Why Doesn t a Steady Current Loop Radiate?

Size: px
Start display at page:

Download "Why Doesn t a Steady Current Loop Radiate?"

Transcription

1 Why Doesn t a Steady Current Loop Radiate? Probem Kirk T. McDonad Joseph Henry Laboratories, Princeton University, Princeton, NJ 8544 December, 2; updated March 22, 26 A steady current in a circuar oop presumaby invoves a arge number of eectrons in uniform circuar motion. Each eectron undergoes acceerated motion, and individua acceerated charges emit radiation. Yet, the current density J is independent of time in the imit of a continuous current distribution, and therefore does not radiate. How can we reconcie these two views?. Comments and Hints If the steady current were a continuous DC current, a of its mutipoe moments woud be constant, and we woud expect no radiation. For a current consisting of eectrons, it must be that the radiation is canceed by destructive interference between the radiation fieds of the arge number N of eectrons that make up the steady current. A singe eectron in uniform circuar motion emits eectric dipoe radiation, whose power is proportiona to the square of the acceeration a = v 2 /r, and hence to v/c 4. But, the eectric dipoe moment vanishes for two eectrons in uniform circuar motion at opposite ends of a common diameter; quadrupoe radiation is the highest mutipoe in this case, with power proportiona to v/c 6. It is suggestive that in case of 3 eectrons 2 apart in uniform circuar motion the time-dependent quadrupoe moment vanishes, and the highest mutipoe radiation is octupoe. For N eectrons eveny spaced around a ring, the highest mutipoe that radiates in the Nth, and the power of this radiation is proportiona to v/c 2N+2. Then, for steady motion with v/c, the radiated power of a ring of N eectrons is very sma. Verify this argument with a detaied cacuation. Reca the basic expression for the vector potentia of the radiation fieds, Ar,t= [J] c r dvo [J] dvo = Jr,t = t r/c dvo, where R is the arge distance from the observer to the center of the ring of radius a. For uniform circuar motion of N eectrons with anguar frequency ω, the current density J is a periodic function with period T =/ω, so a Fourier anaysis can be made where Jr,t = = J r e iωt, 2 This resut is impicit in the first-ever computation of eectromagnetic radiation, by FitzGerad 883 []. We can aso consider the decomposition of the eectromagnetic fieds into pane eectromagnetic waves photons, and note that a DC current has ony zero-frequency-wave components ony virtua photons, and hence no radiation of rea photons. See sec. 2. of [2].

2 with Then, J r = T Jr,t e iωt dt. 3 Ar,t= A re iωt, 4 etc. The radiated power foows from the Poynting vector [3], dp dω = c 4π R2 B 2 = c 4π R2 A 2. 5 One must be carefu in going from a Fourier anaysis of an ampitude, such as B, toafourier anaysis of an intensity that depends on the square of the ampitude. A Fourier anaysis of the average power radiated during one period T can be given as d P dω = T = 2 4π = 2 dp dω 2 dt = B 2 dt = 2 4πT 4πT T B B e iωt dt = 2 T 4π B 2 = = = B B B B e iωt dt dp dω. 6 That is, the Fourier components of the time-averaged radiated power can be written dp dω = 2 B 2 = 2 A 2 = 2 ikˆn A 2, 7 where k = ω/c and ˆn points from the center of the ring to the observer. Evauate the Fourier components of the vector potentia and of the radiated power first for a singe eectron, and then for N eectrons eveny spaced around the ring. It wi come as no surprise that a 3-dimensiona probem with charges distributed on a ring eads to Besse functions, and we must be aware of the integra representation J s = i e iφ is cos φ dφ. 8 Use the asymptotic expansion for arge index and sma argument, to verify the suppression of the radiation for arge N. J x ex/2, x, 9 This probem was first posed and soved via series expansions without expicit mention of Besse functions by J.J. Thomson [4]. He knew that atoms in what we now ca their ground state don t radiate, and used this cacuation to support his mode that the eectric 2

3 charge in an atom must be smoothy distributed. This was a cassica precursor to the view of a continuous probabiity distribution for the eectron s position in an atom. Thomson s work was foowed shorty by an extensive treatise by Schott [5], that incuded anayses in term of Besse functions correct for any vaue of v/c. 2 These pioneering works were argey forgotten during the foowing era of nonreativistic quantum mechanics, and were reinvented around 945 when interest emerged in reativistic partice acceerators. See Arzimovitch and Pomeranchuk [7], and Schwinger [8]. 2 Soution The soution given here foows the succinct treatment by Landau, sec. 74 of [9]. For charges in steady motion at anguar frequency ω in a ring of radius a, the current density J is periodic with period T =/ω, so the Fourier anaysis 2 at the retarded time t can be evauated via the usua approximation that r R r ˆn, wherer is the distance from the center of the ring to the observer, r points from the center of the ring to the eectron, and ˆn is the unit vector pointing from the center of the ring to the observer. Then, [J] = Jr,t = t r/c = J r e iωt R/c+r ˆn/c = e ikr ωt J k r e ikωr ˆn/c, where k = ω/c. The ring ies in the pane z =, centered on the origin. We use rectanguar coordinates x, y, z, cyindrica coordinates ρ, φ, z, and spherica coordinates r, θ, φ with ange θ measured with respect to the +z axis. Then, r = ρcos φ ˆx +sinφ ŷ, ˆn =sinθ ˆx +cosθ ẑ, and ˆφ = sin φ ˆx +cosφ ŷ. We first consider a singe eectron, whose azimuth varies as φ = ωt + φ,andwhose veocity is, of course, v = aω. The current density of a point eectron of charge q can be written in a cyindrica coordinate system with voume eement ρdρ dφ dz using Dirac deta functions as J = ρ charge v ˆφ = qvδρ aδzδφ ωt φ ˆφ. 2 The Fourier components J are given by J = T Jr,te it dt = qvδρ aδz eiφ φ ρωt ˆφ. 3 Using eqs. and 3 in and noting that ωt =, we find [J] = qv e ikr ωt e iφ φ ωρ sin θ cos φ/c δρ aδzˆφ. 4 ρ 2 See aso [6]. 3

4 Inserting this in eq., we have A [J]ρ dρdφdz= = A e iωt, qv e ikr ωt φ e iφ ωa sin θ cos φ/c ˆφ dφ 5 so that the Fourier components of the vector potentia are A = qv eikr φ e iφ v sin θ cos φ/c sin φ ˆx +cosφ ŷ dφ. 6 The integras yied Besse functions with the aid of the integra representation 8. The ŷ part of eq. 6 can be found by taking the derivative of this reation with respect to s: J s = i+ For the ˆx part of eq. 6 we pay the trick = = e iφ s cos φ dφ z cos φ e iφ is cos φ cos φdφ, 7 e iφ is cos φ dφ + s e iφ is cos φ sin φdφ, 8 so that e iφ is cos φ sin φdφ= e iφ is cos φ dφ = s i s J s. 9 Using eqs. 7 and 9 with s = v sin θ/c in 6 we have A = qv eikr φ i v sin θ/c J v sin θ/c ˆx i J + v sin θ/c ŷ. 2 We skip the cacuation of the eectric and magnetic fieds from the vector potentia, and proceed immediatey to the anguar distribution of the radiated power according to eq. 7, dp dω = 2 ikˆn A 2 = ck2 2 R 2 cos 2 θ A,x 2 + A,y 2 = ck2 2 R 2 = cq2 k 2 2 ˆn A 2 cot 2 θj 2 v sin θ/c+v2 c J 2 2 v sin θ/c. 2 The present interest in this resut is for v/c, but in fact it hods for any vaue of v/c. As such, it can be used for a detaied discussion of the radiation from a reativistic eectron that moves in a circe, which emits so-caed synchrotron radiation. This topic is discussed further in Lecture 2 of the Notes []. 3 Furthermore, eq. 2 hods even if the veocity v 3 If the eectron of mass m moves in a circe due to static magnetic fied B, then the anguar veocity is given by ω = kc = v/a = qb/γmc, such that k 2 =q 2 B 2 /m 2 c 4 v 2 /c 2, and eq. 2 agrees with eq of [9], noting that our θ is π/2 θ there. 4

5 exceeds the speed of ight c/n in a medium of index of refraction n, inwhichcaseakind of synchroton-čerenkov radiation is emitted []. Since each ampitude A varies as /R at arge distance R from the source, the tota radiated power varies as /R 2. 4 We now turn to the case of N eectrons uniformy spaced around the ring. The initia azimuth of the nth eectron can be written φ n = n N. 22 The th Fourier component of the tota vector potentia is simpy the sum of components 2 inserting φ n in pace of φ : A = N qv n= eikr φ n i v sin θ/c J v sin θ/cˆx i J + v sin θ/cŷ N = qveikr i m v sin θ/c J v sin θ/cˆx i J v sin θ/cŷ + e in/n. n= This sum vanishes uness is a mutipe of N, in which case the sum is just N. Theowest nonvanishing Fourier component has order N, and the radiation is at frequency Nω. We recognize this as Nth-order mutipoe radiation, whose radiated power foows from eq. 2 as dp N dω = cq2 k 2 N 2 cot 2 θjn 2 Nvsin θ/c+v2 c J 2 2 N Nvsin θ/c. 24 For arge N but v/c we can use the asymptotic expansion 9, and its derivative, to write eq. 24 as 23 J x ex/2 x,x, 25 dp N dω cq2 k 2 N e v 2N 4π 2 sin 2 θ 2 c sin θ + cos 2 θ N dp E dω N,v/c. 26 In eqs. 25 and 26 the symbo e inside the parentheses is not the charge but rather the base of natura ogarithms, Forcurrentsin,say,aoopofcopperwire,v cm/s, so v/c, whie N 23. The radiated power predicted by eq. 26 is extraordinariy sma! Note, however, that this neary compete destructive interference depends on the eectrons being uniformy distributed around the ring. Suppose instead that they were distributed with random azimuths φ n. Then the square of the magnetic fied at order m has the form B m 2 N 2 e imφ n n= = N + n e imφ φ n = N This is in contrast to caims [2] that the power varies as /R for Čerenkov radiation emitted by a partice in uniform circuar motion. 5

6 Thus, for random azimuths the power radiated by N eectrons at any order is just N times that radiated by one eectron. If the charge carriers in a wire were ocaized to distances much smaer than their separation, radiation of steady currents coud occur. However, in the quantum view of metaic conduction, such ocaization does not occur. The random-phase approximation is reevant for eectrons in a so-caed storage ring, for which the radiated power is a major oss of energy or source of desirabe photon beams of synchrotron radiation, depending on one s point of view. We do not expound here on the interesting topic of the formation ength for radiation by reativistic eectrons, which ength sets the scae for interference of mutipe eectrons. See, for exampe, [3]. 2. Comment An interesting comment by Lai [4] is that the radiation terms in the Lienard-Wiechert expressions for the eectric and magnetic fieds of an acceerated charge sec. 63 of [9] for the case of uniform circuar motion incudes a piece corresponding the fieds of a ring of charge in steady circuar motion. That is, the interference of the radiation fieds of a steady oop of current is not competey destructive, even though no radiation survives. 5 References [] K.T. McDonad, FitzGerad s Cacuation of the Radiation of an Osciating Magnetic Dipoe June 2, 2, [2] K.T. McDonad, Decomposition of Eectromagnetic Fieds into Eectromagnetic Pane Wave Juy, 2, [3] J.H. Poynting, On the Transfer of Energy in the Eectromagnetic Fied, Phi. Trans. Roy. Soc. London 75, , [4] J.J. Thomson, The Magnetic Properties of Systems of Corpusces describing Circuar Orbits, Phi. Mag. 36, , [5] G.A. Schott, Eectromagnetic Radiation Cambridge U.P., 92, [6] R. Rivera and D. Viarroe, An exact soution for severa charges in cassica eectrodynamics, J. Math. Phys. 4, , 5 The Poynting vector of a steady oop of moving charge if not eectricay neutra forms azimutha oops with the same sense as the current. In the view that any nonzero Poynting vector shoud be termed radiation [5], a steady oop of current does support radiation athough this does not carry energy away from the current oop. 6

7 [7] L. Arzimovitch and I. Pomeranchuk, The Radiation of Fast Eectrons in the Magnetic Fied, J. Phys. USSR 9, , [8] J. Schwinger, On Radiation by Eectrons in a Betatron 945, On the Cassica Radiation of Acceerated Eectrons, Phys. Rev. 75, , [9] L.D. Landau and E.M. Lifshitz, Cassica Theory of Fieds, 4th ed. Butterworth- Heinemann, Oxford, 987. [] K.T. McDonad, Reativistic Radiation Effects, Lecture 2, Physics 26/5, [] T.M. Rynne, G.B. Baumgartner, and T. Erber, The anguar distribution of synchrotron- Čerenkov radiation, J. App. Phys. 49, , [2] A. Ardavan et a., Experimenta observation of nonsphericay-decaying radiation from a rotating superumina source, J. App. Phys. 96, , [3] M.S. Zootorev and K.T. McDonad, Cassica Radiation Processes in the Weizsäcker- Wiiams Approximation, Aug. 25, 999, [4] H.M. Lai, Static contribution from the radiation fied, Am. J. Phys. 46, , [5] K.T. McDonad, On the Definition of Radiation by a System of Charges, Sept. 6, 2, 7

Self Inductance of a Solenoid with a Permanent-Magnet Core

Self Inductance of a Solenoid with a Permanent-Magnet Core 1 Probem Sef Inductance of a Soenoid with a Permanent-Magnet Core Kirk T. McDonad Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (March 3, 2013; updated October 19, 2018) Deduce the

More information

Lecture 8 February 18, 2010

Lecture 8 February 18, 2010 Sources of Eectromagnetic Fieds Lecture 8 February 18, 2010 We now start to discuss radiation in free space. We wi reorder the materia of Chapter 9, bringing sections 6 7 up front. We wi aso cover some

More information

Legendre Polynomials - Lecture 8

Legendre Polynomials - Lecture 8 Legendre Poynomias - Lecture 8 Introduction In spherica coordinates the separation of variabes for the function of the poar ange resuts in Legendre s equation when the soution is independent of the azimutha

More information

Radiation Fields. Lecture 12

Radiation Fields. Lecture 12 Radiation Fieds Lecture 12 1 Mutipoe expansion Separate Maxwe s equations into two sets of equations, each set separatey invoving either the eectric or the magnetic fied. After remova of the time dependence

More information

Physics 505 Fall Homework Assignment #4 Solutions

Physics 505 Fall Homework Assignment #4 Solutions Physics 505 Fa 2005 Homework Assignment #4 Soutions Textbook probems: Ch. 3: 3.4, 3.6, 3.9, 3.0 3.4 The surface of a hoow conducting sphere of inner radius a is divided into an even number of equa segments

More information

Physics 506 Winter 2006 Homework Assignment #6 Solutions

Physics 506 Winter 2006 Homework Assignment #6 Solutions Physics 506 Winter 006 Homework Assignment #6 Soutions Textbook probems: Ch. 10: 10., 10.3, 10.7, 10.10 10. Eectromagnetic radiation with eiptic poarization, described (in the notation of Section 7. by

More information

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l Probem 7. Simpe Penduum SEMINAR. PENDULUMS A simpe penduum means a mass m suspended by a string weightess rigid rod of ength so that it can swing in a pane. The y-axis is directed down, x-axis is directed

More information

Separation of Variables and a Spherical Shell with Surface Charge

Separation of Variables and a Spherical Shell with Surface Charge Separation of Variabes and a Spherica She with Surface Charge In cass we worked out the eectrostatic potentia due to a spherica she of radius R with a surface charge density σθ = σ cos θ. This cacuation

More information

More Scattering: the Partial Wave Expansion

More Scattering: the Partial Wave Expansion More Scattering: the Partia Wave Expansion Michae Fower /7/8 Pane Waves and Partia Waves We are considering the soution to Schrödinger s equation for scattering of an incoming pane wave in the z-direction

More information

Physics 235 Chapter 8. Chapter 8 Central-Force Motion

Physics 235 Chapter 8. Chapter 8 Central-Force Motion Physics 35 Chapter 8 Chapter 8 Centra-Force Motion In this Chapter we wi use the theory we have discussed in Chapter 6 and 7 and appy it to very important probems in physics, in which we study the motion

More information

LECTURE 10. The world of pendula

LECTURE 10. The world of pendula LECTURE 0 The word of pendua For the next few ectures we are going to ook at the word of the pane penduum (Figure 0.). In a previous probem set we showed that we coud use the Euer- Lagrange method to derive

More information

PHYS 110B - HW #1 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #1 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased PHYS 110B - HW #1 Fa 2005, Soutions by David Pace Equations referenced as Eq. # are from Griffiths Probem statements are paraphrased [1.] Probem 6.8 from Griffiths A ong cyinder has radius R and a magnetization

More information

Physics 505 Fall 2007 Homework Assignment #5 Solutions. Textbook problems: Ch. 3: 3.13, 3.17, 3.26, 3.27

Physics 505 Fall 2007 Homework Assignment #5 Solutions. Textbook problems: Ch. 3: 3.13, 3.17, 3.26, 3.27 Physics 55 Fa 7 Homework Assignment #5 Soutions Textook proems: Ch. 3: 3.3, 3.7, 3.6, 3.7 3.3 Sove for the potentia in Proem 3., using the appropriate Green function otained in the text, and verify that

More information

Joel Broida UCSD Fall 2009 Phys 130B QM II. Homework Set 2 DO ALL WORK BY HAND IN OTHER WORDS, DON T USE MATHEMAT- ICA OR ANY CALCULATORS.

Joel Broida UCSD Fall 2009 Phys 130B QM II. Homework Set 2 DO ALL WORK BY HAND IN OTHER WORDS, DON T USE MATHEMAT- ICA OR ANY CALCULATORS. Joe Broida UCSD Fa 009 Phys 30B QM II Homework Set DO ALL WORK BY HAND IN OTHER WORDS, DON T USE MATHEMAT- ICA OR ANY CALCULATORS. You may need to use one or more of these: Y 0 0 = 4π Y 0 = 3 4π cos Y

More information

HYDROGEN ATOM SELECTION RULES TRANSITION RATES

HYDROGEN ATOM SELECTION RULES TRANSITION RATES DOING PHYSICS WITH MATLAB QUANTUM PHYSICS Ian Cooper Schoo of Physics, University of Sydney ian.cooper@sydney.edu.au HYDROGEN ATOM SELECTION RULES TRANSITION RATES DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS

More information

Problem Set 6: Solutions

Problem Set 6: Solutions University of Aabama Department of Physics and Astronomy PH 102 / LeCair Summer II 2010 Probem Set 6: Soutions 1. A conducting rectanguar oop of mass M, resistance R, and dimensions w by fas from rest

More information

Supporting Information for Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers

Supporting Information for Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers Supporting Information for Suppressing Kein tunneing in graphene using a one-dimensiona array of ocaized scatterers Jamie D Was, and Danie Hadad Department of Chemistry, University of Miami, Cora Gabes,

More information

$, (2.1) n="# #. (2.2)

$, (2.1) n=# #. (2.2) Chapter. Eectrostatic II Notes: Most of the materia presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartoo, Chap... Mathematica Considerations.. The Fourier series and the Fourier

More information

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n.

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n. Chapter. Eectrostatic II Notes: Most of the materia presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartoo, Chap... Mathematica Considerations.. The Fourier series and the Fourier

More information

Physics 566: Quantum Optics Quantization of the Electromagnetic Field

Physics 566: Quantum Optics Quantization of the Electromagnetic Field Physics 566: Quantum Optics Quantization of the Eectromagnetic Fied Maxwe's Equations and Gauge invariance In ecture we earned how to quantize a one dimensiona scaar fied corresponding to vibrations on

More information

Bohr s atomic model. 1 Ze 2 = mv2. n 2 Z

Bohr s atomic model. 1 Ze 2 = mv2. n 2 Z Bohr s atomic mode Another interesting success of the so-caed od quantum theory is expaining atomic spectra of hydrogen and hydrogen-ike atoms. The eectromagnetic radiation emitted by free atoms is concentrated

More information

LECTURE NOTES 9 TRACELESS SYMMETRIC TENSOR APPROACH TO LEGENDRE POLYNOMIALS AND SPHERICAL HARMONICS

LECTURE NOTES 9 TRACELESS SYMMETRIC TENSOR APPROACH TO LEGENDRE POLYNOMIALS AND SPHERICAL HARMONICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Eectromagnetism II October 7, 202 Prof. Aan Guth LECTURE NOTES 9 TRACELESS SYMMETRIC TENSOR APPROACH TO LEGENDRE POLYNOMIALS AND SPHERICAL

More information

In Coulomb gauge, the vector potential is then given by

In Coulomb gauge, the vector potential is then given by Physics 505 Fa 007 Homework Assignment #8 Soutions Textbook probems: Ch. 5: 5.13, 5.14, 5.15, 5.16 5.13 A sphere of raius a carries a uniform surface-charge istribution σ. The sphere is rotate about a

More information

Forces of Friction. through a viscous medium, there will be a resistance to the motion. and its environment

Forces of Friction. through a viscous medium, there will be a resistance to the motion. and its environment Forces of Friction When an object is in motion on a surface or through a viscous medium, there wi be a resistance to the motion This is due to the interactions between the object and its environment This

More information

Physics 127c: Statistical Mechanics. Fermi Liquid Theory: Collective Modes. Boltzmann Equation. The quasiparticle energy including interactions

Physics 127c: Statistical Mechanics. Fermi Liquid Theory: Collective Modes. Boltzmann Equation. The quasiparticle energy including interactions Physics 27c: Statistica Mechanics Fermi Liquid Theory: Coective Modes Botzmann Equation The quasipartice energy incuding interactions ε p,σ = ε p + f(p, p ; σ, σ )δn p,σ, () p,σ with ε p ε F + v F (p p

More information

Module 22: Simple Harmonic Oscillation and Torque

Module 22: Simple Harmonic Oscillation and Torque Modue : Simpe Harmonic Osciation and Torque.1 Introduction We have aready used Newton s Second Law or Conservation of Energy to anayze systems ike the boc-spring system that osciate. We sha now use torque

More information

Quantum Electrodynamical Basis for Wave. Propagation through Photonic Crystal

Quantum Electrodynamical Basis for Wave. Propagation through Photonic Crystal Adv. Studies Theor. Phys., Vo. 6, 01, no. 3, 19-133 Quantum Eectrodynamica Basis for Wave Propagation through Photonic Crysta 1 N. Chandrasekar and Har Narayan Upadhyay Schoo of Eectrica and Eectronics

More information

Candidate Number. General Certificate of Education Advanced Level Examination January 2012

Candidate Number. General Certificate of Education Advanced Level Examination January 2012 entre Number andidate Number Surname Other Names andidate Signature Genera ertificate of Education dvanced Leve Examination January 212 Physics PHY4/1 Unit 4 Fieds and Further Mechanics Section Tuesday

More information

Section 6: Magnetostatics

Section 6: Magnetostatics agnetic fieds in matter Section 6: agnetostatics In the previous sections we assumed that the current density J is a known function of coordinates. In the presence of matter this is not aways true. The

More information

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law Gauss Law 1. Review on 1) Couomb s Law (charge and force) 2) Eectric Fied (fied and force) 2. Gauss s Law: connects charge and fied 3. Appications of Gauss s Law Couomb s Law and Eectric Fied Couomb s

More information

Lecture 6 Povh Krane Enge Williams Properties of 2-nucleon potential

Lecture 6 Povh Krane Enge Williams Properties of 2-nucleon potential Lecture 6 Povh Krane Enge Wiiams Properties of -nuceon potentia 16.1 4.4 3.6 9.9 Meson Theory of Nucear potentia 4.5 3.11 9.10 I recommend Eisberg and Resnik notes as distributed Probems, Lecture 6 1 Consider

More information

Term Test AER301F. Dynamics. 5 November The value of each question is indicated in the table opposite.

Term Test AER301F. Dynamics. 5 November The value of each question is indicated in the table opposite. U N I V E R S I T Y O F T O R O N T O Facuty of Appied Science and Engineering Term Test AER31F Dynamics 5 November 212 Student Name: Last Name First Names Student Number: Instructions: 1. Attempt a questions.

More information

17 Lecture 17: Recombination and Dark Matter Production

17 Lecture 17: Recombination and Dark Matter Production PYS 652: Astrophysics 88 17 Lecture 17: Recombination and Dark Matter Production New ideas pass through three periods: It can t be done. It probaby can be done, but it s not worth doing. I knew it was

More information

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18 Quantum Mechanica Modes of Vibration and Rotation of Moecues Chapter 18 Moecuar Energy Transationa Vibrationa Rotationa Eectronic Moecuar Motions Vibrations of Moecues: Mode approximates moecues to atoms

More information

LECTURE NOTES 8 THE TRACELESS SYMMETRIC TENSOR EXPANSION AND STANDARD SPHERICAL HARMONICS

LECTURE NOTES 8 THE TRACELESS SYMMETRIC TENSOR EXPANSION AND STANDARD SPHERICAL HARMONICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Eectromagnetism II October, 202 Prof. Aan Guth LECTURE NOTES 8 THE TRACELESS SYMMETRIC TENSOR EXPANSION AND STANDARD SPHERICAL HARMONICS

More information

1. Measurements and error calculus

1. Measurements and error calculus EV 1 Measurements and error cacuus 11 Introduction The goa of this aboratory course is to introduce the notions of carrying out an experiment, acquiring and writing up the data, and finay anayzing the

More information

1.2 Partial Wave Analysis

1.2 Partial Wave Analysis February, 205 Lecture X.2 Partia Wave Anaysis We have described scattering in terms of an incoming pane wave, a momentum eigenet, and and outgoing spherica wave, aso with definite momentum. We now consider

More information

Elements of Kinetic Theory

Elements of Kinetic Theory Eements of Kinetic Theory Statistica mechanics Genera description computation of macroscopic quantities Equiibrium: Detaied Baance/ Equipartition Fuctuations Diffusion Mean free path Brownian motion Diffusion

More information

Cluster modelling. Collisions. Stellar Dynamics & Structure of Galaxies handout #2. Just as a self-gravitating collection of objects.

Cluster modelling. Collisions. Stellar Dynamics & Structure of Galaxies handout #2. Just as a self-gravitating collection of objects. Stear Dynamics & Structure of Gaaxies handout # Custer modeing Just as a sef-gravitating coection of objects. Coisions Do we have to worry about coisions? Gobuar custers ook densest, so obtain a rough

More information

Thermophoretic interaction of heat releasing particles

Thermophoretic interaction of heat releasing particles JOURNAL OF APPLIED PHYSICS VOLUME 9, NUMBER 7 1 APRIL 200 Thermophoretic interaction of heat reeasing partices Yu Doinsky a) and T Eperin b) Department of Mechanica Engineering, The Pearstone Center for

More information

Solution Set Seven. 1 Goldstein Components of Torque Along Principal Axes Components of Torque Along Cartesian Axes...

Solution Set Seven. 1 Goldstein Components of Torque Along Principal Axes Components of Torque Along Cartesian Axes... : Soution Set Seven Northwestern University, Cassica Mechanics Cassica Mechanics, Third Ed.- Godstein November 8, 25 Contents Godstein 5.8. 2. Components of Torque Aong Principa Axes.......................

More information

Induction and Inductance

Induction and Inductance Induction and Inductance How we generate E by B, and the passive component inductor in a circuit. 1. A review of emf and the magnetic fux. 2. Faraday s Law of Induction 3. Lentz Law 4. Inductance and inductor

More information

Multiple Beam Interference

Multiple Beam Interference MutipeBeamInterference.nb James C. Wyant 1 Mutipe Beam Interference 1. Airy's Formua We wi first derive Airy's formua for the case of no absorption. ü 1.1 Basic refectance and transmittance Refected ight

More information

Lecture 17 - The Secrets we have Swept Under the Rug

Lecture 17 - The Secrets we have Swept Under the Rug Lecture 17 - The Secrets we have Swept Under the Rug Today s ectures examines some of the uirky features of eectrostatics that we have negected up unti this point A Puzze... Let s go back to the basics

More information

Lecture 9. Stability of Elastic Structures. Lecture 10. Advanced Topic in Column Buckling

Lecture 9. Stability of Elastic Structures. Lecture 10. Advanced Topic in Column Buckling Lecture 9 Stabiity of Eastic Structures Lecture 1 Advanced Topic in Coumn Bucking robem 9-1: A camped-free coumn is oaded at its tip by a oad. The issue here is to find the itica bucking oad. a) Suggest

More information

arxiv:quant-ph/ v3 6 Jan 1995

arxiv:quant-ph/ v3 6 Jan 1995 arxiv:quant-ph/9501001v3 6 Jan 1995 Critique of proposed imit to space time measurement, based on Wigner s cocks and mirrors L. Diósi and B. Lukács KFKI Research Institute for Partice and Nucear Physics

More information

Related Topics Maxwell s equations, electrical eddy field, magnetic field of coils, coil, magnetic flux, induced voltage

Related Topics Maxwell s equations, electrical eddy field, magnetic field of coils, coil, magnetic flux, induced voltage Magnetic induction TEP Reated Topics Maxwe s equations, eectrica eddy fied, magnetic fied of cois, coi, magnetic fux, induced votage Principe A magnetic fied of variabe frequency and varying strength is

More information

Introduction to LMTO method

Introduction to LMTO method 1 Introduction to MTO method 24 February 2011; V172 P.Ravindran, FME-course on Ab initio Modeing of soar ce Materias 24 February 2011 Introduction to MTO method Ab initio Eectronic Structure Cacuations

More information

Elements of Kinetic Theory

Elements of Kinetic Theory Eements of Kinetic Theory Diffusion Mean free path rownian motion Diffusion against a density gradient Drift in a fied Einstein equation aance between diffusion and drift Einstein reation Constancy of

More information

12.2. Maxima and Minima. Introduction. Prerequisites. Learning Outcomes

12.2. Maxima and Minima. Introduction. Prerequisites. Learning Outcomes Maima and Minima 1. Introduction In this Section we anayse curves in the oca neighbourhood of a stationary point and, from this anaysis, deduce necessary conditions satisfied by oca maima and oca minima.

More information

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES Separation of variabes is a method to sove certain PDEs which have a warped product structure. First, on R n, a inear PDE of order m is

More information

Agenda Administrative Matters Atomic Physics Molecules

Agenda Administrative Matters Atomic Physics Molecules Fromm Institute for Lifeong Learning University of San Francisco Modern Physics for Frommies IV The Universe - Sma to Large Lecture 3 Agenda Administrative Matters Atomic Physics Moecues Administrative

More information

CONCHOID OF NICOMEDES AND LIMACON OF PASCAL AS ELECTRODE OF STATIC FIELD AND AS WAVEGUIDE OF HIGH FREQUENCY WAVE

CONCHOID OF NICOMEDES AND LIMACON OF PASCAL AS ELECTRODE OF STATIC FIELD AND AS WAVEGUIDE OF HIGH FREQUENCY WAVE Progress In Eectromagnetics Research, PIER 30, 73 84, 001 CONCHOID OF NICOMEDES AND LIMACON OF PASCAL AS ELECTRODE OF STATIC FIELD AND AS WAVEGUIDE OF HIGH FREQUENCY WAVE W. Lin and Z. Yu University of

More information

Formulas for Angular-Momentum Barrier Factors Version II

Formulas for Angular-Momentum Barrier Factors Version II BNL PREPRINT BNL-QGS-06-101 brfactor1.tex Formuas for Anguar-Momentum Barrier Factors Version II S. U. Chung Physics Department, Brookhaven Nationa Laboratory, Upton, NY 11973 March 19, 2015 abstract A

More information

Jackson 4.10 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 4.10 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 4.10 Homework Probem Soution Dr. Christopher S. Baird University of Massachusetts Lowe PROBLEM: Two concentric conducting spheres of inner and outer radii a and b, respectivey, carry charges ±.

More information

221B Lecture Notes Notes on Spherical Bessel Functions

221B Lecture Notes Notes on Spherical Bessel Functions Definitions B Lecture Notes Notes on Spherica Besse Functions We woud ike to sove the free Schrödinger equation [ h d r R(r) = h k R(r). () m r dr r m R(r) is the radia wave function ψ( x) = R(r)Y m (θ,

More information

First-Order Corrections to Gutzwiller s Trace Formula for Systems with Discrete Symmetries

First-Order Corrections to Gutzwiller s Trace Formula for Systems with Discrete Symmetries c 26 Noninear Phenomena in Compex Systems First-Order Corrections to Gutzwier s Trace Formua for Systems with Discrete Symmetries Hoger Cartarius, Jörg Main, and Günter Wunner Institut für Theoretische

More information

DYNAMIC RESPONSE OF CIRCULAR FOOTINGS ON SATURATED POROELASTIC HALFSPACE

DYNAMIC RESPONSE OF CIRCULAR FOOTINGS ON SATURATED POROELASTIC HALFSPACE 3 th Word Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 4 Paper No. 38 DYNAMIC RESPONSE OF CIRCULAR FOOTINGS ON SATURATED POROELASTIC HALFSPACE Bo JIN SUMMARY The dynamic responses

More information

Applied Nuclear Physics (Fall 2006) Lecture 7 (10/2/06) Overview of Cross Section Calculation

Applied Nuclear Physics (Fall 2006) Lecture 7 (10/2/06) Overview of Cross Section Calculation 22.101 Appied Nucear Physics (Fa 2006) Lecture 7 (10/2/06) Overview of Cross Section Cacuation References P. Roman, Advanced Quantum Theory (Addison-Wesey, Reading, 1965), Chap 3. A. Foderaro, The Eements

More information

Ph501 Electrodynamics Problem Set 8

Ph501 Electrodynamics Problem Set 8 Princeton University Ph501 Electrodynamics Problem Set 8 Kirk T. McDonald 001) kirkmcd@princeton.edu http://physics.princeton.edu/~mcdonald/examples/ Princeton University 001 Ph501 Set 8, Problem 1 1 1.

More information

An approximate method for solving the inverse scattering problem with fixed-energy data

An approximate method for solving the inverse scattering problem with fixed-energy data J. Inv. I-Posed Probems, Vo. 7, No. 6, pp. 561 571 (1999) c VSP 1999 An approximate method for soving the inverse scattering probem with fixed-energy data A. G. Ramm and W. Scheid Received May 12, 1999

More information

Nuclear Size and Density

Nuclear Size and Density Nucear Size and Density How does the imited range of the nucear force affect the size and density of the nucei? Assume a Vecro ba mode, each having radius r, voume V = 4/3π r 3. Then the voume of the entire

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . Two points A and B ie on a smooth horizonta tabe with AB = a. One end of a ight eastic spring, of natura ength a and moduus of easticity mg, is attached to A. The other end of the spring is attached

More information

CS229 Lecture notes. Andrew Ng

CS229 Lecture notes. Andrew Ng CS229 Lecture notes Andrew Ng Part IX The EM agorithm In the previous set of notes, we taked about the EM agorithm as appied to fitting a mixture of Gaussians. In this set of notes, we give a broader view

More information

Harmonic Expansion of Electromagnetic Fields

Harmonic Expansion of Electromagnetic Fields Chapter 6 Harmonic Expansion of Eectromagnetic Fieds 6. Introduction For a given current source J(r, t, the vector potentia can in principe be found by soving the inhomogeneous vector wave equation, (

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 2: The Moment Equations

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 2: The Moment Equations .615, MHD Theory of Fusion ystems Prof. Freidberg Lecture : The Moment Equations Botzmann-Maxwe Equations 1. Reca that the genera couped Botzmann-Maxwe equations can be written as f q + v + E + v B f =

More information

14 Separation of Variables Method

14 Separation of Variables Method 14 Separation of Variabes Method Consider, for exampe, the Dirichet probem u t = Du xx < x u(x, ) = f(x) < x < u(, t) = = u(, t) t > Let u(x, t) = T (t)φ(x); now substitute into the equation: dt

More information

Version 2.2 NE03 - Faraday's Law of Induction

Version 2.2 NE03 - Faraday's Law of Induction Definition Version. Laboratory Manua Department of Physics he University of Hong Kong Aims o demonstrate various properties of Faraday s Law such as: 1. Verify the aw.. Demonstrate the ighty damped osciation

More information

c=lu Name Some Characteristics of Light So What Is Light? Overview

c=lu Name Some Characteristics of Light So What Is Light? Overview Chp 6: Atomic Structure 1. Eectromagnetic Radiation 2. Light Energy 3. Line Spectra & the Bohr Mode 4. Eectron & Wave-Partice Duaity 5. Quantum Chemistry & Wave Mechanics 6. Atomic Orbitas Overview Chemica

More information

Nonperturbative Shell Correction to the Bethe Bloch Formula for the Energy Losses of Fast Charged Particles

Nonperturbative Shell Correction to the Bethe Bloch Formula for the Energy Losses of Fast Charged Particles ISSN 002-3640, JETP Letters, 20, Vo. 94, No., pp. 5. Peiades Pubishing, Inc., 20. Origina Russian Text V.I. Matveev, D.N. Makarov, 20, pubished in Pis ma v Zhurna Eksperimenta noi i Teoreticheskoi Fiziki,

More information

ANISOTROPIES OF THE MICROWAVE BACKGROUND

ANISOTROPIES OF THE MICROWAVE BACKGROUND ANISOTROPIES OF THE MICROWAVE BACKGROUND The Universe just before recombination is a very tighty couped fuid, due to the arge eectromagnetic Thomson cross section. Photons scatter off charged partices

More information

Two Kinds of Parabolic Equation algorithms in the Computational Electromagnetics

Two Kinds of Parabolic Equation algorithms in the Computational Electromagnetics Avaiabe onine at www.sciencedirect.com Procedia Engineering 9 (0) 45 49 0 Internationa Workshop on Information and Eectronics Engineering (IWIEE) Two Kinds of Paraboic Equation agorithms in the Computationa

More information

Effects of energy loss on interaction dynamics of energetic electrons with plasmas. C. K. Li and R. D. Petrasso. 1 November 2008

Effects of energy loss on interaction dynamics of energetic electrons with plasmas. C. K. Li and R. D. Petrasso. 1 November 2008 PSFC/JA-8-3 ffects of energy oss on interaction dynamics of energetic ctrons with pasmas C. K. Li and R. D. Petrasso November 8 Pasma Science and Fusion Center Massachusetts Institute of Technoogy Cambridge,

More information

11.1 One-dimensional Helmholtz Equation

11.1 One-dimensional Helmholtz Equation Chapter Green s Functions. One-dimensiona Hemhotz Equation Suppose we have a string driven by an externa force, periodic with frequency ω. The differentia equation here f is some prescribed function) 2

More information

arxiv:nlin/ v2 [nlin.cd] 30 Jan 2006

arxiv:nlin/ v2 [nlin.cd] 30 Jan 2006 expansions in semicassica theories for systems with smooth potentias and discrete symmetries Hoger Cartarius, Jörg Main, and Günter Wunner arxiv:nin/0510051v [nin.cd] 30 Jan 006 1. Institut für Theoretische

More information

SECTION A. Question 1

SECTION A. Question 1 SECTION A Question 1 (a) In the usua notation derive the governing differentia equation of motion in free vibration for the singe degree of freedom system shown in Figure Q1(a) by using Newton's second

More information

Theoretical Cosmology

Theoretical Cosmology Theoretica Cosmoogy Ruth Durrer, Roy Maartens, Costas Skordis Geneva, Capetown, Nottingham Benasque, February 16 2011 Ruth Durrer (Université de Genève) Theoretica Cosmoogy Benasque 2011 1 / 14 Theoretica

More information

Physics 116C Helmholtz s and Laplace s Equations in Spherical Polar Coordinates: Spherical Harmonics and Spherical Bessel Functions

Physics 116C Helmholtz s and Laplace s Equations in Spherical Polar Coordinates: Spherical Harmonics and Spherical Bessel Functions Physics 116C Hemhotz s an Lapace s Equations in Spherica Poar Coorinates: Spherica Harmonics an Spherica Besse Functions Peter Young Date: October 28, 2013) I. HELMHOLTZ S EQUATION As iscusse in cass,

More information

AAPT UNITED STATES PHYSICS TEAM AIP 2012 DO NOT DISTRIBUTE THIS PAGE

AAPT UNITED STATES PHYSICS TEAM AIP 2012 DO NOT DISTRIBUTE THIS PAGE 2012 Semifina Exam 1 AAPT UNITED STATES PHYSICS TEAM AIP 2012 Semifina Exam DO NOT DISTRIBUTE THIS PAGE Important Instructions for the Exam Supervisor This examination consists of two parts. Part A has

More information

PHYSICS LOCUS / / d dt. ( vi) mass, m moment of inertia, I. ( ix) linear momentum, p Angular momentum, l p mv l I

PHYSICS LOCUS / / d dt. ( vi) mass, m moment of inertia, I. ( ix) linear momentum, p Angular momentum, l p mv l I 6 n terms of moment of inertia, equation (7.8) can be written as The vector form of the above equation is...(7.9 a)...(7.9 b) The anguar acceeration produced is aong the direction of appied externa torque.

More information

Measurement of acceleration due to gravity (g) by a compound pendulum

Measurement of acceleration due to gravity (g) by a compound pendulum Measurement of acceeration due to gravity (g) by a compound penduum Aim: (i) To determine the acceeration due to gravity (g) by means of a compound penduum. (ii) To determine radius of gyration about an

More information

Physics 214 Midterm Exam Solutions Winter 2017

Physics 214 Midterm Exam Solutions Winter 2017 Physics 14 Midterm Exam Solutions Winter 017 1. A linearly polarized electromagnetic wave, polarized in the ˆx direction, is traveling in the ẑ-direction in a dielectric medium of refractive index n 1.

More information

On Integrals Involving Universal Associated Legendre Polynomials and Powers of the Factor (1 x 2 ) and Their Byproducts

On Integrals Involving Universal Associated Legendre Polynomials and Powers of the Factor (1 x 2 ) and Their Byproducts Commun. Theor. Phys. 66 (216) 369 373 Vo. 66, No. 4, October 1, 216 On Integras Invoving Universa Associated Legendre Poynomias and Powers of the Factor (1 x 2 ) and Their Byproducts Dong-Sheng Sun ( 孙东升

More information

Scattering of Particles by Potentials

Scattering of Particles by Potentials Scattering of Partices by Potentias 2 Introduction The three prototypes of spectra of sef-adjoint operators, the discrete spectrum, with or without degeneracy, the continuous spectrum, andthe mixed spectrum,

More information

Proceedings of Meetings on Acoustics

Proceedings of Meetings on Acoustics Proceedings of Meetings on Acoustics Voume 9, 23 http://acousticasociety.org/ ICA 23 Montrea Montrea, Canada 2-7 June 23 Architectura Acoustics Session 4pAAa: Room Acoustics Computer Simuation II 4pAAa9.

More information

The basic equation for the production of turbulent kinetic energy in clouds is. dz + g w

The basic equation for the production of turbulent kinetic energy in clouds is. dz + g w Turbuence in couds The basic equation for the production of turbuent kinetic energy in couds is de TKE dt = u 0 w 0 du v 0 w 0 dv + g w q 0 q 0 e The first two terms on the RHS are associated with shear

More information

THE OUT-OF-PLANE BEHAVIOUR OF SPREAD-TOW FABRICS

THE OUT-OF-PLANE BEHAVIOUR OF SPREAD-TOW FABRICS ECCM6-6 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Sevie, Spain, -6 June 04 THE OUT-OF-PLANE BEHAVIOUR OF SPREAD-TOW FABRICS M. Wysocki a,b*, M. Szpieg a, P. Heström a and F. Ohsson c a Swerea SICOMP

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM REVIEW Vo. 49,No. 1,pp. 111 1 c 7 Society for Industria and Appied Mathematics Domino Waves C. J. Efthimiou M. D. Johnson Abstract. Motivated by a proposa of Daykin [Probem 71-19*, SIAM Rev., 13 (1971),

More information

arxiv: v1 [hep-th] 10 Dec 2018

arxiv: v1 [hep-th] 10 Dec 2018 Casimir energy of an open string with ange-dependent boundary condition A. Jahan 1 and I. Brevik 2 1 Research Institute for Astronomy and Astrophysics of Maragha (RIAAM, Maragha, Iran 2 Department of Energy

More information

14-6 The Equation of Continuity

14-6 The Equation of Continuity 14-6 The Equation of Continuity 14-6 The Equation of Continuity Motion of rea fuids is compicated and poory understood (e.g., turbuence) We discuss motion of an idea fuid 1. Steady fow: Laminar fow, the

More information

VTU-NPTEL-NMEICT Project

VTU-NPTEL-NMEICT Project MODUE-X -CONTINUOUS SYSTEM : APPROXIMATE METHOD VIBRATION ENGINEERING 14 VTU-NPTE-NMEICT Project Progress Report The Project on Deveopment of Remaining Three Quadrants to NPTE Phase-I under grant in aid

More information

MA 201: Partial Differential Equations Lecture - 10

MA 201: Partial Differential Equations Lecture - 10 MA 201: Partia Differentia Equations Lecture - 10 Separation of Variabes, One dimensiona Wave Equation Initia Boundary Vaue Probem (IBVP) Reca: A physica probem governed by a PDE may contain both boundary

More information

Gravitational Corrections to Energy-Levels of a Hydrogen Atom

Gravitational Corrections to Energy-Levels of a Hydrogen Atom Commun. Theor. Phys. Beijing, China 47 27 pp. 658 662 c Internationa Academic Pubishers Vo. 47, No. 4, Apri 5, 27 Gravitationa Corrections to Energy-Leves of a Hydrogen Atom ZHAO Zhen-Hua,, LIU Yu-Xiao,

More information

V.B The Cluster Expansion

V.B The Cluster Expansion V.B The Custer Expansion For short range interactions, speciay with a hard core, it is much better to repace the expansion parameter V( q ) by f( q ) = exp ( βv( q )), which is obtained by summing over

More information

Introduction to Simulation - Lecture 14. Multistep Methods II. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

Introduction to Simulation - Lecture 14. Multistep Methods II. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Introduction to Simuation - Lecture 14 Mutistep Methods II Jacob White Thans to Deepa Ramaswamy, Micha Rewiensi, and Karen Veroy Outine Sma Timestep issues for Mutistep Methods Reminder about LTE minimization

More information

FFTs in Graphics and Vision. Spherical Convolution and Axial Symmetry Detection

FFTs in Graphics and Vision. Spherical Convolution and Axial Symmetry Detection FFTs in Graphics and Vision Spherica Convoution and Axia Symmetry Detection Outine Math Review Symmetry Genera Convoution Spherica Convoution Axia Symmetry Detection Math Review Symmetry: Given a unitary

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String ecture Notes for Math 251: ODE and PDE. ecture 3: 1.7 Wave Equation and Vibrations of an Eastic String Shawn D. Ryan Spring 212 ast Time: We studied other Heat Equation probems with various other boundary

More information

Electromagnetism in the Spherical-Wave Basis:

Electromagnetism in the Spherical-Wave Basis: Eectromagnetism in the Spherica-Wave Basis: A (Somewhat Random) Compendium of Reference Formuas Homer Reid August 1, 216 Abstract This memo consoidates and coects for reference a somewhat random hodgepodge

More information

Where Does the Power Become AC in an AC Power Source?

Where Does the Power Become AC in an AC Power Source? 1 Problem Where Does the Power Become AC in an AC Power Source? Kirk T. McDonald Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (February 27, 2007) According to Faraday and Maxwell,

More information

Chapter 32 Inductance

Chapter 32 Inductance Chapter 3 nductance 3. Sef-nduction and nductance Sef-nductance Φ BA na --> Φ The unit of the inductance is henry (H). Wb T H A A When the current in the circuit is changing, the agnetic fux is aso changing.

More information