Term Test AER301F. Dynamics. 5 November The value of each question is indicated in the table opposite.

Size: px
Start display at page:

Download "Term Test AER301F. Dynamics. 5 November The value of each question is indicated in the table opposite."

Transcription

1 U N I V E R S I T Y O F T O R O N T O Facuty of Appied Science and Engineering Term Test AER31F Dynamics 5 November 212 Student Name: Last Name First Names Student Number: Instructions: 1. Attempt a questions. 2. The vaue of each question is indicated in the tabe opposite. 3. Write the na answers ony in the boxed space provided for each question. 4. This is a cosed-book test. 5. No cacuator is permitted. For Examiner Ony Probem Vaue Mark Tota 5 6. There are 11 pages and 5 probems in this test paper.

2 A. Denitions and Statements 1(a). What is meant by an inertia frame? A frame in which the Law of Inertia hods; aternativey, a frame in which Newton s Second Law hods. 1(b). State the definition for anguar veocity. ω v = F v T ω where ω = F v F v T 1(c). State the strong version of Newton s Third Law. f v b a = f v a b and (r v a r v b) f v b a = v where r v a, r v b are positions of partices a, b. 1(d). State the principe of virtua work. At equiibrium, δw = i f v app δr v = 1(e). State Hamiton s principe. The motion of a system is given by tb δ Ldt = t a where L = T V. 2

3 B. Questions Provide just the answers. 2(a). Give an exampe of when a singuarity woud occur in the use of Euer anges to represent a rotation. Consider the set of Euer anges. A singuarity woud occur at θ 2 =. /3 2(b). In what situations woud one use the method of Lagrange s undetermined mutipiers? Name three. 1. When a nonhoonomic constraint is present. 2. When a hoonomic constraint is present yet it might be too messy to sove dependent coordinates in terms of independent ones. 3. When a constraint force is required. /3 2(c). Sketch the transfer orbit to the Moon used by Apoo. (Indicate the motion of the Moon as we.) Why was this shape of orbit used? The figure-8 shape provides for gravity braking at the Moon, to assist in orbit insertion, and at the Earth for reentry. /3 3

4 C. Probems 3. The eiptica orbit of a panet can be represented as and reca that r 2 θ = h. r = 1 + ε cos θ (a) Show that the veocity of the panet as expressed in F o is v = h ε sin θ 1 + ε cos θ (b) Determine the acceeration of the panet as expressed in F o. (c) Is the acceeration proportiona to r 2 in the negative o v 1 direction? Why? 4

5 3(a). Show that the veocity of the panet as expressed in F o is v = h ε sin θ 1 + ε cos θ The position of the panet, in F o, is r (1 + ε cos θ) 1 r = = and the anguar veocity F o with respect to inertia space is ω = θ Hence, the inertia veocity in F o is given by v = ṙ + ω r in which ṙ = ε θ sin θ(1 + ε cos θ) 2 = h 1 ε sin θ and ω r = θ(1 + ε cos θ) 1 = h 1 (1 + ε cos θ) because r 2 θ = h. This eads to the desired resut. /4 5

6 3(b). Determine the acceeration of the panet as expressed in F o. The acceeration is determined in ike manner: a = v + ω v Here v = h θ ε cos θ ε sin θ, ω v = h θ (1 + ε cos θ) ε sin θ Thus a = h θ = h2 1/r2 /4 3(c). Is the acceeration proportiona to r 2 in the negative o v 1 direction? Why? Yes. It has to be, no?! The force, according to Newton s Second Law is proportiona to the acceeration and the force of gravity is proportiona to r 2 so the acceeration must be as we. 6

7 4. A uniform rope of mass density (per unit ength) ρ is ying on the ground and is pued up by one end at constant speed v. What is the force required to do this as a function of x, the height of the rope s end off the ground? At time t, a ength x of rope is off the ground. The momentum in the vertica direction (positive upward) is At time t + dt, the momentum is p(t) = ρxv p(t + dt) = ρ(x + dx)v The equation of motion is given by p(t + dt) p(t) = fdt Now f incudes the appied force f app that is required to ift the rope as we as the force due to gravity, which is (ρx)g. Hence, That is, ρvdx = (f app ρgx)dt f app = ρv dx dt + ρgx = ρ(v2 + gx) because dx/dt = v. /1 7

8 5. Consider a partice of mass m siding without friction on a vertica cone of haf-ange α. (a) (b) (c) (d) (e) Using coordinates r, the distance from the vertex of the cone to the partice, and θ, the horizonta anguar position, determine the kinetic energy of the partice. Using the same coordinates, determine the potentia energy of the partice. Determine the equations of motion. Show that h = mr 2 θ sin 2 α is a constant. What kind of coordinate is θ? Show that the equation for r can be obtained by taking the effective potentia energy as V eff = h 2 2mr 2 sin 2 + mgr cos α α 8

9 5(a). Using coordinates r, the distance from the vertex of the cone to the partice, and θ, the horizonta anguar position, determine the kinetic energy of the partice. The two components of veocity are ṙ in the ( radia ) direction of the side of the cone and (r sin α) θ in the tangentia direction. These direction are orthogona and hence the square of the speed is v 2 = ṙ 2 + r 2 θ2 sin 2 α and the kinetic energy accordingy is T = 1 2 m(ṙ2 + r 2 sin 2 α θ 2 ) /3 5(b). Using the same coordinates, determine the potentia energy of the partice. V = mgr cos α /1 9

10 5(c). Determine the equations of motion. By Lagrange s equations (no nonconservative force), with L = T V, ( ) d L L dt ṙ r = where L ṙ = mṙ, giving And where d dt L θ = mr2 θ sin 2 α, ( ) L = m r, ṙ m r mr θ 2 sin 2 α + mg cos α = d dt ( ) L d dt θ ( ) L θ L r = mr θ 2 sin 2 α mg cos α L θ = = m sin 2 α(2rṙ θ+r 2 θ), L r = yieding m sin 2 α(2rṙ θ + r 2 θ) = /4 1

11 5(d). Show that h = mr 2 θ sin 2 α is a constant. What kind of coordinate is θ? The second of Lagrange s equation can be integrated; in fact, we can observe that because L/ θ =, ( ) d L dt θ = so h = mr 2 θ sin 2 α must be constant. (It is the anguar momentum about the axis of the cone.) The coordinate θ, because it doesn t enter into L is caed an ignorabe or cycic coordinate. /3 5(e). Show that the equation for r can be obtained by taking the effective potentia energy as h 2 V eff = 2mr 2 sin 2 + mgr cos α α Using h, we may rewrite the first of Lagrange s equations as m r = h 2 mr 3 sin 2 mg cos α α We can recognized the right-hand side as the (negative) derivative of a potentia function, namey, V eff = h 2 2mr 2 sin 2 + mgr cos α α 11

Module 22: Simple Harmonic Oscillation and Torque

Module 22: Simple Harmonic Oscillation and Torque Modue : Simpe Harmonic Osciation and Torque.1 Introduction We have aready used Newton s Second Law or Conservation of Energy to anayze systems ike the boc-spring system that osciate. We sha now use torque

More information

Forces of Friction. through a viscous medium, there will be a resistance to the motion. and its environment

Forces of Friction. through a viscous medium, there will be a resistance to the motion. and its environment Forces of Friction When an object is in motion on a surface or through a viscous medium, there wi be a resistance to the motion This is due to the interactions between the object and its environment This

More information

Physics 235 Chapter 8. Chapter 8 Central-Force Motion

Physics 235 Chapter 8. Chapter 8 Central-Force Motion Physics 35 Chapter 8 Chapter 8 Centra-Force Motion In this Chapter we wi use the theory we have discussed in Chapter 6 and 7 and appy it to very important probems in physics, in which we study the motion

More information

Parallel-Axis Theorem

Parallel-Axis Theorem Parae-Axis Theorem In the previous exampes, the axis of rotation coincided with the axis of symmetry of the object For an arbitrary axis, the paraeaxis theorem often simpifies cacuations The theorem states

More information

Candidate Number. General Certificate of Education Advanced Level Examination January 2012

Candidate Number. General Certificate of Education Advanced Level Examination January 2012 entre Number andidate Number Surname Other Names andidate Signature Genera ertificate of Education dvanced Leve Examination January 212 Physics PHY4/1 Unit 4 Fieds and Further Mechanics Section Tuesday

More information

PHYSICS LOCUS / / d dt. ( vi) mass, m moment of inertia, I. ( ix) linear momentum, p Angular momentum, l p mv l I

PHYSICS LOCUS / / d dt. ( vi) mass, m moment of inertia, I. ( ix) linear momentum, p Angular momentum, l p mv l I 6 n terms of moment of inertia, equation (7.8) can be written as The vector form of the above equation is...(7.9 a)...(7.9 b) The anguar acceeration produced is aong the direction of appied externa torque.

More information

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l Probem 7. Simpe Penduum SEMINAR. PENDULUMS A simpe penduum means a mass m suspended by a string weightess rigid rod of ength so that it can swing in a pane. The y-axis is directed down, x-axis is directed

More information

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18 Quantum Mechanica Modes of Vibration and Rotation of Moecues Chapter 18 Moecuar Energy Transationa Vibrationa Rotationa Eectronic Moecuar Motions Vibrations of Moecues: Mode approximates moecues to atoms

More information

Famous Mathematical Problems and Their Stories Simple Pendul

Famous Mathematical Problems and Their Stories Simple Pendul Famous Mathematica Probems and Their Stories Simpe Penduum (Lecture 3) Department of Appied Mathematics Nationa Chiao Tung University Hsin-Chu 30010, TAIWAN 23rd September 2009 History penduus: (hanging,

More information

Solution Set Seven. 1 Goldstein Components of Torque Along Principal Axes Components of Torque Along Cartesian Axes...

Solution Set Seven. 1 Goldstein Components of Torque Along Principal Axes Components of Torque Along Cartesian Axes... : Soution Set Seven Northwestern University, Cassica Mechanics Cassica Mechanics, Third Ed.- Godstein November 8, 25 Contents Godstein 5.8. 2. Components of Torque Aong Principa Axes.......................

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String ecture Notes for Math 251: ODE and PDE. ecture 3: 1.7 Wave Equation and Vibrations of an Eastic String Shawn D. Ryan Spring 212 ast Time: We studied other Heat Equation probems with various other boundary

More information

Cluster modelling. Collisions. Stellar Dynamics & Structure of Galaxies handout #2. Just as a self-gravitating collection of objects.

Cluster modelling. Collisions. Stellar Dynamics & Structure of Galaxies handout #2. Just as a self-gravitating collection of objects. Stear Dynamics & Structure of Gaaxies handout # Custer modeing Just as a sef-gravitating coection of objects. Coisions Do we have to worry about coisions? Gobuar custers ook densest, so obtain a rough

More information

14-6 The Equation of Continuity

14-6 The Equation of Continuity 14-6 The Equation of Continuity 14-6 The Equation of Continuity Motion of rea fuids is compicated and poory understood (e.g., turbuence) We discuss motion of an idea fuid 1. Steady fow: Laminar fow, the

More information

1. Measurements and error calculus

1. Measurements and error calculus EV 1 Measurements and error cacuus 11 Introduction The goa of this aboratory course is to introduce the notions of carrying out an experiment, acquiring and writing up the data, and finay anayzing the

More information

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE)

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) Cass XI TARGET : JEE Main/Adv PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) ALP ADVANCED LEVEL LPROBLEMS ROTATION- Topics Covered: Rigid body, moment of inertia, parae and perpendicuar axes theorems,

More information

Physics 127c: Statistical Mechanics. Fermi Liquid Theory: Collective Modes. Boltzmann Equation. The quasiparticle energy including interactions

Physics 127c: Statistical Mechanics. Fermi Liquid Theory: Collective Modes. Boltzmann Equation. The quasiparticle energy including interactions Physics 27c: Statistica Mechanics Fermi Liquid Theory: Coective Modes Botzmann Equation The quasipartice energy incuding interactions ε p,σ = ε p + f(p, p ; σ, σ )δn p,σ, () p,σ with ε p ε F + v F (p p

More information

A sta6s6cal view of entropy

A sta6s6cal view of entropy A sta6s6ca view of entropy 20-4 A Sta&s&ca View of Entropy The entropy of a system can be defined in terms of the possibe distribu&ons of its moecues. For iden&ca moecues, each possibe distribu&on of moecues

More information

XI PHYSICS. M. Affan Khan LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS. M. Affan Khan LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. Affan Khan LECTURER PHYSICS, AKHSS, K affan_414@ive.com https://promotephysics.wordpress.com [TORQUE, ANGULAR MOMENTUM & EQUILIBRIUM] CHAPTER NO. 5 Okay here we are going to discuss Rotationa

More information

1) For a block of mass m to slide without friction up a rise of height h, the minimum initial speed of the block must be

1) For a block of mass m to slide without friction up a rise of height h, the minimum initial speed of the block must be v m 1) For a bock of mass m to side without friction up a rise of height h, the minimum initia speed of the bock must be a ) gh b ) gh d ) gh e ) gh c ) gh P h b 3 15 ft 3) A man pus a pound crate up a

More information

OSCILLATIONS. dt x = (1) Where = k m

OSCILLATIONS. dt x = (1) Where = k m OSCILLATIONS Periodic Motion. Any otion, which repeats itsef at reguar interva of tie, is caed a periodic otion. Eg: 1) Rotation of earth around sun. 2) Vibrations of a sipe penduu. 3) Rotation of eectron

More information

Bohr s atomic model. 1 Ze 2 = mv2. n 2 Z

Bohr s atomic model. 1 Ze 2 = mv2. n 2 Z Bohr s atomic mode Another interesting success of the so-caed od quantum theory is expaining atomic spectra of hydrogen and hydrogen-ike atoms. The eectromagnetic radiation emitted by free atoms is concentrated

More information

TAM 212 Worksheet 9: Cornering and banked turns

TAM 212 Worksheet 9: Cornering and banked turns Name: Group members: TAM 212 Worksheet 9: Cornering and banked turns The aim of this worksheet is to understand how vehices drive around curves, how sipping and roing imit the maximum speed, and how banking

More information

Separation of Variables and a Spherical Shell with Surface Charge

Separation of Variables and a Spherical Shell with Surface Charge Separation of Variabes and a Spherica She with Surface Charge In cass we worked out the eectrostatic potentia due to a spherica she of radius R with a surface charge density σθ = σ cos θ. This cacuation

More information

Legendre Polynomials - Lecture 8

Legendre Polynomials - Lecture 8 Legendre Poynomias - Lecture 8 Introduction In spherica coordinates the separation of variabes for the function of the poar ange resuts in Legendre s equation when the soution is independent of the azimutha

More information

More Scattering: the Partial Wave Expansion

More Scattering: the Partial Wave Expansion More Scattering: the Partia Wave Expansion Michae Fower /7/8 Pane Waves and Partia Waves We are considering the soution to Schrödinger s equation for scattering of an incoming pane wave in the z-direction

More information

Elements of Kinetic Theory

Elements of Kinetic Theory Eements of Kinetic Theory Diffusion Mean free path rownian motion Diffusion against a density gradient Drift in a fied Einstein equation aance between diffusion and drift Einstein reation Constancy of

More information

221B Lecture Notes Notes on Spherical Bessel Functions

221B Lecture Notes Notes on Spherical Bessel Functions Definitions B Lecture Notes Notes on Spherica Besse Functions We woud ike to sove the free Schrödinger equation [ h d r R(r) = h k R(r). () m r dr r m R(r) is the radia wave function ψ( x) = R(r)Y m (θ,

More information

Problem Set 6: Solutions

Problem Set 6: Solutions University of Aabama Department of Physics and Astronomy PH 102 / LeCair Summer II 2010 Probem Set 6: Soutions 1. A conducting rectanguar oop of mass M, resistance R, and dimensions w by fas from rest

More information

Mechanics 3. Elastic strings and springs

Mechanics 3. Elastic strings and springs Chapter assessment Mechanics 3 Eastic strings and springs. Two identica ight springs have natura ength m and stiffness 4 Nm -. One is suspended verticay with its upper end fixed to a ceiing and a partice

More information

LECTURE 10. The world of pendula

LECTURE 10. The world of pendula LECTURE 0 The word of pendua For the next few ectures we are going to ook at the word of the pane penduum (Figure 0.). In a previous probem set we showed that we coud use the Euer- Lagrange method to derive

More information

Physics 505 Fall 2007 Homework Assignment #5 Solutions. Textbook problems: Ch. 3: 3.13, 3.17, 3.26, 3.27

Physics 505 Fall 2007 Homework Assignment #5 Solutions. Textbook problems: Ch. 3: 3.13, 3.17, 3.26, 3.27 Physics 55 Fa 7 Homework Assignment #5 Soutions Textook proems: Ch. 3: 3.3, 3.7, 3.6, 3.7 3.3 Sove for the potentia in Proem 3., using the appropriate Green function otained in the text, and verify that

More information

1 Equations of Motion 3: Equivalent System Method

1 Equations of Motion 3: Equivalent System Method 8 Mechanica Vibrations Equations of Motion : Equivaent System Method In systems in which masses are joined by rigid ins, evers, or gears and in some distributed systems, various springs, dampers, and masses

More information

Phys 7654 (Basic Training in CMP- Module III)/ Physics 7636 (Solid State II) Homework 1 Solutions

Phys 7654 (Basic Training in CMP- Module III)/ Physics 7636 (Solid State II) Homework 1 Solutions Phys 7654 Basic Training in CMP- Modue III/ Physics 7636 Soid State II Homework 1 Soutions by Hitesh Changani adapted from soutions provided by Shivam Ghosh Apri 19, 011 Ex. 6.4.3 Phase sips in a wire

More information

MA 201: Partial Differential Equations Lecture - 10

MA 201: Partial Differential Equations Lecture - 10 MA 201: Partia Differentia Equations Lecture - 10 Separation of Variabes, One dimensiona Wave Equation Initia Boundary Vaue Probem (IBVP) Reca: A physica probem governed by a PDE may contain both boundary

More information

Previous Years Problems on System of Particles and Rotional Motion for NEET

Previous Years Problems on System of Particles and Rotional Motion for NEET P-8 JPME Topicwise Soved Paper- PHYSCS Previous Years Probems on Sstem of Partices and otiona Motion for NEET This Chapter Previous Years Probems on Sstem of Partices and otiona Motion for NEET is taken

More information

$, (2.1) n="# #. (2.2)

$, (2.1) n=# #. (2.2) Chapter. Eectrostatic II Notes: Most of the materia presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartoo, Chap... Mathematica Considerations.. The Fourier series and the Fourier

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . Two points A and B ie on a smooth horizonta tabe with AB = a. One end of a ight eastic spring, of natura ength a and moduus of easticity mg, is attached to A. The other end of the spring is attached

More information

HO 25 Solutions. = s. = 296 kg s 2. = ( kg) s. = 2π m k and T = 2π ω. kg m = m kg. = 2π. = ω 2 A = 2πf

HO 25 Solutions. = s. = 296 kg s 2. = ( kg) s. = 2π m k and T = 2π ω. kg m = m kg. = 2π. = ω 2 A = 2πf HO 5 Soution 1.) haronic ociator = 0.300 g with an idea pring T = 0.00 T = π T π π o = = ( 0.300 g) 0.00 = 96 g = 96 N.) haronic ociator = 0.00 g and idea pring = 140 N F = x = a = d x dt o the dipaceent

More information

Physics Dynamics: Springs

Physics Dynamics: Springs F A C U L T Y O F E D U C A T I O N Department of Curricuum and Pedagogy Physics Dynamics: Springs Science and Mathematics Education Research Group Supported by UBC Teaching and Learning Enhancement Fund

More information

University of Alabama Department of Physics and Astronomy. PH 105 LeClair Summer Problem Set 11

University of Alabama Department of Physics and Astronomy. PH 105 LeClair Summer Problem Set 11 University of Aabaa Departent of Physics and Astronoy PH 05 LeCair Suer 0 Instructions: Probe Set. Answer a questions beow. A questions have equa weight.. Due Fri June 0 at the start of ecture, or eectronicay

More information

14 Separation of Variables Method

14 Separation of Variables Method 14 Separation of Variabes Method Consider, for exampe, the Dirichet probem u t = Du xx < x u(x, ) = f(x) < x < u(, t) = = u(, t) t > Let u(x, t) = T (t)φ(x); now substitute into the equation: dt

More information

Elements of Kinetic Theory

Elements of Kinetic Theory Eements of Kinetic Theory Statistica mechanics Genera description computation of macroscopic quantities Equiibrium: Detaied Baance/ Equipartition Fuctuations Diffusion Mean free path Brownian motion Diffusion

More information

Joel Broida UCSD Fall 2009 Phys 130B QM II. Homework Set 2 DO ALL WORK BY HAND IN OTHER WORDS, DON T USE MATHEMAT- ICA OR ANY CALCULATORS.

Joel Broida UCSD Fall 2009 Phys 130B QM II. Homework Set 2 DO ALL WORK BY HAND IN OTHER WORDS, DON T USE MATHEMAT- ICA OR ANY CALCULATORS. Joe Broida UCSD Fa 009 Phys 30B QM II Homework Set DO ALL WORK BY HAND IN OTHER WORDS, DON T USE MATHEMAT- ICA OR ANY CALCULATORS. You may need to use one or more of these: Y 0 0 = 4π Y 0 = 3 4π cos Y

More information

Measurement of acceleration due to gravity (g) by a compound pendulum

Measurement of acceleration due to gravity (g) by a compound pendulum Measurement of acceeration due to gravity (g) by a compound penduum Aim: (i) To determine the acceeration due to gravity (g) by means of a compound penduum. (ii) To determine radius of gyration about an

More information

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES Separation of variabes is a method to sove certain PDEs which have a warped product structure. First, on R n, a inear PDE of order m is

More information

IIT JEE, 2005 (MAINS) SOLUTIONS PHYSICS 1

IIT JEE, 2005 (MAINS) SOLUTIONS PHYSICS 1 IIT JEE, 5 (MINS) SOLUTIONS YSIS iscaimer: Tis booket contains te questions of IIT-JEE 5, Main Examination based on te memory reca of students aong wit soutions provided by te facuty of riiant Tutorias.

More information

University of California, Berkeley Physics 7A Spring 2009 (Yury Kolomensky) SOLUTIONS TO PRACTICE PROBLEMS FOR THE FINAL EXAM

University of California, Berkeley Physics 7A Spring 2009 (Yury Kolomensky) SOLUTIONS TO PRACTICE PROBLEMS FOR THE FINAL EXAM 1 University of Caifornia, Bereey Physics 7A Spring 009 (Yury Koomensy) SOLUIONS O PRACICE PROBLEMS FOR HE FINAL EXAM Maximum score: 00 points 1. (5 points) Ice in a Gass You are riding in an eevator hoding

More information

CE601-Structura Anaysis I UNIT-IV SOPE-DEFECTION METHOD 1. What are the assumptions made in sope-defection method? (i) Between each pair of the supports the beam section is constant. (ii) The joint in

More information

Chapter 11: Two-Phase Flow and Heat Transfer Forced Convective Boiling in Tubes

Chapter 11: Two-Phase Flow and Heat Transfer Forced Convective Boiling in Tubes 11.5 Forced Convective 11.5.1 Regimes in Horizonta and Vertica Tubes The typica sequence of fow regimes for upward fow forced convective boiing in a uniformy-heated vertica tube (q =const) is shown in

More information

Assignment 7 Due Tuessday, March 29, 2016

Assignment 7 Due Tuessday, March 29, 2016 Math 45 / AMCS 55 Dr. DeTurck Assignment 7 Due Tuessday, March 9, 6 Topics for this week Convergence of Fourier series; Lapace s equation and harmonic functions: basic properties, compuations on rectanges

More information

12.2. Maxima and Minima. Introduction. Prerequisites. Learning Outcomes

12.2. Maxima and Minima. Introduction. Prerequisites. Learning Outcomes Maima and Minima 1. Introduction In this Section we anayse curves in the oca neighbourhood of a stationary point and, from this anaysis, deduce necessary conditions satisfied by oca maima and oca minima.

More information

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law Gauss Law 1. Review on 1) Couomb s Law (charge and force) 2) Eectric Fied (fied and force) 2. Gauss s Law: connects charge and fied 3. Appications of Gauss s Law Couomb s Law and Eectric Fied Couomb s

More information

Session : Electrodynamic Tethers

Session : Electrodynamic Tethers Session : Eectrodynaic Tethers Eectrodynaic tethers are ong, thin conductive wires depoyed in space that can be used to generate power by reoving kinetic energy fro their orbita otion, or to produce thrust

More information

Lecture 9. Stability of Elastic Structures. Lecture 10. Advanced Topic in Column Buckling

Lecture 9. Stability of Elastic Structures. Lecture 10. Advanced Topic in Column Buckling Lecture 9 Stabiity of Eastic Structures Lecture 1 Advanced Topic in Coumn Bucking robem 9-1: A camped-free coumn is oaded at its tip by a oad. The issue here is to find the itica bucking oad. a) Suggest

More information

PHYS 110B - HW #1 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #1 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased PHYS 110B - HW #1 Fa 2005, Soutions by David Pace Equations referenced as Eq. # are from Griffiths Probem statements are paraphrased [1.] Probem 6.8 from Griffiths A ong cyinder has radius R and a magnetization

More information

SECTION A. Question 1

SECTION A. Question 1 SECTION A Question 1 (a) In the usua notation derive the governing differentia equation of motion in free vibration for the singe degree of freedom system shown in Figure Q1(a) by using Newton's second

More information

Position Control of Rolling Skateboard

Position Control of Rolling Skateboard osition Contro of Roing kateboard Baazs Varszegi enes Takacs Gabor tepan epartment of Appied Mechanics, Budapest University of Technoogy and Economics, Budapest, Hungary (e-mai: varszegi@mm.bme.hu) MTA-BME

More information

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n.

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n. Chapter. Eectrostatic II Notes: Most of the materia presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartoo, Chap... Mathematica Considerations.. The Fourier series and the Fourier

More information

Convergence P H Y S I C S

Convergence P H Y S I C S +1 Test (Newton s Law of Motion) 1. Inertia is that property of a body by virtue of which the body is (a) Unabe to change by itsef the state of rest (b) Unabe to change by itsef the state of unifor otion

More information

Variation Principle in Mechanics

Variation Principle in Mechanics Section 2 Variation Principle in Mechanics Hamilton s Principle: Every mechanical system is characterized by a Lagrangian, L(q i, q i, t) or L(q, q, t) in brief, and the motion of he system is such that

More information

Self Inductance of a Solenoid with a Permanent-Magnet Core

Self Inductance of a Solenoid with a Permanent-Magnet Core 1 Probem Sef Inductance of a Soenoid with a Permanent-Magnet Core Kirk T. McDonad Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (March 3, 2013; updated October 19, 2018) Deduce the

More information

Induction and Inductance

Induction and Inductance Induction and Inductance How we generate E by B, and the passive component inductor in a circuit. 1. A review of emf and the magnetic fux. 2. Faraday s Law of Induction 3. Lentz Law 4. Inductance and inductor

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM REVIEW Vo. 49,No. 1,pp. 111 1 c 7 Society for Industria and Appied Mathematics Domino Waves C. J. Efthimiou M. D. Johnson Abstract. Motivated by a proposa of Daykin [Probem 71-19*, SIAM Rev., 13 (1971),

More information

Jackson 4.10 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 4.10 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 4.10 Homework Probem Soution Dr. Christopher S. Baird University of Massachusetts Lowe PROBLEM: Two concentric conducting spheres of inner and outer radii a and b, respectivey, carry charges ±.

More information

Elements of Kinetic Theory

Elements of Kinetic Theory Eements of Kinetic Theory Statistica mechanics Genera description computation of macroscopic quantities Equiibrium: Detaied Baance/ Equipartition Fuctuations Diffusion Mean free path Brownian motion Diffusion

More information

Lecture 6: Moderately Large Deflection Theory of Beams

Lecture 6: Moderately Large Deflection Theory of Beams Structura Mechanics 2.8 Lecture 6 Semester Yr Lecture 6: Moderatey Large Defection Theory of Beams 6.1 Genera Formuation Compare to the cassica theory of beams with infinitesima deformation, the moderatey

More information

Implemental Formulation of Newton Dynamics for Free Insect Flight

Implemental Formulation of Newton Dynamics for Free Insect Flight Impementa Formuation of Neton Dynamics for Free Insect Fight Sheng Xu Department of Mathematics, Southern Methodist University, Daas, TX 75275-156, USA Astract A free-fying insect fies and maneuvers y

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur odue 2 naysis of Staticay ndeterminate Structures by the atri Force ethod Version 2 E T, Kharagpur esson 12 The Three-oment Equations- Version 2 E T, Kharagpur nstructiona Objectives fter reading this

More information

is conserved, calculating E both at θ = 0 and θ = π/2 we find that this happens for a value ω = ω given by: 2g

is conserved, calculating E both at θ = 0 and θ = π/2 we find that this happens for a value ω = ω given by: 2g UNIVERSITETET I STAVANGER Institutt for matematikk og naturvitenskap Suggested solutions, FYS 500 Classical Mechanics Theory 2016 fall Set 5 for 23. September 2016 Problem 27: A string can only support

More information

FFTs in Graphics and Vision. Spherical Convolution and Axial Symmetry Detection

FFTs in Graphics and Vision. Spherical Convolution and Axial Symmetry Detection FFTs in Graphics and Vision Spherica Convoution and Axia Symmetry Detection Outine Math Review Symmetry Genera Convoution Spherica Convoution Axia Symmetry Detection Math Review Symmetry: Given a unitary

More information

Gaussian Curvature in a p-orbital, Hydrogen-like Atoms

Gaussian Curvature in a p-orbital, Hydrogen-like Atoms Advanced Studies in Theoretica Physics Vo. 9, 015, no. 6, 81-85 HIKARI Ltd, www.m-hikari.com http://dx.doi.org/10.1988/astp.015.5115 Gaussian Curvature in a p-orbita, Hydrogen-ike Atoms Sandro-Jose Berrio-Guzman

More information

Numerical simulation of javelin best throwing angle based on biomechanical model

Numerical simulation of javelin best throwing angle based on biomechanical model ISSN : 0974-7435 Voume 8 Issue 8 Numerica simuation of javein best throwing ange based on biomechanica mode Xia Zeng*, Xiongwei Zuo Department of Physica Education, Changsha Medica University, Changsha

More information

APPENDIX C FLEXING OF LENGTH BARS

APPENDIX C FLEXING OF LENGTH BARS Fexing of ength bars 83 APPENDIX C FLEXING OF LENGTH BARS C.1 FLEXING OF A LENGTH BAR DUE TO ITS OWN WEIGHT Any object ying in a horizonta pane wi sag under its own weight uness it is infinitey stiff or

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 2: The Moment Equations

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 2: The Moment Equations .615, MHD Theory of Fusion ystems Prof. Freidberg Lecture : The Moment Equations Botzmann-Maxwe Equations 1. Reca that the genera couped Botzmann-Maxwe equations can be written as f q + v + E + v B f =

More information

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction)

Kinematics (special case) Dynamics gravity, tension, elastic, normal, friction. Energy: kinetic, potential gravity, spring + work (friction) Kinematics (special case) a = constant 1D motion 2D projectile Uniform circular Dynamics gravity, tension, elastic, normal, friction Motion with a = constant Newton s Laws F = m a F 12 = F 21 Time & Position

More information

STABILITY OF A PARAMETRICALLY EXCITED DAMPED INVERTED PENDULUM 1. INTRODUCTION

STABILITY OF A PARAMETRICALLY EXCITED DAMPED INVERTED PENDULUM 1. INTRODUCTION Journa of Sound and Vibration (996) 98(5), 643 65 STABILITY OF A PARAMETRICALLY EXCITED DAMPED INVERTED PENDULUM G. ERDOS AND T. SINGH Department of Mechanica and Aerospace Engineering, SUNY at Buffao,

More information

Dynamic equations for curved submerged floating tunnel

Dynamic equations for curved submerged floating tunnel Appied Mathematics and Mechanics Engish Edition, 7, 8:99 38 c Editoria Committee of App. Math. Mech., ISSN 53-487 Dynamic equations for curved submerged foating tunne DONG Man-sheng, GE Fei, ZHANG Shuang-yin,

More information

l Two observers moving relative to each other generally do not agree on the outcome of an experiment

l Two observers moving relative to each other generally do not agree on the outcome of an experiment Reative Veocity Two observers moving reative to each other generay do not agree on the outcome of an experiment However, the observations seen by each are reated to one another A frame of reference can

More information

IMA Preprint Series # 2323

IMA Preprint Series # 2323 A MATRIX FORMULATION OF THE NEWTON DYNAMICS FOR THE FREE FLIGHT OF AN INSECT By Sheng Xu IMA Preprint Series # 2323 ( June 21 ) INSTITUTE FOR MATHEMATICS AND ITS APPLICATIONS UNIVERSITY OF MINNESOTA 4

More information

V.B The Cluster Expansion

V.B The Cluster Expansion V.B The Custer Expansion For short range interactions, speciay with a hard core, it is much better to repace the expansion parameter V( q ) by f( q ) = exp ( βv( q )), which is obtained by summing over

More information

VTU-NPTEL-NMEICT Project

VTU-NPTEL-NMEICT Project MODUE-X -CONTINUOUS SYSTEM : APPROXIMATE METHOD VIBRATION ENGINEERING 14 VTU-NPTE-NMEICT Project Progress Report The Project on Deveopment of Remaining Three Quadrants to NPTE Phase-I under grant in aid

More information

Math 124B January 17, 2012

Math 124B January 17, 2012 Math 124B January 17, 212 Viktor Grigoryan 3 Fu Fourier series We saw in previous ectures how the Dirichet and Neumann boundary conditions ead to respectivey sine and cosine Fourier series of the initia

More information

Nuclear Size and Density

Nuclear Size and Density Nucear Size and Density How does the imited range of the nucear force affect the size and density of the nucei? Assume a Vecro ba mode, each having radius r, voume V = 4/3π r 3. Then the voume of the entire

More information

Physics 506 Winter 2006 Homework Assignment #6 Solutions

Physics 506 Winter 2006 Homework Assignment #6 Solutions Physics 506 Winter 006 Homework Assignment #6 Soutions Textbook probems: Ch. 10: 10., 10.3, 10.7, 10.10 10. Eectromagnetic radiation with eiptic poarization, described (in the notation of Section 7. by

More information

O -x 0. 4 kg. 12 cm. 3 kg

O -x 0. 4 kg. 12 cm. 3 kg Anwer, Key { Homework 9 { Rubin H andau 1 Thi print-out houd have 18 quetion. Check that it i compete before eaving the printer. Ao, mutipe-choice quetion may continue on the net coumn or page: nd a choice

More information

ELASTICITY PREVIOUS EAMCET QUESTIONS ENGINEERING

ELASTICITY PREVIOUS EAMCET QUESTIONS ENGINEERING ELASTICITY PREVIOUS EAMCET QUESTIONS ENGINEERING. If the ratio of engths, radii and young s modui of stee and brass wires shown in the figure are a, b and c respectivey, the ratio between the increase

More information

Work and energy method. Exercise 1 : Beam with a couple. Exercise 1 : Non-linear loaddisplacement. Exercise 2 : Horizontally loaded frame

Work and energy method. Exercise 1 : Beam with a couple. Exercise 1 : Non-linear loaddisplacement. Exercise 2 : Horizontally loaded frame Work and energy method EI EI T x-axis Exercise 1 : Beam with a coupe Determine the rotation at the right support of the construction dispayed on the right, caused by the coupe T using Castigiano s nd theorem.

More information

Torque/Rotational Energy Mock Exam. Instructions: (105 points) Answer the following questions. SHOW ALL OF YOUR WORK.

Torque/Rotational Energy Mock Exam. Instructions: (105 points) Answer the following questions. SHOW ALL OF YOUR WORK. AP Physics C Spring, 2017 Torque/Rotational Energy Mock Exam Name: Answer Key Mr. Leonard Instructions: (105 points) Answer the following questions. SHOW ALL OF YOUR WORK. (22 pts ) 1. Two masses are attached

More information

Why Doesn t a Steady Current Loop Radiate?

Why Doesn t a Steady Current Loop Radiate? Why Doesn t a Steady Current Loop Radiate? Probem Kirk T. McDonad Joseph Henry Laboratories, Princeton University, Princeton, NJ 8544 December, 2; updated March 22, 26 A steady current in a circuar oop

More information

Constrained motion and generalized coordinates

Constrained motion and generalized coordinates Constrained motion and generalized coordinates based on FW-13 Often, the motion of particles is restricted by constraints, and we want to: work only with independent degrees of freedom (coordinates) k

More information

Section 6: Magnetostatics

Section 6: Magnetostatics agnetic fieds in matter Section 6: agnetostatics In the previous sections we assumed that the current density J is a known function of coordinates. In the presence of matter this is not aways true. The

More information

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top Physics 106a, Caltech 4 December, 2018 Lecture 18: Examples on Rigid Body Dynamics I go through a number of examples illustrating the methods of solving rigid body dynamics. In most cases, the problem

More information

THE NUMERICAL EVALUATION OF THE LEVITATION FORCE IN A HYDROSTATIC BEARING WITH ALTERNATING POLES

THE NUMERICAL EVALUATION OF THE LEVITATION FORCE IN A HYDROSTATIC BEARING WITH ALTERNATING POLES THE NUMERICAL EVALUATION OF THE LEVITATION FORCE IN A HYDROSTATIC BEARING WITH ALTERNATING POLES MARIAN GRECONICI Key words: Magnetic iquid, Magnetic fied, 3D-FEM, Levitation, Force, Bearing. The magnetic

More information

Paper presented at the Workshop on Space Charge Physics in High Intensity Hadron Rings, sponsored by Brookhaven National Laboratory, May 4-7,1998

Paper presented at the Workshop on Space Charge Physics in High Intensity Hadron Rings, sponsored by Brookhaven National Laboratory, May 4-7,1998 Paper presented at the Workshop on Space Charge Physics in High ntensity Hadron Rings, sponsored by Brookhaven Nationa Laboratory, May 4-7,998 Noninear Sef Consistent High Resoution Beam Hao Agorithm in

More information

String Theory I GEORGE SIOPSIS AND STUDENTS

String Theory I GEORGE SIOPSIS AND STUDENTS String Theory I GEORGE SIOPSIS AND STUDENTS Department of Physics and Astronomy The University of Tennessee Knoxvie, TN 37996-12 U.S.A. e-mai: siopsis@tennessee.edu Last update: 26 ii Contents 1 A first

More information

CHAPTER XIII FLOW PAST FINITE BODIES

CHAPTER XIII FLOW PAST FINITE BODIES HAPTER XIII LOW PAST INITE BODIES. The formation of shock waves in supersonic fow past bodies Simpe arguments show that, in supersonic fow past an arbitrar bod, a shock wave must be formed in front of

More information

Technical Data for Profiles. Groove position, external dimensions and modular dimensions

Technical Data for Profiles. Groove position, external dimensions and modular dimensions Technica Data for Profies Extruded Profie Symbo A Mg Si 0.5 F 25 Materia number.206.72 Status: artificiay aged Mechanica vaues (appy ony in pressing direction) Tensie strength Rm min. 245 N/mm 2 Yied point

More information

Columbia University Department of Physics QUALIFYING EXAMINATION

Columbia University Department of Physics QUALIFYING EXAMINATION Columbia University Department of Physics QUALIFYING EXAMINATION Monday, January 9, 2017 11:00AM to 1:00PM Classical Physics Section 1. Classical Mechanics Two hours are permitted for the completion of

More information

V.B The Cluster Expansion

V.B The Cluster Expansion V.B The Custer Expansion For short range interactions, speciay with a hard core, it is much better to repace the expansion parameter V( q ) by f(q ) = exp ( βv( q )) 1, which is obtained by summing over

More information

PROBLEMS. Apago PDF Enhancer

PROBLEMS. Apago PDF Enhancer PROLMS 15.105 900-mm rod rests on a horizonta tabe. force P appied as shown produces the foowing acceerations: a 5 3.6 m/s 2 to the right, a 5 6 rad/s 2 countercockwise as viewed from above. etermine the

More information