Introduction to Simulation - Lecture 14. Multistep Methods II. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

Size: px
Start display at page:

Download "Introduction to Simulation - Lecture 14. Multistep Methods II. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy"

Transcription

1 Introduction to Simuation - Lecture 14 Mutistep Methods II Jacob White Thans to Deepa Ramaswamy, Micha Rewiensi, and Karen Veroy

2 Outine Sma Timestep issues for Mutistep Methods Reminder about LTE minimization A nonconverging exampe Stabiity + Consistency impies convergence Investigate Large Timestep Issues Absoute Stabiity for two time-scae exampes. Osciators.

3 Noninear Differentia Equation: Basic Equations Genera Notation d xt () = f ( xt (), ut ()) dt ( ) -Step Mutistep Approach: α ˆ ˆ, ( ) x = t β f x u t xˆ 2 xˆ 1 xˆ xˆ = 0 = 0 Mutistep coefficients Soution at discrete points t t 3 t 2 t 1 t Time discretization

4 Simpified Probem for Anaysis Scaar ODE: Scaar Mutistep formua: d v () t = λ v (), t v ( 0) = v 0 λ dt α ˆ ˆ v = t β λv = 0 = 0 Must Consider ALL λ Im ( λ ) O sc Decaying Soutions i a ti Growing Soutions Re( λ ) o n s

5 Convergence Anaysis Convergence Definition Definition: A mutistep method for soving initia vaue probems on [0,T] is said to be convergent if given any initia condition max vˆ v t 0 as t 0 T 0, t ( ) vˆ computed with t t vˆ computed with 2 v exact

6 Convergence Anaysis Two Conditions for Convergence 1) Loca Condition: One step errors are sma (consistency) Typicay verified using Tayor Series 2) Goba Condition: The singe step errors do not grow too quicy (stabiity) Muti-step ( > 1) methods require carefu anaysis.

7 Mutistep formua: Convergence Anaysis Goba Error Equation α v t β λv = 0 = 0 ˆ ˆ = 0 Exact soution Amost satisfies Mutistep Formua: Goba Error: E v t v d α v t t v t = e ( ) β ( ) = 0 = 0 dt ( ) ˆ Loca Truncation Error (LTE) Difference equation reates LTE to Goba error 1 ( α λ β ) ( α λ β ) ( α λ β ) t E + t E + + t E = e

8 Maing LTE Sma Exactness Constraints Loca Truncation Error: If Can't be from d v t dt () = λv() t d v t = t v t = pt dt () p () p 1 (( ) ) = 0 = 0 p d α v t t v t = e ( ) β ( ) = 0 = 0 dt (( ) t) LTE p 1 α t t β p = v( t ) d ( ) v t dt e

9 Maing LTE Sma Exactness Constraint =2 Exampe p p 1 Exactness Cons traints: α ( ) β p( ) = 0 = 0 = 0 p=0 p=1 p=2 p=3 p=4 For =2, yieds a 5x6 system of equations for Coefficients α α Note α α i = = 0 β β β 2 Aways

10 α α β 0 = β β 2 16 Maing LTE Sma Exactness Constraint =2 exampe, generating methods First introduce a normaization, for exampe α = 1 Sove for the 2-step method with owest LTE α = 1, α = 0, α = 1, β = 1/ 3, β = 4 / 3, β = 1/ ( ) 5 Satisfies a five exactness constraints LTE = C t Sove for the 2-step expicit method with owest LTE α0 = 1, α1 = 4, α2 = 5, β0 = 0, β1 = 4, β2 = 2 Can ony satisfy four exactness constraints LTE = C t 0 ( ) 4

11 L T E Mutistep Methods d vt () = vt () d Trap Maing LTE Sma LTE Pots for the FE, Trap, and Best Expicit (BESTE). Beste FE Best Expicit Method has highest one-step accurate Timestep

12 Maing LTE Sma Goba Error for the FE, Trap, and Best Expicit (BESTE). M a x E r r o r d vt () = vt () t 0,1 d FE [ ] Trap Where s BESTE? Timestep

13 M a x E r r o r Mutistep Methods worrysome d vt () = vt () d FE Maing LTE Sma Goba Error for the FE, Trap, and Best Expicit (BESTE). Trap Beste Best Expicit Method has owest one-step error but goba errror increases as timestep decreases Timestep

14 Stabiity of the method Difference Equation Why did the best 2-step expicit method fai to Converge? Mutistep Method Difference Equation 1 ( α λ β ) ( α λ β ) ( α λ β ) t E + t E + + t E = e v t v ( ) ˆ Goba Error We made the LTE so sma, how come the Goba error is so arge? LTE

15 Stabiity of the method Stabiity Definition Mutistep Method Difference Equation 1 ( α λ β ) ( α λ β ) ( α λ β ) t E + t E + + t E = e Definition: A mutistep method is stabe if as T ( ) max E C T max e T T 0, t 0, t interva t dependent t 0 Stabiity means: Goba Error is bounded by a constant times the sum of the LTE s

16 Given a th order difference eqn with zero initia conditions 1 ax+ + ax = u, x = 0,, x = 0 0 h Aside on difference Equations x can be reated to the input u by Q M q 1 = q= 1 m= 0 Root mutipicity γ qm, () m ( ς ) Convoution Sum q Roots of Root Reation x = h u = 0 convoution sum = az az a

17 Aside on difference Equations Convoution Sum Bounding Terms If If ς ς Q M q 1 ( ) m ( ) x = γqm, ςq u q= 1 m= 0 = 0 R qm, <1, then R Cmax u q q, m ( ε) t q 0 q, Independent of e <1+, hen R C max u ε ε Bounds distinct Roots

18 Stabiity of the method Stabiity Theorem Theorem: A mutistep method is stabe if and ony if Roots of 1 α0z α1z α = 0 either: 1. Have magnitude ess than one 2. Have magnitude equa to one and are distinct

19 Stabiity of the method Stabiity Theorem Proof Given the Mutistep Method Difference Equation 1 ( α λ β ) ( α λ β ) ( α λ β ) t E + t E + + t E = e ( t ) z + ( t ) If, as t 0, roots of α λ β + α λ β = ess than one in magnitude or are distinct and bounded by 1 + κ t, κ > 0 Then from the aside on difference equations κ t κt e Ce T max E C max e max t T t T T T 0, 0, 0, t t t CT ( ) e

20 roots of α z = 0 = 0 Im Stabiity of the method Stabiity Theorem Picture As t 0, roots move inward to match α poynomia -1 1 Re ( α ) λ β roots of t z = 0 for a nonzero t = 0

21 Best expicit 2-step method Stabiity of the method The BESTE Method α = 1, α = 4, α = 5, β = 0, β = 4, β = roots of z + 4z 5 = 0 Im Re Method is Widy unstabe!

22 Stabiity of the method Dahquist s First Stabiity Barrier For a stabe, expicit -step mutistep method, the maximum number of exactness constraints that can be satisfied is ess than or equa to (note there are 2-1 coefficients). For impicit methods, the number of constraints that can be satisfied is either +2 if is even or +1 if is odd.

23 Convergence Anaysis Conditions for convergence, stabiity and consistency 1) Loca Condition: One step errors are sma (consistency) Exactness Constraints up to p 0 (p 0 must be > 0) T 0, t ( ) p max e C t for t < t 1 0 2) Goba Condition: One step errors grow sowy (stabiity) roots of α z = 0 = 0 max Convergence Resut: Inside the unit circe or on the unit circe and distinct T E C max e T 2 T 0, t 0, t t max T 0, t E CT t p ( ) 0

24 sma t Bacward-Euer Computed Soution Large timestep stabiity Two time-constant circuit Circuit Exampe d xt () = Axt () dt eig( A ) = 2.1, 0.1 arge t With Bacward-Euer it is easy to use sma timesteps for the fast dynamics and then switch to arge timesteps for the sow decay

25 Large Timestep Stabiity FE on two time-constant circuit? Forward-Euer Computed Soution The Forward-Euer is accurate for sma timesteps, but goes unstabe when the timestep is enarged

26 Scaar ODE: Forward-Euer: Bacward-Euer: Large Timestep Stabiity FE, BE and Trap on the scaar ode probem d v () t = λ v (), t v ( 0) = v 0 λ dt ( 1 λ ) 1 ˆ ˆ ˆ ˆ v + = v + tλv = + t v If 1+ tλ > 1 the soution grows even if λ<0 vˆ = vˆ + tλvˆ vˆ = vˆ If 1 the soution decays even if λ 0 1 tλ < > Trap Rue: ( ) ( 1 tλ) ( tλ ) ( tλ ) ˆ ˆ ˆ v = v tλ v + vˆ vˆ 1 = vˆ

27 Forward Euer Im(z) z Large Timestep Stabiity FE arge timestep region of absoute stabiity = 1+ tλ ( ) ODE stabiity region Im( λ ) -1 Difference Eqn Stabiity region 1 Re(z) 2 t Region of Absoute Stabiity Re( λ )

28 Im(z) Large Timestep Stabiity FE arge timestep stabiity, circuit exampe Circuit exampe with t = 0.1, λ = 2.1, 0.1 ODE stabiity region Im λ ( ) -1 Difference Eqn Stabiity region 1 Re(z) 2 t Region of Absoute Stabiity Re( λ )

29 Unstabe Difference Equation Mutistep Methods Im(z) Large Timestep Stabiity FE arge timestep stabiity, circuit exampe Circuit exampe with t=1.0, λ = 2.1, 0.1 ODE stabiity region Im λ ( ) -1 Difference Eqn Stabiity region 1 Re(z) 2 t Region of Absoute Stabiity Re( λ )

30 Large Timestep Stabiity BE arge timestep region of absoute stabiity Bacward Euer ( ) 1 Im(z) z = 1 tλ Im( λ ) -1 Difference Eqn Stabiity region 1 Re(z) Region of Absoute Stabiity

31 Large Timestep Stabiity BE arge timestep stabiity, circuit exampe Circuit exampe with t = 0.1, λ = 2.1, 0.1 Im(z) Im λ ( ) -1 Difference Eqn Stabiity region 1 Re(z) Region of Absoute Stabiity

32 Im(z) Large Timestep Stabiity BE arge timestep stabiity, circuit exampe Circuit exampe with t =1.0, λ = 2.1, 0.1 Stabe Difference Equation Im λ ( ) -1 Difference Eqn Stabiity region 1 Re(z) Region of Absoute Stabiity

33 Large Timestep Stabiity Stabiity Definitions Region of Absoute Stabiity for a Mutistep method: λ t α λ tβ z ( ) Vaues of where roots of = 0 are inside the unit circe. A-stabe: A method is A-stabe if its region of absoute stabiity incudes the entire eft-haf of the compex pane Dahquist s second Stabiity barrier: There are no A-stabe mutistep methods of convergence order greater than 2, and the trap rue is the most accurate. = 0

34 Mutistep methods 4 2 t = 0.1 Numerica Experiments Osciating Strut and Mass Forward-Euer Trap rue Bacward-Euer Why does FE resut grow, BE resut decay and the Trap rue preserve osciations

35 Forward Euer Im(z) z Large Timestep Stabiity FE arge timestep osciator exampe = 1+ tλ ( ) ODE stabiity region Im( λ ) unstabe osciating -1 Difference Eqn Stabiity region 1 Re(z) 2 t Region of Absoute Stabiity Re( λ )

36 Large Timestep Stabiity BE arge timestep osciator exampe Bacward Euer ( ) 1 Im(z) z = 1 tλ Im( λ ) decaying osciating -1 Difference Eqn Stabiity region 1 Re(z) Region of Absoute Stabiity

37 Trap Rue Im(z) z = osciating Large Timestep Stabiity Trap arge timestep osciator exampe ( tλ ) ( tλ ) Im( λ ) osciating -1 Difference Eqn Stabiity region 1 Re(z) Region of Absoute Stabiity

38 Large Timestep Issues Two Time-Constant Stabe probem (Circuit) FE: stabiity, not accuracy, imited timestep size. BE was A-stabe, any timestep coud be used. Trap Rue most accurate A-stabe m-step method Osciator Probem Forward-Euer generated an unstabe difference equation regardess of timestep size. Bacward-Euer generated a stabe (decaying) difference equation regardess of timestep size. Trapezoida rue mapped the imaginary axis

39 Summary Sma Timestep issues for Mutistep Methods Loca truncation error and Exactness. Difference equation stabiity. Stabiity + Consistency impies convergence. Investigate Large Timestep Issues Absoute Stabiity for two time-scae exampes. Osciators. Didn t ta about Runge-Kutta schemes, higher order A-stabe methods.

Introduction to Simulation - Lecture 13. Convergence of Multistep Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy

Introduction to Simulation - Lecture 13. Convergence of Multistep Methods. Jacob White. Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Introduction to Simuation - Lecture 13 Convergence of Mutistep Methods Jacob White Thans to Deepa Ramaswamy, Micha Rewiensi, and Karen Veroy Outine Sma Timestep issues for Mutistep Methods Loca truncation

More information

Methods for Ordinary Differential Equations. Jacob White

Methods for Ordinary Differential Equations. Jacob White Introduction to Simuation - Lecture 12 for Ordinary Differentia Equations Jacob White Thanks to Deepak Ramaswamy, Jaime Peraire, Micha Rewienski, and Karen Veroy Outine Initia Vaue probem exampes Signa

More information

LECTURE 10. The world of pendula

LECTURE 10. The world of pendula LECTURE 0 The word of pendua For the next few ectures we are going to ook at the word of the pane penduum (Figure 0.). In a previous probem set we showed that we coud use the Euer- Lagrange method to derive

More information

Integrating Factor Methods as Exponential Integrators

Integrating Factor Methods as Exponential Integrators Integrating Factor Methods as Exponentia Integrators Borisav V. Minchev Department of Mathematica Science, NTNU, 7491 Trondheim, Norway Borko.Minchev@ii.uib.no Abstract. Recenty a ot of effort has been

More information

STABILITY OF A PARAMETRICALLY EXCITED DAMPED INVERTED PENDULUM 1. INTRODUCTION

STABILITY OF A PARAMETRICALLY EXCITED DAMPED INVERTED PENDULUM 1. INTRODUCTION Journa of Sound and Vibration (996) 98(5), 643 65 STABILITY OF A PARAMETRICALLY EXCITED DAMPED INVERTED PENDULUM G. ERDOS AND T. SINGH Department of Mechanica and Aerospace Engineering, SUNY at Buffao,

More information

Fourier Series. 10 (D3.9) Find the Cesàro sum of the series. 11 (D3.9) Let a and b be real numbers. Under what conditions does a series of the form

Fourier Series. 10 (D3.9) Find the Cesàro sum of the series. 11 (D3.9) Let a and b be real numbers. Under what conditions does a series of the form Exercises Fourier Anaysis MMG70, Autumn 007 The exercises are taken from: Version: Monday October, 007 DXY Section XY of H F Davis, Fourier Series and orthogona functions EÖ Some exercises from earier

More information

Methods for Computing Periodic Steady-State Jacob White

Methods for Computing Periodic Steady-State Jacob White Introduction to Simulation - Lecture 15 Methods for Computing Periodic Steady-State Jacob White Thanks to Deepak Ramaswamy, Michal Rewienski, and Karen Veroy Outline Periodic Steady-state problems Application

More information

Input-to-state stability for a class of Lurie systems

Input-to-state stability for a class of Lurie systems Automatica 38 (2002) 945 949 www.esevier.com/ocate/automatica Brief Paper Input-to-state stabiity for a cass of Lurie systems Murat Arcak a;, Andrew Tee b a Department of Eectrica, Computer and Systems

More information

4 Separation of Variables

4 Separation of Variables 4 Separation of Variabes In this chapter we describe a cassica technique for constructing forma soutions to inear boundary vaue probems. The soution of three cassica (paraboic, hyperboic and eiptic) PDE

More information

Lecture Notes 4: Fourier Series and PDE s

Lecture Notes 4: Fourier Series and PDE s Lecture Notes 4: Fourier Series and PDE s 1. Periodic Functions A function fx defined on R is caed a periodic function if there exists a number T > such that fx + T = fx, x R. 1.1 The smaest number T for

More information

Lecture Note 3: Stationary Iterative Methods

Lecture Note 3: Stationary Iterative Methods MATH 5330: Computationa Methods of Linear Agebra Lecture Note 3: Stationary Iterative Methods Xianyi Zeng Department of Mathematica Sciences, UTEP Stationary Iterative Methods The Gaussian eimination (or

More information

ODE Homework 2. Since M y N x, the equation is not exact. 2. Determine whether the following equation is exact. If it is exact, M y N x 1 x.

ODE Homework 2. Since M y N x, the equation is not exact. 2. Determine whether the following equation is exact. If it is exact, M y N x 1 x. ODE Homework.6. Exact Equations and Integrating Factors 1. Determine whether the foowing equation is exact. If it is exact, find the soution pe x sin qdx p3x e x sin qd 0 [.6 #8] So. Let Mpx, q e x sin,

More information

NOISE-INDUCED STABILIZATION OF STOCHASTIC DIFFERENTIAL EQUATIONS

NOISE-INDUCED STABILIZATION OF STOCHASTIC DIFFERENTIAL EQUATIONS NOISE-INDUCED STABILIZATION OF STOCHASTIC DIFFERENTIAL EQUATIONS TONY ALLEN, EMILY GEBHARDT, AND ADAM KLUBALL 3 ADVISOR: DR. TIFFANY KOLBA 4 Abstract. The phenomenon of noise-induced stabiization occurs

More information

4 1-D Boundary Value Problems Heat Equation

4 1-D Boundary Value Problems Heat Equation 4 -D Boundary Vaue Probems Heat Equation The main purpose of this chapter is to study boundary vaue probems for the heat equation on a finite rod a x b. u t (x, t = ku xx (x, t, a < x < b, t > u(x, = ϕ(x

More information

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18 Quantum Mechanica Modes of Vibration and Rotation of Moecues Chapter 18 Moecuar Energy Transationa Vibrationa Rotationa Eectronic Moecuar Motions Vibrations of Moecues: Mode approximates moecues to atoms

More information

First-Order Corrections to Gutzwiller s Trace Formula for Systems with Discrete Symmetries

First-Order Corrections to Gutzwiller s Trace Formula for Systems with Discrete Symmetries c 26 Noninear Phenomena in Compex Systems First-Order Corrections to Gutzwier s Trace Formua for Systems with Discrete Symmetries Hoger Cartarius, Jörg Main, and Günter Wunner Institut für Theoretische

More information

Introduction to Simulation - Lecture 16. Methods for Computing Periodic Steady-State - Part II Jacob White

Introduction to Simulation - Lecture 16. Methods for Computing Periodic Steady-State - Part II Jacob White Inroducion o Simuaion - ecure 6 Mehods for Compuing Periodic Seady-Sae - Par II Jacob Whie hanks o Deepak Ramaswamy, Micha Rewienski, and Karen Veroy Ouine hree Mehods so far ime inegraion uni seady-sae

More information

1 Heat Equation Dirichlet Boundary Conditions

1 Heat Equation Dirichlet Boundary Conditions Chapter 3 Heat Exampes in Rectanges Heat Equation Dirichet Boundary Conditions u t (x, t) = ku xx (x, t), < x (.) u(, t) =, u(, t) = u(x, ) = f(x). Separate Variabes Look for simpe soutions in the

More information

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l Probem 7. Simpe Penduum SEMINAR. PENDULUMS A simpe penduum means a mass m suspended by a string weightess rigid rod of ength so that it can swing in a pane. The y-axis is directed down, x-axis is directed

More information

C. Fourier Sine Series Overview

C. Fourier Sine Series Overview 12 PHILIP D. LOEWEN C. Fourier Sine Series Overview Let some constant > be given. The symboic form of the FSS Eigenvaue probem combines an ordinary differentia equation (ODE) on the interva (, ) with a

More information

HYDROGEN ATOM SELECTION RULES TRANSITION RATES

HYDROGEN ATOM SELECTION RULES TRANSITION RATES DOING PHYSICS WITH MATLAB QUANTUM PHYSICS Ian Cooper Schoo of Physics, University of Sydney ian.cooper@sydney.edu.au HYDROGEN ATOM SELECTION RULES TRANSITION RATES DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS

More information

Some Measures for Asymmetry of Distributions

Some Measures for Asymmetry of Distributions Some Measures for Asymmetry of Distributions Georgi N. Boshnakov First version: 31 January 2006 Research Report No. 5, 2006, Probabiity and Statistics Group Schoo of Mathematics, The University of Manchester

More information

Tracking Control of Multiple Mobile Robots

Tracking Control of Multiple Mobile Robots Proceedings of the 2001 IEEE Internationa Conference on Robotics & Automation Seou, Korea May 21-26, 2001 Tracking Contro of Mutipe Mobie Robots A Case Study of Inter-Robot Coision-Free Probem Jurachart

More information

Module 22: Simple Harmonic Oscillation and Torque

Module 22: Simple Harmonic Oscillation and Torque Modue : Simpe Harmonic Osciation and Torque.1 Introduction We have aready used Newton s Second Law or Conservation of Energy to anayze systems ike the boc-spring system that osciate. We sha now use torque

More information

Approximation and Fast Calculation of Non-local Boundary Conditions for the Time-dependent Schrödinger Equation

Approximation and Fast Calculation of Non-local Boundary Conditions for the Time-dependent Schrödinger Equation Approximation and Fast Cacuation of Non-oca Boundary Conditions for the Time-dependent Schrödinger Equation Anton Arnod, Matthias Ehrhardt 2, and Ivan Sofronov 3 Universität Münster, Institut für Numerische

More information

Math 124B January 17, 2012

Math 124B January 17, 2012 Math 124B January 17, 212 Viktor Grigoryan 3 Fu Fourier series We saw in previous ectures how the Dirichet and Neumann boundary conditions ead to respectivey sine and cosine Fourier series of the initia

More information

Smoothness equivalence properties of univariate subdivision schemes and their projection analogues

Smoothness equivalence properties of univariate subdivision schemes and their projection analogues Numerische Mathematik manuscript No. (wi be inserted by the editor) Smoothness equivaence properties of univariate subdivision schemes and their projection anaogues Phiipp Grohs TU Graz Institute of Geometry

More information

Wave Equation Dirichlet Boundary Conditions

Wave Equation Dirichlet Boundary Conditions Wave Equation Dirichet Boundary Conditions u tt x, t = c u xx x, t, < x 1 u, t =, u, t = ux, = fx u t x, = gx Look for simpe soutions in the form ux, t = XxT t Substituting into 13 and dividing

More information

18-660: Numerical Methods for Engineering Design and Optimization

18-660: Numerical Methods for Engineering Design and Optimization 8-660: Numerica Methods for Engineering esign and Optimization in i epartment of ECE Carnegie Meon University Pittsburgh, PA 523 Side Overview Conjugate Gradient Method (Part 4) Pre-conditioning Noninear

More information

THE REACHABILITY CONES OF ESSENTIALLY NONNEGATIVE MATRICES

THE REACHABILITY CONES OF ESSENTIALLY NONNEGATIVE MATRICES THE REACHABILITY CONES OF ESSENTIALLY NONNEGATIVE MATRICES by Michae Neumann Department of Mathematics, University of Connecticut, Storrs, CT 06269 3009 and Ronad J. Stern Department of Mathematics, Concordia

More information

Wavelet Galerkin Solution for Boundary Value Problems

Wavelet Galerkin Solution for Boundary Value Problems Internationa Journa of Engineering Research and Deveopment e-issn: 2278-67X, p-issn: 2278-8X, www.ijerd.com Voume, Issue 5 (May 24), PP.2-3 Waveet Gaerkin Soution for Boundary Vaue Probems D. Pate, M.K.

More information

A Brief Introduction to Markov Chains and Hidden Markov Models

A Brief Introduction to Markov Chains and Hidden Markov Models A Brief Introduction to Markov Chains and Hidden Markov Modes Aen B MacKenzie Notes for December 1, 3, &8, 2015 Discrete-Time Markov Chains You may reca that when we first introduced random processes,

More information

Strauss PDEs 2e: Section Exercise 2 Page 1 of 12. For problem (1), complete the calculation of the series in case j(t) = 0 and h(t) = e t.

Strauss PDEs 2e: Section Exercise 2 Page 1 of 12. For problem (1), complete the calculation of the series in case j(t) = 0 and h(t) = e t. Strauss PDEs e: Section 5.6 - Exercise Page 1 of 1 Exercise For probem (1, compete the cacuation of the series in case j(t = and h(t = e t. Soution With j(t = and h(t = e t, probem (1 on page 147 becomes

More information

14 Separation of Variables Method

14 Separation of Variables Method 14 Separation of Variabes Method Consider, for exampe, the Dirichet probem u t = Du xx < x u(x, ) = f(x) < x < u(, t) = = u(, t) t > Let u(x, t) = T (t)φ(x); now substitute into the equation: dt

More information

DIGITAL FILTER DESIGN OF IIR FILTERS USING REAL VALUED GENETIC ALGORITHM

DIGITAL FILTER DESIGN OF IIR FILTERS USING REAL VALUED GENETIC ALGORITHM DIGITAL FILTER DESIGN OF IIR FILTERS USING REAL VALUED GENETIC ALGORITHM MIKAEL NILSSON, MATTIAS DAHL AND INGVAR CLAESSON Bekinge Institute of Technoogy Department of Teecommunications and Signa Processing

More information

On the energy distribution in Fermi Pasta Ulam lattices

On the energy distribution in Fermi Pasta Ulam lattices Version of 3 January 01 On the energy distribution in Fermi Pasta Uam attices Ernst Hairer 1, Christian Lubich 1 Section de mathématiques, -4 rue du Lièvre, Université de Genève, CH-111 Genève 4, Switzerand.

More information

Assignment 7 Due Tuessday, March 29, 2016

Assignment 7 Due Tuessday, March 29, 2016 Math 45 / AMCS 55 Dr. DeTurck Assignment 7 Due Tuessday, March 9, 6 Topics for this week Convergence of Fourier series; Lapace s equation and harmonic functions: basic properties, compuations on rectanges

More information

Lecture 6: Moderately Large Deflection Theory of Beams

Lecture 6: Moderately Large Deflection Theory of Beams Structura Mechanics 2.8 Lecture 6 Semester Yr Lecture 6: Moderatey Large Defection Theory of Beams 6.1 Genera Formuation Compare to the cassica theory of beams with infinitesima deformation, the moderatey

More information

VALIDATED CONTINUATION FOR EQUILIBRIA OF PDES

VALIDATED CONTINUATION FOR EQUILIBRIA OF PDES VALIDATED CONTINUATION FOR EQUILIBRIA OF PDES SARAH DAY, JEAN-PHILIPPE LESSARD, AND KONSTANTIN MISCHAIKOW Abstract. One of the most efficient methods for determining the equiibria of a continuous parameterized

More information

Thermal Leptogenesis. Michael Plümacher. Max Planck Institute for Physics Munich

Thermal Leptogenesis. Michael Plümacher. Max Planck Institute for Physics Munich Max Panck Institute for Physics Munich Introduction Introduction Probem #1: the universe is made of matter. Baryon asymmetry (from nuceosynthesis and CMB): η B n b n b n γ 6 10 10 must have been generated

More information

Physics 127c: Statistical Mechanics. Fermi Liquid Theory: Collective Modes. Boltzmann Equation. The quasiparticle energy including interactions

Physics 127c: Statistical Mechanics. Fermi Liquid Theory: Collective Modes. Boltzmann Equation. The quasiparticle energy including interactions Physics 27c: Statistica Mechanics Fermi Liquid Theory: Coective Modes Botzmann Equation The quasipartice energy incuding interactions ε p,σ = ε p + f(p, p ; σ, σ )δn p,σ, () p,σ with ε p ε F + v F (p p

More information

EE 303 Homework on Transformers, Dr. McCalley.

EE 303 Homework on Transformers, Dr. McCalley. EE 303 Homework on Transformers, Dr. ccaey.. The physica construction of four pairs of magneticay couped cois is shown beow. Assume that the magnetic fux is confined to the core materia in each structure

More information

b n n=1 a n cos nx (3) n=1

b n n=1 a n cos nx (3) n=1 Fourier Anaysis The Fourier series First some terminoogy: a function f(x) is periodic if f(x ) = f(x) for a x for some, if is the smaest such number, it is caed the period of f(x). It is even if f( x)

More information

(Refer Slide Time: 2:34) L C V

(Refer Slide Time: 2:34) L C V Microwave Integrated Circuits Professor Jayanta Mukherjee Department of Eectrica Engineering Indian Intitute of Technoogy Bombay Modue 1 Lecture No 2 Refection Coefficient, SWR, Smith Chart. Heo wecome

More information

AST 418/518 Instrumentation and Statistics

AST 418/518 Instrumentation and Statistics AST 418/518 Instrumentation and Statistics Cass Website: http://ircamera.as.arizona.edu/astr_518 Cass Texts: Practica Statistics for Astronomers, J.V. Wa, and C.R. Jenkins, Second Edition. Measuring the

More information

221B Lecture Notes Notes on Spherical Bessel Functions

221B Lecture Notes Notes on Spherical Bessel Functions Definitions B Lecture Notes Notes on Spherica Besse Functions We woud ike to sove the free Schrödinger equation [ h d r R(r) = h k R(r). () m r dr r m R(r) is the radia wave function ψ( x) = R(r)Y m (θ,

More information

Separation of Variables and a Spherical Shell with Surface Charge

Separation of Variables and a Spherical Shell with Surface Charge Separation of Variabes and a Spherica She with Surface Charge In cass we worked out the eectrostatic potentia due to a spherica she of radius R with a surface charge density σθ = σ cos θ. This cacuation

More information

Theory of Generalized k-difference Operator and Its Application in Number Theory

Theory of Generalized k-difference Operator and Its Application in Number Theory Internationa Journa of Mathematica Anaysis Vo. 9, 2015, no. 19, 955-964 HIKARI Ltd, www.m-hiari.com http://dx.doi.org/10.12988/ijma.2015.5389 Theory of Generaized -Difference Operator and Its Appication

More information

1 Models of vehicles with differential constraints. 2 Traveling salesperson problems. 3 The heavy load case. 4 The light load case

1 Models of vehicles with differential constraints. 2 Traveling salesperson problems. 3 The heavy load case. 4 The light load case Dynamic Vehice Routing for Robotic Networks Lecture #7: Vehice Modes Francesco Buo 1 Emiio Frazzoi 2 Marco Pavone 2 Ketan Sava 2 Stephen L. Smith 2 Outine of the ecture 1 Modes of vehices with differentia

More information

Physics 235 Chapter 8. Chapter 8 Central-Force Motion

Physics 235 Chapter 8. Chapter 8 Central-Force Motion Physics 35 Chapter 8 Chapter 8 Centra-Force Motion In this Chapter we wi use the theory we have discussed in Chapter 6 and 7 and appy it to very important probems in physics, in which we study the motion

More information

An explicit Jordan Decomposition of Companion matrices

An explicit Jordan Decomposition of Companion matrices An expicit Jordan Decomposition of Companion matrices Fermín S V Bazán Departamento de Matemática CFM UFSC 88040-900 Forianópois SC E-mai: fermin@mtmufscbr S Gratton CERFACS 42 Av Gaspard Coriois 31057

More information

MA 201: Partial Differential Equations Lecture - 11

MA 201: Partial Differential Equations Lecture - 11 MA 201: Partia Differentia Equations Lecture - 11 Heat Equation Heat conduction in a thin rod The IBVP under consideration consists of: The governing equation: u t = αu xx, (1) where α is the therma diffusivity.

More information

Lecture 9. Stability of Elastic Structures. Lecture 10. Advanced Topic in Column Buckling

Lecture 9. Stability of Elastic Structures. Lecture 10. Advanced Topic in Column Buckling Lecture 9 Stabiity of Eastic Structures Lecture 1 Advanced Topic in Coumn Bucking robem 9-1: A camped-free coumn is oaded at its tip by a oad. The issue here is to find the itica bucking oad. a) Suggest

More information

hole h vs. e configurations: l l for N > 2 l + 1 J = H as example of localization, delocalization, tunneling ikx k

hole h vs. e configurations: l l for N > 2 l + 1 J = H as example of localization, delocalization, tunneling ikx k Infinite 1-D Lattice CTDL, pages 1156-1168 37-1 LAST TIME: ( ) ( ) + N + 1 N hoe h vs. e configurations: for N > + 1 e rij unchanged ζ( NLS) ζ( NLS) [ ζn unchanged ] Hund s 3rd Rue (Lowest L - S term of

More information

Strauss PDEs 2e: Section Exercise 1 Page 1 of 7

Strauss PDEs 2e: Section Exercise 1 Page 1 of 7 Strauss PDEs 2e: Section 4.3 - Exercise 1 Page 1 of 7 Exercise 1 Find the eigenvaues graphicay for the boundary conditions X(0) = 0, X () + ax() = 0. Assume that a 0. Soution The aim here is to determine

More information

THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE

THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE KATIE L. MAY AND MELISSA A. MITCHELL Abstract. We show how to identify the minima path network connecting three fixed points on

More information

VALIDATED CONTINUATION FOR EQUILIBRIA OF PDES

VALIDATED CONTINUATION FOR EQUILIBRIA OF PDES SIAM J. NUMER. ANAL. Vo. 0, No. 0, pp. 000 000 c 200X Society for Industria and Appied Mathematics VALIDATED CONTINUATION FOR EQUILIBRIA OF PDES SARAH DAY, JEAN-PHILIPPE LESSARD, AND KONSTANTIN MISCHAIKOW

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 32: 10.2 Fourier Series

Lecture Notes for Math 251: ODE and PDE. Lecture 32: 10.2 Fourier Series Lecture Notes for Math 251: ODE and PDE. Lecture 32: 1.2 Fourier Series Shawn D. Ryan Spring 212 Last Time: We studied the heat equation and the method of Separation of Variabes. We then used Separation

More information

Computational studies of discrete breathers. Sergej Flach MPIPKS Dresden January 2003

Computational studies of discrete breathers. Sergej Flach MPIPKS Dresden January 2003 Computationa studies of discrete breathers Sergej Fach MPIPKS Dresden January 2003 CONTENT: 0. A bit on numerics of soving ODEs 1. How to observe breathers in simpe numerica runs 2. Obtaining breathers

More information

A proposed nonparametric mixture density estimation using B-spline functions

A proposed nonparametric mixture density estimation using B-spline functions A proposed nonparametric mixture density estimation using B-spine functions Atizez Hadrich a,b, Mourad Zribi a, Afif Masmoudi b a Laboratoire d Informatique Signa et Image de a Côte d Opae (LISIC-EA 4491),

More information

More Scattering: the Partial Wave Expansion

More Scattering: the Partial Wave Expansion More Scattering: the Partia Wave Expansion Michae Fower /7/8 Pane Waves and Partia Waves We are considering the soution to Schrödinger s equation for scattering of an incoming pane wave in the z-direction

More information

Chemical Kinetics Part 2

Chemical Kinetics Part 2 Integrated Rate Laws Chemica Kinetics Part 2 The rate aw we have discussed thus far is the differentia rate aw. Let us consider the very simpe reaction: a A à products The differentia rate reates the rate

More information

2M2. Fourier Series Prof Bill Lionheart

2M2. Fourier Series Prof Bill Lionheart M. Fourier Series Prof Bi Lionheart 1. The Fourier series of the periodic function f(x) with period has the form f(x) = a 0 + ( a n cos πnx + b n sin πnx ). Here the rea numbers a n, b n are caed the Fourier

More information

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES Separation of variabes is a method to sove certain PDEs which have a warped product structure. First, on R n, a inear PDE of order m is

More information

Course 2BA1, Section 11: Periodic Functions and Fourier Series

Course 2BA1, Section 11: Periodic Functions and Fourier Series Course BA, 8 9 Section : Periodic Functions and Fourier Series David R. Wikins Copyright c David R. Wikins 9 Contents Periodic Functions and Fourier Series 74. Fourier Series of Even and Odd Functions...........

More information

An H 2 type Riemannian metric on the space of planar curves

An H 2 type Riemannian metric on the space of planar curves An H 2 type Riemannian metric on the space of panar curves Jayant hah Mathematics Department, Northeastern University, Boston MA emai: shah@neu.edu Abstract An H 2 type metric on the space of panar curves

More information

FOURIER SERIES ON ANY INTERVAL

FOURIER SERIES ON ANY INTERVAL FOURIER SERIES ON ANY INTERVAL Overview We have spent considerabe time earning how to compute Fourier series for functions that have a period of 2p on the interva (-p,p). We have aso seen how Fourier series

More information

David Eigen. MA112 Final Paper. May 10, 2002

David Eigen. MA112 Final Paper. May 10, 2002 David Eigen MA112 Fina Paper May 1, 22 The Schrodinger equation describes the position of an eectron as a wave. The wave function Ψ(t, x is interpreted as a probabiity density for the position of the eectron.

More information

Homework #04 Answers and Hints (MATH4052 Partial Differential Equations)

Homework #04 Answers and Hints (MATH4052 Partial Differential Equations) Homework #4 Answers and Hints (MATH452 Partia Differentia Equations) Probem 1 (Page 89, Q2) Consider a meta rod ( < x < ), insuated aong its sides but not at its ends, which is initiay at temperature =

More information

Chemical Kinetics Part 2. Chapter 16

Chemical Kinetics Part 2. Chapter 16 Chemica Kinetics Part 2 Chapter 16 Integrated Rate Laws The rate aw we have discussed thus far is the differentia rate aw. Let us consider the very simpe reaction: a A à products The differentia rate reates

More information

Sample Problems for Third Midterm March 18, 2013

Sample Problems for Third Midterm March 18, 2013 Mat 30. Treibergs Sampe Probems for Tird Midterm Name: Marc 8, 03 Questions 4 appeared in my Fa 000 and Fa 00 Mat 30 exams (.)Let f : R n R n be differentiabe at a R n. (a.) Let g : R n R be defined by

More information

Two Kinds of Parabolic Equation algorithms in the Computational Electromagnetics

Two Kinds of Parabolic Equation algorithms in the Computational Electromagnetics Avaiabe onine at www.sciencedirect.com Procedia Engineering 9 (0) 45 49 0 Internationa Workshop on Information and Eectronics Engineering (IWIEE) Two Kinds of Paraboic Equation agorithms in the Computationa

More information

Path planning with PH G2 splines in R2

Path planning with PH G2 splines in R2 Path panning with PH G2 spines in R2 Laurent Gajny, Richard Béarée, Eric Nyiri, Oivier Gibaru To cite this version: Laurent Gajny, Richard Béarée, Eric Nyiri, Oivier Gibaru. Path panning with PH G2 spines

More information

FFTs in Graphics and Vision. Spherical Convolution and Axial Symmetry Detection

FFTs in Graphics and Vision. Spherical Convolution and Axial Symmetry Detection FFTs in Graphics and Vision Spherica Convoution and Axia Symmetry Detection Outine Math Review Symmetry Genera Convoution Spherica Convoution Axia Symmetry Detection Math Review Symmetry: Given a unitary

More information

Math 1600 Lecture 5, Section 2, 15 Sep 2014

Math 1600 Lecture 5, Section 2, 15 Sep 2014 1 of 6 Math 1600 Lecture 5, Section 2, 15 Sep 2014 Announcements: Continue reading Section 1.3 and aso the Exporation on cross products for next cass. Work through recommended homework questions. Quiz

More information

Legendre Polynomials - Lecture 8

Legendre Polynomials - Lecture 8 Legendre Poynomias - Lecture 8 Introduction In spherica coordinates the separation of variabes for the function of the poar ange resuts in Legendre s equation when the soution is independent of the azimutha

More information

T.C. Banwell, S. Galli. {bct, Telcordia Technologies, Inc., 445 South Street, Morristown, NJ 07960, USA

T.C. Banwell, S. Galli. {bct, Telcordia Technologies, Inc., 445 South Street, Morristown, NJ 07960, USA ON THE SYMMETRY OF THE POWER INE CHANNE T.C. Banwe, S. Gai {bct, sgai}@research.tecordia.com Tecordia Technoogies, Inc., 445 South Street, Morristown, NJ 07960, USA Abstract The indoor power ine network

More information

Physics 505 Fall Homework Assignment #4 Solutions

Physics 505 Fall Homework Assignment #4 Solutions Physics 505 Fa 2005 Homework Assignment #4 Soutions Textbook probems: Ch. 3: 3.4, 3.6, 3.9, 3.0 3.4 The surface of a hoow conducting sphere of inner radius a is divided into an even number of equa segments

More information

Copyright information to be inserted by the Publishers. Unsplitting BGK-type Schemes for the Shallow. Water Equations KUN XU

Copyright information to be inserted by the Publishers. Unsplitting BGK-type Schemes for the Shallow. Water Equations KUN XU Copyright information to be inserted by the Pubishers Unspitting BGK-type Schemes for the Shaow Water Equations KUN XU Mathematics Department, Hong Kong University of Science and Technoogy, Cear Water

More information

Technische Universität Chemnitz

Technische Universität Chemnitz Technische Universität Chemnitz Sonderforschungsbereich 393 Numerische Simuation auf massiv paraeen Rechnern Zhanav T. Some choices of moments of renabe function and appications Preprint SFB393/03-11 Preprint-Reihe

More information

On Some Basic Properties of Geometric Real Sequences

On Some Basic Properties of Geometric Real Sequences On Some Basic Properties of eometric Rea Sequences Khirod Boruah Research Schoar, Department of Mathematics, Rajiv andhi University Rono His, Doimukh-791112, Arunacha Pradesh, India Abstract Objective

More information

Nonperturbative Shell Correction to the Bethe Bloch Formula for the Energy Losses of Fast Charged Particles

Nonperturbative Shell Correction to the Bethe Bloch Formula for the Energy Losses of Fast Charged Particles ISSN 002-3640, JETP Letters, 20, Vo. 94, No., pp. 5. Peiades Pubishing, Inc., 20. Origina Russian Text V.I. Matveev, D.N. Makarov, 20, pubished in Pis ma v Zhurna Eksperimenta noi i Teoreticheskoi Fiziki,

More information

Formulas for Angular-Momentum Barrier Factors Version II

Formulas for Angular-Momentum Barrier Factors Version II BNL PREPRINT BNL-QGS-06-101 brfactor1.tex Formuas for Anguar-Momentum Barrier Factors Version II S. U. Chung Physics Department, Brookhaven Nationa Laboratory, Upton, NY 11973 March 19, 2015 abstract A

More information

REVISITING AND EXTENDING INTERFACE PENALTIES FOR MULTI-DOMAIN SUMMATION-BY-PARTS OPERATORS

REVISITING AND EXTENDING INTERFACE PENALTIES FOR MULTI-DOMAIN SUMMATION-BY-PARTS OPERATORS REVISITING AND EXTENDING INTERFACE PENALTIES FOR MULTI-DOMAIN SUMMATION-BY-PARTS OPERATORS Mark H. Carpenter, Jan Nordström David Gottieb Abstract A genera interface procedure is presented for muti-domain

More information

arxiv: v1 [math.ca] 6 Mar 2017

arxiv: v1 [math.ca] 6 Mar 2017 Indefinite Integras of Spherica Besse Functions MIT-CTP/487 arxiv:703.0648v [math.ca] 6 Mar 07 Joyon K. Boomfied,, Stephen H. P. Face,, and Zander Moss, Center for Theoretica Physics, Laboratory for Nucear

More information

(f) is called a nearly holomorphic modular form of weight k + 2r as in [5].

(f) is called a nearly holomorphic modular form of weight k + 2r as in [5]. PRODUCTS OF NEARLY HOLOMORPHIC EIGENFORMS JEFFREY BEYERL, KEVIN JAMES, CATHERINE TRENTACOSTE, AND HUI XUE Abstract. We prove that the product of two neary hoomorphic Hece eigenforms is again a Hece eigenform

More information

The distribution of the number of nodes in the relative interior of the typical I-segment in homogeneous planar anisotropic STIT Tessellations

The distribution of the number of nodes in the relative interior of the typical I-segment in homogeneous planar anisotropic STIT Tessellations Comment.Math.Univ.Caroin. 51,3(21) 53 512 53 The distribution of the number of nodes in the reative interior of the typica I-segment in homogeneous panar anisotropic STIT Tesseations Christoph Thäe Abstract.

More information

Math 124B January 31, 2012

Math 124B January 31, 2012 Math 124B January 31, 212 Viktor Grigoryan 7 Inhomogeneous boundary vaue probems Having studied the theory of Fourier series, with which we successfuy soved boundary vaue probems for the homogeneous heat

More information

Nonlinear oscillation of a dielectric elastomer balloon

Nonlinear oscillation of a dielectric elastomer balloon Research Artice Received: 28 May 2009 Revised: 31 Juy 2009 Accepted: 15 October 2009 Pubished onine in Wiey Interscience: 1 February 2010 (www.interscience.wiey.com) DOI 10.1002/pi.2767 Noninear osciation

More information

DISTRIBUTION OF TEMPERATURE IN A SPATIALLY ONE- DIMENSIONAL OBJECT AS A RESULT OF THE ACTIVE POINT SOURCE

DISTRIBUTION OF TEMPERATURE IN A SPATIALLY ONE- DIMENSIONAL OBJECT AS A RESULT OF THE ACTIVE POINT SOURCE DISTRIBUTION OF TEMPERATURE IN A SPATIALLY ONE- DIMENSIONAL OBJECT AS A RESULT OF THE ACTIVE POINT SOURCE Yury Iyushin and Anton Mokeev Saint-Petersburg Mining University, Vasiievsky Isand, 1 st ine, Saint-Petersburg,

More information

LECTURE NOTES 8 THE TRACELESS SYMMETRIC TENSOR EXPANSION AND STANDARD SPHERICAL HARMONICS

LECTURE NOTES 8 THE TRACELESS SYMMETRIC TENSOR EXPANSION AND STANDARD SPHERICAL HARMONICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Eectromagnetism II October, 202 Prof. Aan Guth LECTURE NOTES 8 THE TRACELESS SYMMETRIC TENSOR EXPANSION AND STANDARD SPHERICAL HARMONICS

More information

Coupling of LWR and phase transition models at boundary

Coupling of LWR and phase transition models at boundary Couping of LW and phase transition modes at boundary Mauro Garaveo Dipartimento di Matematica e Appicazioni, Università di Miano Bicocca, via. Cozzi 53, 20125 Miano Itay. Benedetto Piccoi Department of

More information

A GENERAL METHOD FOR EVALUATING OUTAGE PROBABILITIES USING PADÉ APPROXIMATIONS

A GENERAL METHOD FOR EVALUATING OUTAGE PROBABILITIES USING PADÉ APPROXIMATIONS A GENERAL METHOD FOR EVALUATING OUTAGE PROBABILITIES USING PADÉ APPROXIMATIONS Jack W. Stokes, Microsoft Corporation One Microsoft Way, Redmond, WA 9852, jstokes@microsoft.com James A. Ritcey, University

More information

Physics 506 Winter 2006 Homework Assignment #6 Solutions

Physics 506 Winter 2006 Homework Assignment #6 Solutions Physics 506 Winter 006 Homework Assignment #6 Soutions Textbook probems: Ch. 10: 10., 10.3, 10.7, 10.10 10. Eectromagnetic radiation with eiptic poarization, described (in the notation of Section 7. by

More information

Multilayer Kerceptron

Multilayer Kerceptron Mutiayer Kerceptron Zotán Szabó, András Lőrincz Department of Information Systems, Facuty of Informatics Eötvös Loránd University Pázmány Péter sétány 1/C H-1117, Budapest, Hungary e-mai: szzoi@csetehu,

More information

The EM Algorithm applied to determining new limit points of Mahler measures

The EM Algorithm applied to determining new limit points of Mahler measures Contro and Cybernetics vo. 39 (2010) No. 4 The EM Agorithm appied to determining new imit points of Maher measures by Souad E Otmani, Georges Rhin and Jean-Marc Sac-Épée Université Pau Veraine-Metz, LMAM,

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 2: The Moment Equations

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 2: The Moment Equations .615, MHD Theory of Fusion ystems Prof. Freidberg Lecture : The Moment Equations Botzmann-Maxwe Equations 1. Reca that the genera couped Botzmann-Maxwe equations can be written as f q + v + E + v B f =

More information

Supporting Information for Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers

Supporting Information for Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers Supporting Information for Suppressing Kein tunneing in graphene using a one-dimensiona array of ocaized scatterers Jamie D Was, and Danie Hadad Department of Chemistry, University of Miami, Cora Gabes,

More information

Published in: Proceedings of the Twenty Second Nordic Seminar on Computational Mechanics

Published in: Proceedings of the Twenty Second Nordic Seminar on Computational Mechanics Aaborg Universitet An Efficient Formuation of the Easto-pastic Constitutive Matrix on Yied Surface Corners Causen, Johan Christian; Andersen, Lars Vabbersgaard; Damkide, Lars Pubished in: Proceedings of

More information

Laboratory Exercise 1: Pendulum Acceleration Measurement and Prediction Laboratory Handout AME 20213: Fundamentals of Measurements and Data Analysis

Laboratory Exercise 1: Pendulum Acceleration Measurement and Prediction Laboratory Handout AME 20213: Fundamentals of Measurements and Data Analysis Laboratory Exercise 1: Penduum Acceeration Measurement and Prediction Laboratory Handout AME 20213: Fundamentas of Measurements and Data Anaysis Prepared by: Danie Van Ness Date exercises to be performed:

More information