHAPTER 3 LITERATURE REVIEW ON LIQUEFACTION ANALYSIS OF GROUND REINFORCEMENT SYSTEM CHAPTER 3 LITERATURE REVIEW ON LIQUEFACTION ANALYSIS OF GROUND REINFORCEMENT SYSTEM 3.1 The Simplified Procedure for Liquefaction Evaluation The Simplified Procedure wa firt propoed by Seed and Idri (1971).

More information

Unit 48: Structural Behaviour and Detailing for Construction. Deflection of Beams

Unit 48: Structural Behaviour and Detailing for Construction. Deflection of Beams Unit 48: Structura Behaviour and Detaiing for Construction 4.1 Introduction Defection of Beams This topic investigates the deformation of beams as the direct effect of that bending tendency, which affects

More information

2.1. Cantilever The Hooke's law

2.1. Cantilever The Hooke's law .1. Cantiever.1.1 The Hooke's aw The cantiever is the most common sensor of the force interaction in atomic force microscopy. The atomic force microscope acquires any information about a surface because

More information

DESIGN SPECTRA FOR BURIED PIPELINES

DESIGN SPECTRA FOR BURIED PIPELINES th Word Conference on Earthquae Engineering Vancouver, B.C., Canada Augut -6, 4 Paper o. 94 DEIG PECTRA FOR BURIED PIPEIE i-ing HOG and Tzuchien CHE UMMARY For a buried pipeine ytem, the imum repone aong

More information

= 25 ohms, and line #2 has R c2

= 25 ohms, and line #2 has R c2 Soution for Aignment #3.A tranmiion-ine circuit i driven by a tep-function generator with V = 0 vot and RS =0 ohm. ine # ha ength of = cm. Both ine have the ame peed of trave, u = 0 cm/n. ine # ha characteritic

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . Two points A and B ie on a smooth horizonta tabe with AB = a. One end of a ight eastic spring, of natura ength a and moduus of easticity mg, is attached to A. The other end of the spring is attached

More information

Relaxation in Glass: Review of Thermodynamics. Lecture 10: Thermodynamic Functions

Relaxation in Glass: Review of Thermodynamics. Lecture 10: Thermodynamic Functions Reaxation in a: Review of hermodynamic Lecture 10: hermodynamic Function 2 nd Law of hermodynamic irreveribe procee Exercie for omework: Conider the two procee: Reveribe equiibrium heating of ice from

More information

Calculation Example. Strengthening for flexure

Calculation Example. Strengthening for flexure 01-08-1 Strengthening or lexure 1 Lat 1 L Sektion 1-1 (Skala :1) be h hw A bw FRP The beam i a part o a lab in a parking garage and need to be trengthened or additional load. Simply upported with L=8.0

More information

Remove this page when instructed to do so. Work written on this page will not be marked. UNIVERSITY OF TORONTO

Remove this page when instructed to do so. Work written on this page will not be marked. UNIVERSITY OF TORONTO Reove this page when instructed to do so. Work written on this page wi not be arked. UNIVERSITY OF TORONTO FULTY OF PPLIED SIENE ND ENGINEERING Ter Test, February 0, 05 First Year MSE0 INTRODUTION TO MTERILS

More information

CHAPTER 10 MEMBRANE THEORY FOR THIN-WALLED CIRCULAR CYLINDERS AND SPHERES

CHAPTER 10 MEMBRANE THEORY FOR THIN-WALLED CIRCULAR CYLINDERS AND SPHERES CAPTER 10 MEMBRANE TEORY FOR TIN-WAED CIRCUAR CYINDERS AND SPERES EXERCISE 44, Page 34 1. A hin-walled irular ylinder of inernal diameer 10 m is subjeed o a maximum inernal pressure of 50 bar. Deermine

More information

PROBLEM 5.1 SOLUTION. Reactions: Pb L Pa L. From A to B: 0 < x < a. Pb L Pb L Pb L Pbx L. From B to C: a < x < L Pa L. Pa L. L Pab At section B: M = L

PROBLEM 5.1 SOLUTION. Reactions: Pb L Pa L. From A to B: 0 < x < a. Pb L Pb L Pb L Pbx L. From B to C: a < x < L Pa L. Pa L. L Pab At section B: M = L PROBEM 5.1 For the beam and loading shown, (a) draw the shear and bending-moment diagrams, (b) determine the equations of the shear and bending-moment curves. SOUTION Reactions: From A to B: 0 < x < a

More information

STRUCTURE AND PROPERTIES OF LIQUIDS

STRUCTURE AND PROPERTIES OF LIQUIDS STUCTUE AND POPETIES O LIQUIDS. Surface tension a) phenomenon The surface of a iquid behaves ike a stretched eastic membrane (proof pond skater, sma drops spheres Expanation: r range of attraction r nm,

More information

Vibrations of Structures

Vibrations of Structures Vibrations of Structures Modue I: Vibrations of Strings and Bars Lesson : The Initia Vaue Probem Contents:. Introduction. Moda Expansion Theorem 3. Initia Vaue Probem: Exampes 4. Lapace Transform Method

More information

Forces of Friction. through a viscous medium, there will be a resistance to the motion. and its environment

Forces of Friction. through a viscous medium, there will be a resistance to the motion. and its environment Forces of Friction When an object is in motion on a surface or through a viscous medium, there wi be a resistance to the motion This is due to the interactions between the object and its environment This

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK. Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV KINGS COLLEGE OF ENGINEERING DEPARTMENT OF MECHANICAL ENGINEERING QUESTION BANK Subject code/name: ME2254/STRENGTH OF MATERIALS Year/Sem:II / IV UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS PART A (2 MARKS)

More information

CHAPTER 6 TORSION. its inner diameter d d / 2. = mm = = mm. π (122.16) = mm 2

CHAPTER 6 TORSION. its inner diameter d d / 2. = mm = = mm. π (122.16) = mm 2 CHAPTER 6 TORSION Prolem. A olid circular haft i to tranmit 00 kw at 00 r.p.m. If the hear tre i not to exceed 80 N/mm, find the diameter of the haft. What percentage in aving would e otained if thi haft

More information

PHYSICSBOWL March 29 April 14, 2017

PHYSICSBOWL March 29 April 14, 2017 PHYSICSBOWL 2017 March 29 April 14, 2017 40 QUESTIONS 45 MINUTES The ponor of the 2017 PhyicBowl, including the American Aociation of Phyic Teacher, are providing ome of the prize to recognize outtanding

More information

FFTs in Graphics and Vision. Spherical Convolution and Axial Symmetry Detection

FFTs in Graphics and Vision. Spherical Convolution and Axial Symmetry Detection FFTs in Graphics and Vision Spherica Convoution and Axia Symmetry Detection Outine Math Review Symmetry Genera Convoution Spherica Convoution Axia Symmetry Detection Math Review Symmetry: Given a unitary

More information

9. EXERCISES ON THE FINITE-ELEMENT METHOD

9. EXERCISES ON THE FINITE-ELEMENT METHOD 9. EXERCISES O THE FIITE-ELEMET METHOD Exercise Thickness: t=; Pane strain proem (ν 0): Surface oad Voume oad; 4 p f ( x, ) ( x ) 0 E D 0 0 0 ( ) 4 p F( xy, ) Interna constrain: rigid rod etween D and

More information

All Rights 1

All Rights 1 MECHANISM DESIGN OF COTTON PICKING GRIPPER Yagnesh G Limbasiya 1, Dr Jignash P.Maheta 2 PG Student (Mechanica CAD-CAM), V.V.P Engineering coege, yagnesh.imbasiya@gmai.com H.O.D -Mechanica Department in

More information

A SHELL MODEL WITH AN EQUIVALENT BOUNDARY FOR BURIED PIPELINES UNDER THE FAULT MOVEMENT

A SHELL MODEL WITH AN EQUIVALENT BOUNDARY FOR BURIED PIPELINES UNDER THE FAULT MOVEMENT 13 th World onference on Earthquake Engineering Vancouver,.., anada ugut 1-6, 2004 Paper No. 613 SHE MODE WITH N EQUIVENT OUNDRY FOR URIED PIPEINES UNDER THE FUT MOVEMENT i-wen IU 1, Shiro TKD 2 and Yu-Xian

More information

STABILITY OF THERMOELASTIC LAYERED COMPOSITE IN AXIAL MOVEMENT

STABILITY OF THERMOELASTIC LAYERED COMPOSITE IN AXIAL MOVEMENT 6th European Conference on Computationa Mechanics (ECCM 6) 7th European Conference on Computationa Fuid Dynamics (ECFD 7) 11-15 June 18, Gasgow, UK STABILITY OF THERMOELASTIC LAYERED COMPOSITE IN AXIAL

More information

Term Test AER301F. Dynamics. 5 November The value of each question is indicated in the table opposite.

Term Test AER301F. Dynamics. 5 November The value of each question is indicated in the table opposite. U N I V E R S I T Y O F T O R O N T O Facuty of Appied Science and Engineering Term Test AER31F Dynamics 5 November 212 Student Name: Last Name First Names Student Number: Instructions: 1. Attempt a questions.

More information

Convergence P H Y S I C S

Convergence P H Y S I C S +1 Test (Newton s Law of Motion) 1. Inertia is that property of a body by virtue of which the body is (a) Unabe to change by itsef the state of rest (b) Unabe to change by itsef the state of unifor otion

More information

A typical reinforced concrete floor system is shown in the sketches below. Exterior Span Interior Span Exterior Span. Beam Span.

A typical reinforced concrete floor system is shown in the sketches below. Exterior Span Interior Span Exterior Span. Beam Span. CE 331, Fall 009 Analyi of Reforce Concrete 1 / 6 Typical Reforce Concrete Builg Cat place reforce concrete tructure have monolithic lab to beam an beam to column connection. Monolithic come from the Greek

More information

Keywords: silicon load cell, silicon force sensor, creep, hysteresis

Keywords: silicon load cell, silicon force sensor, creep, hysteresis High force kn piezoreitive iicon force enor with output independent of force ditribution.a.f. Zwijze,.J. Wiegerink, G.J.M. Krijnen, J.W. Berenchot, M.J. de Boer, M.C. Ewenpoek MESA+ eearch Intitute, Univerity

More information

Slender Structures Load carrying principles

Slender Structures Load carrying principles Sender Structures Load carrying principes Cabes and arches v018-1 ans Weeman 1 Content (preiminary schedue) Basic cases Extension, shear, torsion, cabe Bending (Euer-Bernoui) Combined systems - Parae systems

More information

Heat transfer during gas hydrate formation in gas-liquid slug flow

Heat transfer during gas hydrate formation in gas-liquid slug flow Heat and Ma Tranfer 31 (1996) 179 183 Springer-Verag 1996 Heat tranfer during ga hydrate formation in ga-iquid ug fow T. Eperin, A. Fominykh 179 Abtract A mode of heat tranfer during ga hydrate formation

More information