Physics 505 Fall Homework Assignment #4 Solutions

Size: px
Start display at page:

Download "Physics 505 Fall Homework Assignment #4 Solutions"

Transcription

1 Physics 505 Fa 2005 Homework Assignment #4 Soutions Textbook probems: Ch. 3: 3.4, 3.6, 3.9, The surface of a hoow conducting sphere of inner radius a is divided into an even number of equa segments by a set of panes; their common ine of intersection is the z axis and they are distributed uniformy in the ange φ. (The segments are ike the skin on wedges of an appe, or the earth s surface between successive meridians of ongitude. The segments are kept at fixed potentias ±V, aternatey. a Set up a series representation for the potentia inside the sphere for the genera case of 2n segments, and carry the cacuation of the coefficients in the series far enough to determine exacty which coefficients are different from zero. For the nonvanishing terms, exhibit the coefficients as an integra over cos θ. The genera spherica harmonic expansion for the potentia inside a sphere of radius a is Φ(r, θ, φ =,m α m a Ym (θ, φ where α m = V (θ, φy m(θ, φdω In this probem, V (θ, φ = ±V is independent of θ, but depends on the azimutha ange φ. It can in fact be thought of as a square wave in φ n =4 V 2 π ϕ V This has a famiiar Fourier expansion V (φ = 4V π [(2k + nφ 2k + This is aready enough to demonstrate that the m vaues in the spherica harmonic expansion can ony take on the vaues ±(2k+n. In terms of associated egendre

2 poynomias, the expansion coefficients are 2 + α m = 4π = 4V π = 4iV ( m! 2± V (φe imφ dφ ( + m! ( m! 4π ( + m! 2 + ( m! 4π ( + m! P m (x dx 2π [(2k + nφe imφ dφ 2k + 0 P m (x dx δ m,(2k+n δ m, (2k+n 2k + P m (x dx Ug P m (x = ( m [( m!/( + m!p m (x, we may write the non-vanishing coefficients as α, (2k+n = ( n+ α,(2k+n = 4iV 2 + ( (2k + n! 2k + 4π ( + (2k + n! P (2k+n (x dx ( for k = 0,, 2,.... Since (2k + n, we see that the first non-vanishing term enters at order = n. Making note of the parity of associated egendre poynomias, P m ( x = ( +m P m (x, we see that the non-vanishing coefficients are given by the sequence α n,n, α n+2,n, α n+4,n, α n+6,n,... α 3n,3n, α 3n+2,3n, α 3n+4,3n,... α 5n,5n, α 5n+2,5n, α 5n+4,5n,.... b For the specia case of n = (two hemispheres determine expicity the potentia up to an incuding a terms with = 3. By a coordinate transformation verify that this reduces to resut (3.36 of Section 3.3. For n =, expicit computation shows that P (x dx =, Inserting this in to ( yieds α, = α, = iv α 3, = α 3, = iv P 3 (x dx = 3π 6, P 3 3 (x dx = 45π 8 3π 2 2π 35π 256, α 3, 3 = α 3,3 = iv 256

3 Hence iv [ 3π a 2 (Y, + Y, + a 3 ( 2π 256 (Y 3, + Y 3, + 35π 256 (Y 3,3 + Y 3, 3 35π 256 Y 3,3 [ 3π ( 3 2π = 2V I a 2 Y, + a 256 Y 3, + [ 3 = 2V I θ eiφ a 4 ( a 28 θ(5 cos2 θ e iφ θ e 3iφ [ 3 = V θ φ a ( 3 θ(5 cos 2 θ φ θ 3 φ a 28 (2 To reate this to the previous resut, we note that the way we have set up the wedges corresponds to taking the top of the +V hemisphere to point aong the ŷ axis. This may be rotated to the ẑ axis by a 90 rotation aong the ˆx axis. Expicity, we take ŷ = ẑ, ẑ = ŷ, ˆx = ˆx or θ φ = cos θ, cos θ = θ φ, θ cos φ = θ cos φ Noting that 3φ = 3 φ + 3 φ cos 2 φ, the ast ine of (2 transforms into [ V a 2 cos ( θ + 3 cos θ (5 2 θ 2 φ a ( cos 3 θ + 3 cos θ 2 θ 2 φ [ 3 = V cos θ a 8 a 2 (5 cos3 θ 3 cos θ [ 3 = V P (cos θ 7 3 P3 (cos θ 2 a 8 a which reproduces the resut (3.36.

4 3.6 Two point charges q and q are ocated on the z axis at z = +a and z = a, respectivey. a Find the eectrostatic potentia as an expansion in spherica harmonics and powers of r for both r > a and r < a. The potentia is ceary q 4πɛ 0 ( x a x + a where a = aẑ points from the origin to the positive charge. Ug the spherica harmonic expansion x x = 4π,m as we as a = aẑ, we obtain q ɛ 0,m 2 + r< r> r< r> + Y m(ˆx Y m (ˆx [Y m(0, φ Y m(π, φ Y m (θ, φ (3 Noting that Y m (0, φ P m ( and that P m ( = δ m,0 we see that ony terms with m = 0 contribute. This is aso obvious from symmetry. Since Y 0 (0, φ = ( Y 0 (π, φ = 2 + 4π the potentia (3 becomes q 4πɛ 0 = q 2πɛ 0 [ ( r < r + =0 > odd r< r> + P (cos θ 4π 2 + Y 0(θ, φ (4 b Keeping the product qa = p/2 constant, take the imit of a 0 and find the potentia for r 0. This is by definition a dipoe aong the z axis and its potentia. Since we wi take a 0, we have r < = a and r > = r. This yieds an expansion of (4 qa ( a 2k P2k+ 2πɛ 0 r 2 (cos θ r

5 Setting qa = p/2 and taking a 0, ony the k = 0 term survives in the sum. The resut is p 4πɛ 0 r 2 P (cos θ = p cos θ 4πɛ 0 r 2 (5 which is the potentia due to a dipoe. c Suppose now that the dipoe of part b is surrounded by a grounded spherica she of radius b concentric with the origin. By inear superposition find the potentia everywhere inside the she. To account for the spherica she, we add to (5 a soution to the (homogeneous apace s equation. For an inside soution, we have [ p 4πɛ 0 r 2 P (cos θ + A r P (cos θ The boundary condition Φ(r = b = 0 corresponds to having =0 A b +2 P (cos θ = P (cos θ =0 Since the egendre poynomias form an orthonorma set, the ony term that can show up on the eft hand side is the = term. We then take A = /b +2, and the resuting soution is p ( 4πɛ 0 r 2 r b 3 cos θ 3.9 A hoow right circuar cyinder of radius b has its axis coincident with the z axis and its ends at z = 0 and z =. The potentia on the end faces is zero, whie the potentia on the cyindrica surface is given as V (φ, z. Ug the appropriate separation of variabes in cyindrica coordinates, find a series soution for the potentia anywhere inside the cyinder. The genera soution obtained by separation of variabes has the form Φ(ρ, φ, z = {J m (kρ or N m (kρ }{e ±imφ}{ e ±kz} However, ce the potentia vanishes on the endcaps, it is natura to take k ik so that the z function obeying boundary conditions is (nπz/. The resut is to use the modified Besse functions I m (kρ and K m (kρ instead. However, for the soution to be reguar at ρ = 0 we discard the K ν (kρ functions, which bow up at vanishing argument. The resuting series expression for the potentia is Φ(ρ, φ, z = m=0 n= ( nπ (amn I m ρ mφ + b mn cos mφ ( nπ z (6

6 In order to satisfy the boundary conditions on the cyindrica surface, we need to have V (φ, z = ( nπb (amn I m mφ + b mn cos mφ ( nπ z m,n This is a doube Fourier series in φ and z. As a resut, the Fourier coefficients are { amn b mn } ( nπb I m = 2π dφ 2 { } ( mφ nπ dz V (φ, z π 0 0 cos mφ z with the caveat that b 0,n must be divided by two. This can be rewritten as { amn b mn } = 2 2π { } ( mφ nπ dφ dz V (φ, z πi m (nπb/ 0 0 cos mφ z (7 (where b 0,n has to be divided by two. 3.0 For the cyinder in Probem 3.9 the cyindrica surface is made of two equa hafcyinders, one at potentia V and the other at potentia V, so that { V for π/2 < φ < π/2 V (φ, z = V for π/2 < φ < 3π/2 a Find the potentia inside the cyinder. To obtain the potentia, we want to find the coefficients a mn and b mn of the expansion (6 and (7. Noting first that V (φ, z = V (φ = ±V is an even function of φ, we see that a the a mn coefficients vanish. We are eft with b mn = = [ 2V π/2 πi m (nπb/ π/2 3π/2 π/2 2V 4 (mπ/2 ( n I m (nπb/ m n dφ cos mφ dz nπz 0 (m 0 This is non-vanishing ony when both m and n are odd. Introducing m = 2k + and n = 2 +, we have b 2k+,2+ = Inserting this into (6 yieds 6V ( k I 2k+ ((2 + πb/ (2k + (2 + 6V =0 ( k I 2k+ ( (2+πρ (2k + (2 + I 2k+ ( (2+πb cos(2k+φ (2 + πz (8

7 b Assuming b, consider the potentia at z = /2 as a function of ρ and φ and compare it with two-dimensiona Probem 2.3. For b both ρ/ and b/ are much ess than one. This aows us to use a sma argument expansion of the modified Besse function I ν (x In addition, for z = /2 we have ( x ν Γ(ν + 2 (2 + πz = ( + 2 π = ( Hence in this imit (8 becomes 6V = 6V k, [ ( k 2k + ( 2 + ( ( ρ 2k+ cos(2k + φ 2 + b [ ( k ( ρ R 2k + b eiφ 2k+ k Noting the Tayor series expansion for arctan tan z = n ( n 2n + z2n+ we arrive at 6V tan (R tan ( ρ b eiφ = 4V π R tan ( ρ b eiφ To cacuate R tan z we reca that Hence For z = (ρ/be iφ we find tan a + tan b = tan a + b ab R tan z = 2 (tan z + tan z = 2 tan z + z z 2 2V π tan 2(ρ/b cos φ (ρ/b 2 = 2V π tan 2bρ cos φ b 2 ρ 2 which reproduces the answer to Probem 2.3 (where V = V 2 = V.

Physics 505 Fall 2007 Homework Assignment #5 Solutions. Textbook problems: Ch. 3: 3.13, 3.17, 3.26, 3.27

Physics 505 Fall 2007 Homework Assignment #5 Solutions. Textbook problems: Ch. 3: 3.13, 3.17, 3.26, 3.27 Physics 55 Fa 7 Homework Assignment #5 Soutions Textook proems: Ch. 3: 3.3, 3.7, 3.6, 3.7 3.3 Sove for the potentia in Proem 3., using the appropriate Green function otained in the text, and verify that

More information

Separation of Variables and a Spherical Shell with Surface Charge

Separation of Variables and a Spherical Shell with Surface Charge Separation of Variabes and a Spherica She with Surface Charge In cass we worked out the eectrostatic potentia due to a spherica she of radius R with a surface charge density σθ = σ cos θ. This cacuation

More information

PHYS 110B - HW #1 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #1 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased PHYS 110B - HW #1 Fa 2005, Soutions by David Pace Equations referenced as Eq. # are from Griffiths Probem statements are paraphrased [1.] Probem 6.8 from Griffiths A ong cyinder has radius R and a magnetization

More information

In Coulomb gauge, the vector potential is then given by

In Coulomb gauge, the vector potential is then given by Physics 505 Fa 007 Homework Assignment #8 Soutions Textbook probems: Ch. 5: 5.13, 5.14, 5.15, 5.16 5.13 A sphere of raius a carries a uniform surface-charge istribution σ. The sphere is rotate about a

More information

Jackson 4.10 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 4.10 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 4.10 Homework Probem Soution Dr. Christopher S. Baird University of Massachusetts Lowe PROBLEM: Two concentric conducting spheres of inner and outer radii a and b, respectivey, carry charges ±.

More information

Legendre Polynomials - Lecture 8

Legendre Polynomials - Lecture 8 Legendre Poynomias - Lecture 8 Introduction In spherica coordinates the separation of variabes for the function of the poar ange resuts in Legendre s equation when the soution is independent of the azimutha

More information

Physics 116C Helmholtz s and Laplace s Equations in Spherical Polar Coordinates: Spherical Harmonics and Spherical Bessel Functions

Physics 116C Helmholtz s and Laplace s Equations in Spherical Polar Coordinates: Spherical Harmonics and Spherical Bessel Functions Physics 116C Hemhotz s an Lapace s Equations in Spherica Poar Coorinates: Spherica Harmonics an Spherica Besse Functions Peter Young Date: October 28, 2013) I. HELMHOLTZ S EQUATION As iscusse in cass,

More information

$, (2.1) n="# #. (2.2)

$, (2.1) n=# #. (2.2) Chapter. Eectrostatic II Notes: Most of the materia presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartoo, Chap... Mathematica Considerations.. The Fourier series and the Fourier

More information

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law Gauss Law 1. Review on 1) Couomb s Law (charge and force) 2) Eectric Fied (fied and force) 2. Gauss s Law: connects charge and fied 3. Appications of Gauss s Law Couomb s Law and Eectric Fied Couomb s

More information

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n.

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n. Chapter. Eectrostatic II Notes: Most of the materia presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartoo, Chap... Mathematica Considerations.. The Fourier series and the Fourier

More information

LECTURE NOTES 8 THE TRACELESS SYMMETRIC TENSOR EXPANSION AND STANDARD SPHERICAL HARMONICS

LECTURE NOTES 8 THE TRACELESS SYMMETRIC TENSOR EXPANSION AND STANDARD SPHERICAL HARMONICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Eectromagnetism II October, 202 Prof. Aan Guth LECTURE NOTES 8 THE TRACELESS SYMMETRIC TENSOR EXPANSION AND STANDARD SPHERICAL HARMONICS

More information

Physics 506 Winter 2006 Homework Assignment #6 Solutions

Physics 506 Winter 2006 Homework Assignment #6 Solutions Physics 506 Winter 006 Homework Assignment #6 Soutions Textbook probems: Ch. 10: 10., 10.3, 10.7, 10.10 10. Eectromagnetic radiation with eiptic poarization, described (in the notation of Section 7. by

More information

Physics 235 Chapter 8. Chapter 8 Central-Force Motion

Physics 235 Chapter 8. Chapter 8 Central-Force Motion Physics 35 Chapter 8 Chapter 8 Centra-Force Motion In this Chapter we wi use the theory we have discussed in Chapter 6 and 7 and appy it to very important probems in physics, in which we study the motion

More information

Math 124B January 31, 2012

Math 124B January 31, 2012 Math 124B January 31, 212 Viktor Grigoryan 7 Inhomogeneous boundary vaue probems Having studied the theory of Fourier series, with which we successfuy soved boundary vaue probems for the homogeneous heat

More information

LECTURE NOTES 9 TRACELESS SYMMETRIC TENSOR APPROACH TO LEGENDRE POLYNOMIALS AND SPHERICAL HARMONICS

LECTURE NOTES 9 TRACELESS SYMMETRIC TENSOR APPROACH TO LEGENDRE POLYNOMIALS AND SPHERICAL HARMONICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Eectromagnetism II October 7, 202 Prof. Aan Guth LECTURE NOTES 9 TRACELESS SYMMETRIC TENSOR APPROACH TO LEGENDRE POLYNOMIALS AND SPHERICAL

More information

221B Lecture Notes Notes on Spherical Bessel Functions

221B Lecture Notes Notes on Spherical Bessel Functions Definitions B Lecture Notes Notes on Spherica Besse Functions We woud ike to sove the free Schrödinger equation [ h d r R(r) = h k R(r). () m r dr r m R(r) is the radia wave function ψ( x) = R(r)Y m (θ,

More information

Lecture 8 February 18, 2010

Lecture 8 February 18, 2010 Sources of Eectromagnetic Fieds Lecture 8 February 18, 2010 We now start to discuss radiation in free space. We wi reorder the materia of Chapter 9, bringing sections 6 7 up front. We wi aso cover some

More information

Section 6: Magnetostatics

Section 6: Magnetostatics agnetic fieds in matter Section 6: agnetostatics In the previous sections we assumed that the current density J is a known function of coordinates. In the presence of matter this is not aways true. The

More information

Math 124B January 17, 2012

Math 124B January 17, 2012 Math 124B January 17, 212 Viktor Grigoryan 3 Fu Fourier series We saw in previous ectures how the Dirichet and Neumann boundary conditions ead to respectivey sine and cosine Fourier series of the initia

More information

Bohr s atomic model. 1 Ze 2 = mv2. n 2 Z

Bohr s atomic model. 1 Ze 2 = mv2. n 2 Z Bohr s atomic mode Another interesting success of the so-caed od quantum theory is expaining atomic spectra of hydrogen and hydrogen-ike atoms. The eectromagnetic radiation emitted by free atoms is concentrated

More information

Week 6 Lectures, Math 6451, Tanveer

Week 6 Lectures, Math 6451, Tanveer Fourier Series Week 6 Lectures, Math 645, Tanveer In the context of separation of variabe to find soutions of PDEs, we encountered or and in other cases f(x = f(x = a 0 + f(x = a 0 + b n sin nπx { a n

More information

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES Separation of variabes is a method to sove certain PDEs which have a warped product structure. First, on R n, a inear PDE of order m is

More information

Higher dimensional PDEs and multidimensional eigenvalue problems

Higher dimensional PDEs and multidimensional eigenvalue problems Higher dimensiona PEs and mutidimensiona eigenvaue probems 1 Probems with three independent variabes Consider the prototypica equations u t = u (iffusion) u tt = u (W ave) u zz = u (Lapace) where u = u

More information

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l Probem 7. Simpe Penduum SEMINAR. PENDULUMS A simpe penduum means a mass m suspended by a string weightess rigid rod of ength so that it can swing in a pane. The y-axis is directed down, x-axis is directed

More information

Solution Set Seven. 1 Goldstein Components of Torque Along Principal Axes Components of Torque Along Cartesian Axes...

Solution Set Seven. 1 Goldstein Components of Torque Along Principal Axes Components of Torque Along Cartesian Axes... : Soution Set Seven Northwestern University, Cassica Mechanics Cassica Mechanics, Third Ed.- Godstein November 8, 25 Contents Godstein 5.8. 2. Components of Torque Aong Principa Axes.......................

More information

Gauss s law - plane symmetry

Gauss s law - plane symmetry Gauss s aw - pane symmetry Submitted by: I.D. 3923262 Find the eectric fied aong the z-axis of an infinite uniformey charged pane at the x y pane (charge density σ) with a hoe at the origin of a radius

More information

Lecture 17 - The Secrets we have Swept Under the Rug

Lecture 17 - The Secrets we have Swept Under the Rug Lecture 17 - The Secrets we have Swept Under the Rug Today s ectures examines some of the uirky features of eectrostatics that we have negected up unti this point A Puzze... Let s go back to the basics

More information

David Eigen. MA112 Final Paper. May 10, 2002

David Eigen. MA112 Final Paper. May 10, 2002 David Eigen MA112 Fina Paper May 1, 22 The Schrodinger equation describes the position of an eectron as a wave. The wave function Ψ(t, x is interpreted as a probabiity density for the position of the eectron.

More information

Formulas for Angular-Momentum Barrier Factors Version II

Formulas for Angular-Momentum Barrier Factors Version II BNL PREPRINT BNL-QGS-06-101 brfactor1.tex Formuas for Anguar-Momentum Barrier Factors Version II S. U. Chung Physics Department, Brookhaven Nationa Laboratory, Upton, NY 11973 March 19, 2015 abstract A

More information

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 13 Feb 2003

arxiv:cond-mat/ v1 [cond-mat.dis-nn] 13 Feb 2003 arxiv:cond-mat/369v [cond-mat.dis-nn] 3 Feb 3 Brownian Motion in wedges, ast passage time and the second arc-sine aw Aain Comtet, and Jean Desbois nd February 8 Laboratoire de Physique Théorique et Modèes

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 32: 10.2 Fourier Series

Lecture Notes for Math 251: ODE and PDE. Lecture 32: 10.2 Fourier Series Lecture Notes for Math 251: ODE and PDE. Lecture 32: 1.2 Fourier Series Shawn D. Ryan Spring 212 Last Time: We studied the heat equation and the method of Separation of Variabes. We then used Separation

More information

2M2. Fourier Series Prof Bill Lionheart

2M2. Fourier Series Prof Bill Lionheart M. Fourier Series Prof Bi Lionheart 1. The Fourier series of the periodic function f(x) with period has the form f(x) = a 0 + ( a n cos πnx + b n sin πnx ). Here the rea numbers a n, b n are caed the Fourier

More information

Assignment 7 Due Tuessday, March 29, 2016

Assignment 7 Due Tuessday, March 29, 2016 Math 45 / AMCS 55 Dr. DeTurck Assignment 7 Due Tuessday, March 9, 6 Topics for this week Convergence of Fourier series; Lapace s equation and harmonic functions: basic properties, compuations on rectanges

More information

FFTs in Graphics and Vision. Spherical Convolution and Axial Symmetry Detection

FFTs in Graphics and Vision. Spherical Convolution and Axial Symmetry Detection FFTs in Graphics and Vision Spherica Convoution and Axia Symmetry Detection Outine Math Review Symmetry Genera Convoution Spherica Convoution Axia Symmetry Detection Math Review Symmetry: Given a unitary

More information

Supporting Information for Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers

Supporting Information for Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers Supporting Information for Suppressing Kein tunneing in graphene using a one-dimensiona array of ocaized scatterers Jamie D Was, and Danie Hadad Department of Chemistry, University of Miami, Cora Gabes,

More information

1.2 Partial Wave Analysis

1.2 Partial Wave Analysis February, 205 Lecture X.2 Partia Wave Anaysis We have described scattering in terms of an incoming pane wave, a momentum eigenet, and and outgoing spherica wave, aso with definite momentum. We now consider

More information

An approximate method for solving the inverse scattering problem with fixed-energy data

An approximate method for solving the inverse scattering problem with fixed-energy data J. Inv. I-Posed Probems, Vo. 7, No. 6, pp. 561 571 (1999) c VSP 1999 An approximate method for soving the inverse scattering probem with fixed-energy data A. G. Ramm and W. Scheid Received May 12, 1999

More information

Why Doesn t a Steady Current Loop Radiate?

Why Doesn t a Steady Current Loop Radiate? Why Doesn t a Steady Current Loop Radiate? Probem Kirk T. McDonad Joseph Henry Laboratories, Princeton University, Princeton, NJ 8544 December, 2; updated March 22, 26 A steady current in a circuar oop

More information

6 Wave Equation on an Interval: Separation of Variables

6 Wave Equation on an Interval: Separation of Variables 6 Wave Equation on an Interva: Separation of Variabes 6.1 Dirichet Boundary Conditions Ref: Strauss, Chapter 4 We now use the separation of variabes technique to study the wave equation on a finite interva.

More information

14 Separation of Variables Method

14 Separation of Variables Method 14 Separation of Variabes Method Consider, for exampe, the Dirichet probem u t = Du xx < x u(x, ) = f(x) < x < u(, t) = = u(, t) t > Let u(x, t) = T (t)φ(x); now substitute into the equation: dt

More information

FOURIER SERIES ON ANY INTERVAL

FOURIER SERIES ON ANY INTERVAL FOURIER SERIES ON ANY INTERVAL Overview We have spent considerabe time earning how to compute Fourier series for functions that have a period of 2p on the interva (-p,p). We have aso seen how Fourier series

More information

Harmonic Expansion of Electromagnetic Fields

Harmonic Expansion of Electromagnetic Fields Chapter 6 Harmonic Expansion of Eectromagnetic Fieds 6. Introduction For a given current source J(r, t, the vector potentia can in principe be found by soving the inhomogeneous vector wave equation, (

More information

Physics 505 Fall 2005 Homework Assignment #7 Solutions

Physics 505 Fall 2005 Homework Assignment #7 Solutions Physics 505 Fall 005 Homework Assignment #7 Solutions Textbook problems: Ch. 4: 4.10 Ch. 5: 5.3, 5.6, 5.7 4.10 Two concentric conducting spheres of inner and outer radii a and b, respectively, carry charges

More information

Volume 13, MAIN ARTICLES

Volume 13, MAIN ARTICLES Voume 13, 2009 1 MAIN ARTICLES THE BASIC BVPs OF THE THEORY OF ELASTIC BINARY MIXTURES FOR A HALF-PLANE WITH CURVILINEAR CUTS Bitsadze L. I. Vekua Institute of Appied Mathematics of Iv. Javakhishvii Tbiisi

More information

Strauss PDEs 2e: Section Exercise 2 Page 1 of 12. For problem (1), complete the calculation of the series in case j(t) = 0 and h(t) = e t.

Strauss PDEs 2e: Section Exercise 2 Page 1 of 12. For problem (1), complete the calculation of the series in case j(t) = 0 and h(t) = e t. Strauss PDEs e: Section 5.6 - Exercise Page 1 of 1 Exercise For probem (1, compete the cacuation of the series in case j(t = and h(t = e t. Soution With j(t = and h(t = e t, probem (1 on page 147 becomes

More information

4 1-D Boundary Value Problems Heat Equation

4 1-D Boundary Value Problems Heat Equation 4 -D Boundary Vaue Probems Heat Equation The main purpose of this chapter is to study boundary vaue probems for the heat equation on a finite rod a x b. u t (x, t = ku xx (x, t, a < x < b, t > u(x, = ϕ(x

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String ecture Notes for Math 251: ODE and PDE. ecture 3: 1.7 Wave Equation and Vibrations of an Eastic String Shawn D. Ryan Spring 212 ast Time: We studied other Heat Equation probems with various other boundary

More information

Cluster modelling. Collisions. Stellar Dynamics & Structure of Galaxies handout #2. Just as a self-gravitating collection of objects.

Cluster modelling. Collisions. Stellar Dynamics & Structure of Galaxies handout #2. Just as a self-gravitating collection of objects. Stear Dynamics & Structure of Gaaxies handout # Custer modeing Just as a sef-gravitating coection of objects. Coisions Do we have to worry about coisions? Gobuar custers ook densest, so obtain a rough

More information

DYNAMIC RESPONSE OF CIRCULAR FOOTINGS ON SATURATED POROELASTIC HALFSPACE

DYNAMIC RESPONSE OF CIRCULAR FOOTINGS ON SATURATED POROELASTIC HALFSPACE 3 th Word Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 4 Paper No. 38 DYNAMIC RESPONSE OF CIRCULAR FOOTINGS ON SATURATED POROELASTIC HALFSPACE Bo JIN SUMMARY The dynamic responses

More information

Physics 505 Fall 2005 Homework Assignment #8 Solutions

Physics 505 Fall 2005 Homework Assignment #8 Solutions Physics 55 Fall 5 Homework Assignment #8 Solutions Textbook problems: Ch. 5: 5., 5.4, 5.7, 5.9 5. A circular current loop of radius a carrying a current I lies in the x-y plane with its center at the origin.

More information

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18 Quantum Mechanica Modes of Vibration and Rotation of Moecues Chapter 18 Moecuar Energy Transationa Vibrationa Rotationa Eectronic Moecuar Motions Vibrations of Moecues: Mode approximates moecues to atoms

More information

Introduction to LMTO method

Introduction to LMTO method 1 Introduction to MTO method 24 February 2011; V172 P.Ravindran, FME-course on Ab initio Modeing of soar ce Materias 24 February 2011 Introduction to MTO method Ab initio Eectronic Structure Cacuations

More information

Fourier Series. 10 (D3.9) Find the Cesàro sum of the series. 11 (D3.9) Let a and b be real numbers. Under what conditions does a series of the form

Fourier Series. 10 (D3.9) Find the Cesàro sum of the series. 11 (D3.9) Let a and b be real numbers. Under what conditions does a series of the form Exercises Fourier Anaysis MMG70, Autumn 007 The exercises are taken from: Version: Monday October, 007 DXY Section XY of H F Davis, Fourier Series and orthogona functions EÖ Some exercises from earier

More information

Lecture Notes 4: Fourier Series and PDE s

Lecture Notes 4: Fourier Series and PDE s Lecture Notes 4: Fourier Series and PDE s 1. Periodic Functions A function fx defined on R is caed a periodic function if there exists a number T > such that fx + T = fx, x R. 1.1 The smaest number T for

More information

MA 201: Partial Differential Equations Lecture - 10

MA 201: Partial Differential Equations Lecture - 10 MA 201: Partia Differentia Equations Lecture - 10 Separation of Variabes, One dimensiona Wave Equation Initia Boundary Vaue Probem (IBVP) Reca: A physica probem governed by a PDE may contain both boundary

More information

Problem set 6 The Perron Frobenius theorem.

Problem set 6 The Perron Frobenius theorem. Probem set 6 The Perron Frobenius theorem. Math 22a4 Oct 2 204, Due Oct.28 In a future probem set I want to discuss some criteria which aow us to concude that that the ground state of a sef-adjoint operator

More information

LECTURE 10. The world of pendula

LECTURE 10. The world of pendula LECTURE 0 The word of pendua For the next few ectures we are going to ook at the word of the pane penduum (Figure 0.). In a previous probem set we showed that we coud use the Euer- Lagrange method to derive

More information

Electromagnetism Answers to Problem Set 8 Spring Jackson Prob. 4.1: Multipole expansion for various charge distributions

Electromagnetism Answers to Problem Set 8 Spring Jackson Prob. 4.1: Multipole expansion for various charge distributions Electromagnetism 76 Answers to Problem Set 8 Spring 6. Jackson Prob. 4.: Multipole expansion for various charge distributions (a) In the first case, we have 4 charges in the xy plane at distance a from

More information

4 Separation of Variables

4 Separation of Variables 4 Separation of Variabes In this chapter we describe a cassica technique for constructing forma soutions to inear boundary vaue probems. The soution of three cassica (paraboic, hyperboic and eiptic) PDE

More information

THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE

THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE KATIE L. MAY AND MELISSA A. MITCHELL Abstract. We show how to identify the minima path network connecting three fixed points on

More information

Week 5 Lectures, Math 6451, Tanveer

Week 5 Lectures, Math 6451, Tanveer Week 5 Lectures, Math 651, Tanveer 1 Separation of variabe method The method of separation of variabe is a suitabe technique for determining soutions to inear PDEs, usuay with constant coefficients, when

More information

First-Order Corrections to Gutzwiller s Trace Formula for Systems with Discrete Symmetries

First-Order Corrections to Gutzwiller s Trace Formula for Systems with Discrete Symmetries c 26 Noninear Phenomena in Compex Systems First-Order Corrections to Gutzwier s Trace Formua for Systems with Discrete Symmetries Hoger Cartarius, Jörg Main, and Günter Wunner Institut für Theoretische

More information

Forces of Friction. through a viscous medium, there will be a resistance to the motion. and its environment

Forces of Friction. through a viscous medium, there will be a resistance to the motion. and its environment Forces of Friction When an object is in motion on a surface or through a viscous medium, there wi be a resistance to the motion This is due to the interactions between the object and its environment This

More information

Self Inductance of a Solenoid with a Permanent-Magnet Core

Self Inductance of a Solenoid with a Permanent-Magnet Core 1 Probem Sef Inductance of a Soenoid with a Permanent-Magnet Core Kirk T. McDonad Joseph Henry Laboratories, Princeton University, Princeton, NJ 08544 (March 3, 2013; updated October 19, 2018) Deduce the

More information

Theoretical Cosmology

Theoretical Cosmology Theoretica Cosmoogy Ruth Durrer, Roy Maartens, Costas Skordis Geneva, Capetown, Nottingham Benasque, February 16 2011 Ruth Durrer (Université de Genève) Theoretica Cosmoogy Benasque 2011 1 / 14 Theoretica

More information

VI.G Exact free energy of the Square Lattice Ising model

VI.G Exact free energy of the Square Lattice Ising model VI.G Exact free energy of the Square Lattice Ising mode As indicated in eq.(vi.35), the Ising partition function is reated to a sum S, over coections of paths on the attice. The aowed graphs for a square

More information

Applied Nuclear Physics (Fall 2006) Lecture 7 (10/2/06) Overview of Cross Section Calculation

Applied Nuclear Physics (Fall 2006) Lecture 7 (10/2/06) Overview of Cross Section Calculation 22.101 Appied Nucear Physics (Fa 2006) Lecture 7 (10/2/06) Overview of Cross Section Cacuation References P. Roman, Advanced Quantum Theory (Addison-Wesey, Reading, 1965), Chap 3. A. Foderaro, The Eements

More information

HYDROGEN ATOM SELECTION RULES TRANSITION RATES

HYDROGEN ATOM SELECTION RULES TRANSITION RATES DOING PHYSICS WITH MATLAB QUANTUM PHYSICS Ian Cooper Schoo of Physics, University of Sydney ian.cooper@sydney.edu.au HYDROGEN ATOM SELECTION RULES TRANSITION RATES DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS

More information

Agenda Administrative Matters Atomic Physics Molecules

Agenda Administrative Matters Atomic Physics Molecules Fromm Institute for Lifeong Learning University of San Francisco Modern Physics for Frommies IV The Universe - Sma to Large Lecture 3 Agenda Administrative Matters Atomic Physics Moecues Administrative

More information

Problem Set 6: Solutions

Problem Set 6: Solutions University of Aabama Department of Physics and Astronomy PH 102 / LeCair Summer II 2010 Probem Set 6: Soutions 1. A conducting rectanguar oop of mass M, resistance R, and dimensions w by fas from rest

More information

On the Number of Limit Cycles for Discontinuous Generalized Liénard Polynomial Differential Systems

On the Number of Limit Cycles for Discontinuous Generalized Liénard Polynomial Differential Systems Internationa Journa of Bifurcation and Chaos Vo. 25 No. 10 2015 1550131 10 pages c Word Scientific Pubishing Company DOI: 10.112/S02181271550131X On the Number of Limit Cyces for Discontinuous Generaized

More information

Phys 7654 (Basic Training in CMP- Module III)/ Physics 7636 (Solid State II) Homework 1 Solutions

Phys 7654 (Basic Training in CMP- Module III)/ Physics 7636 (Solid State II) Homework 1 Solutions Phys 7654 Basic Training in CMP- Modue III/ Physics 7636 Soid State II Homework 1 Soutions by Hitesh Changani adapted from soutions provided by Shivam Ghosh Apri 19, 011 Ex. 6.4.3 Phase sips in a wire

More information

Electrodynamics I Midterm - Part A - Closed Book KSU 2005/10/17 Electro Dynamic

Electrodynamics I Midterm - Part A - Closed Book KSU 2005/10/17 Electro Dynamic Electrodynamics I Midterm - Part A - Closed Book KSU 5//7 Name Electro Dynamic. () Write Gauss Law in differential form. E( r) =ρ( r)/ɛ, or D = ρ, E= electricfield,ρ=volume charge density, ɛ =permittivity

More information

Parallel-Axis Theorem

Parallel-Axis Theorem Parae-Axis Theorem In the previous exampes, the axis of rotation coincided with the axis of symmetry of the object For an arbitrary axis, the paraeaxis theorem often simpifies cacuations The theorem states

More information

Course 2BA1, Section 11: Periodic Functions and Fourier Series

Course 2BA1, Section 11: Periodic Functions and Fourier Series Course BA, 8 9 Section : Periodic Functions and Fourier Series David R. Wikins Copyright c David R. Wikins 9 Contents Periodic Functions and Fourier Series 74. Fourier Series of Even and Odd Functions...........

More information

12.2. Maxima and Minima. Introduction. Prerequisites. Learning Outcomes

12.2. Maxima and Minima. Introduction. Prerequisites. Learning Outcomes Maima and Minima 1. Introduction In this Section we anayse curves in the oca neighbourhood of a stationary point and, from this anaysis, deduce necessary conditions satisfied by oca maima and oca minima.

More information

Module 22: Simple Harmonic Oscillation and Torque

Module 22: Simple Harmonic Oscillation and Torque Modue : Simpe Harmonic Osciation and Torque.1 Introduction We have aready used Newton s Second Law or Conservation of Energy to anayze systems ike the boc-spring system that osciate. We sha now use torque

More information

Physics 127c: Statistical Mechanics. Fermi Liquid Theory: Collective Modes. Boltzmann Equation. The quasiparticle energy including interactions

Physics 127c: Statistical Mechanics. Fermi Liquid Theory: Collective Modes. Boltzmann Equation. The quasiparticle energy including interactions Physics 27c: Statistica Mechanics Fermi Liquid Theory: Coective Modes Botzmann Equation The quasipartice energy incuding interactions ε p,σ = ε p + f(p, p ; σ, σ )δn p,σ, () p,σ with ε p ε F + v F (p p

More information

Theory and implementation behind: Universal surface creation - smallest unitcell

Theory and implementation behind: Universal surface creation - smallest unitcell Teory and impementation beind: Universa surface creation - smaest unitce Bjare Brin Buus, Jaob Howat & Tomas Bigaard September 15, 218 1 Construction of surface sabs Te aim for tis part of te project is

More information

Radiation Fields. Lecture 12

Radiation Fields. Lecture 12 Radiation Fieds Lecture 12 1 Mutipoe expansion Separate Maxwe s equations into two sets of equations, each set separatey invoving either the eectric or the magnetic fied. After remova of the time dependence

More information

11.1 One-dimensional Helmholtz Equation

11.1 One-dimensional Helmholtz Equation Chapter Green s Functions. One-dimensiona Hemhotz Equation Suppose we have a string driven by an externa force, periodic with frequency ω. The differentia equation here f is some prescribed function) 2

More information

1D Heat Propagation Problems

1D Heat Propagation Problems Chapter 1 1D Heat Propagation Probems If the ambient space of the heat conduction has ony one dimension, the Fourier equation reduces to the foowing for an homogeneous body cρ T t = T λ 2 + Q, 1.1) x2

More information

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY GEOMETRIC PROBABILITY CALCULATION FOR A TRIANGLE

PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY GEOMETRIC PROBABILITY CALCULATION FOR A TRIANGLE PROCEEDINGS OF THE YEREVAN STATE UNIVERSITY Physica and Mathematica Sciences 07, 5(3, p. 6 M a t h e m a t i c s GEOMETRIC PROBABILITY CALCULATION FOR A TRIANGLE N. G. AHARONYAN, H. O. HARUTYUNYAN Chair

More information

THE NUMERICAL EVALUATION OF THE LEVITATION FORCE IN A HYDROSTATIC BEARING WITH ALTERNATING POLES

THE NUMERICAL EVALUATION OF THE LEVITATION FORCE IN A HYDROSTATIC BEARING WITH ALTERNATING POLES THE NUMERICAL EVALUATION OF THE LEVITATION FORCE IN A HYDROSTATIC BEARING WITH ALTERNATING POLES MARIAN GRECONICI Key words: Magnetic iquid, Magnetic fied, 3D-FEM, Levitation, Force, Bearing. The magnetic

More information

Approximation and Fast Calculation of Non-local Boundary Conditions for the Time-dependent Schrödinger Equation

Approximation and Fast Calculation of Non-local Boundary Conditions for the Time-dependent Schrödinger Equation Approximation and Fast Cacuation of Non-oca Boundary Conditions for the Time-dependent Schrödinger Equation Anton Arnod, Matthias Ehrhardt 2, and Ivan Sofronov 3 Universität Münster, Institut für Numerische

More information

More Scattering: the Partial Wave Expansion

More Scattering: the Partial Wave Expansion More Scattering: the Partia Wave Expansion Michae Fower /7/8 Pane Waves and Partia Waves We are considering the soution to Schrödinger s equation for scattering of an incoming pane wave in the z-direction

More information

CS229 Lecture notes. Andrew Ng

CS229 Lecture notes. Andrew Ng CS229 Lecture notes Andrew Ng Part IX The EM agorithm In the previous set of notes, we taked about the EM agorithm as appied to fitting a mixture of Gaussians. In this set of notes, we give a broader view

More information

Homework #04 Answers and Hints (MATH4052 Partial Differential Equations)

Homework #04 Answers and Hints (MATH4052 Partial Differential Equations) Homework #4 Answers and Hints (MATH452 Partia Differentia Equations) Probem 1 (Page 89, Q2) Consider a meta rod ( < x < ), insuated aong its sides but not at its ends, which is initiay at temperature =

More information

C. Fourier Sine Series Overview

C. Fourier Sine Series Overview 12 PHILIP D. LOEWEN C. Fourier Sine Series Overview Let some constant > be given. The symboic form of the FSS Eigenvaue probem combines an ordinary differentia equation (ODE) on the interva (, ) with a

More information

VTU-NPTEL-NMEICT Project

VTU-NPTEL-NMEICT Project MODUE-X -CONTINUOUS SYSTEM : APPROXIMATE METHOD VIBRATION ENGINEERING 14 VTU-NPTE-NMEICT Project Progress Report The Project on Deveopment of Remaining Three Quadrants to NPTE Phase-I under grant in aid

More information

Strain Energy in Linear Elastic Solids

Strain Energy in Linear Elastic Solids Strain Energ in Linear Eastic Soids CEE L. Uncertaint, Design, and Optimiation Department of Civi and Environmenta Engineering Duke Universit Henri P. Gavin Spring, 5 Consider a force, F i, appied gradua

More information

arxiv:nlin/ v2 [nlin.cd] 30 Jan 2006

arxiv:nlin/ v2 [nlin.cd] 30 Jan 2006 expansions in semicassica theories for systems with smooth potentias and discrete symmetries Hoger Cartarius, Jörg Main, and Günter Wunner arxiv:nin/0510051v [nin.cd] 30 Jan 006 1. Institut für Theoretische

More information

MA 201: Partial Differential Equations Lecture - 11

MA 201: Partial Differential Equations Lecture - 11 MA 201: Partia Differentia Equations Lecture - 11 Heat Equation Heat conduction in a thin rod The IBVP under consideration consists of: The governing equation: u t = αu xx, (1) where α is the therma diffusivity.

More information

1 Heat Equation Dirichlet Boundary Conditions

1 Heat Equation Dirichlet Boundary Conditions Chapter 3 Heat Exampes in Rectanges Heat Equation Dirichet Boundary Conditions u t (x, t) = ku xx (x, t), < x (.) u(, t) =, u(, t) = u(x, ) = f(x). Separate Variabes Look for simpe soutions in the

More information

Jackson 3.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 3.3 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 3.3 Homewok Pobem Soution D. Chistophe S. Baid Univesity of Massachusetts Lowe POBLEM: A thin, fat, conducting, cicua disc of adius is ocated in the x-y pane with its cente at the oigin, and is

More information

18. Atmospheric scattering details

18. Atmospheric scattering details 8. Atmospheric scattering detais See Chandrasekhar for copious detais and aso Goody & Yung Chapters 7 (Mie scattering) and 8. Legendre poynomias are often convenient in scattering probems to expand the

More information

b n n=1 a n cos nx (3) n=1

b n n=1 a n cos nx (3) n=1 Fourier Anaysis The Fourier series First some terminoogy: a function f(x) is periodic if f(x ) = f(x) for a x for some, if is the smaest such number, it is caed the period of f(x). It is even if f( x)

More information

arxiv: v1 [math-ph] 6 Oct 2011

arxiv: v1 [math-ph] 6 Oct 2011 Effective wave numbers for thermo-viscoeastic media containing random configurations of spherica scatterers Francine Luppé a, Jean-Marc Conoir b, Andrew N. Norris c a Laboratoire Ondes et Miieux Compexes,

More information

Math 220B - Summer 2003 Homework 1 Solutions

Math 220B - Summer 2003 Homework 1 Solutions Math 0B - Summer 003 Homework Soutions Consider the eigenvaue probem { X = λx 0 < x < X satisfies symmetric BCs x = 0, Suppose f(x)f (x) x=b x=a 0 for a rea-vaued functions f(x) which satisfy the boundary

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Mathematics II (Materials) Section A. Find the general solution of the equation

SCHOOL OF MATHEMATICS AND STATISTICS. Mathematics II (Materials) Section A. Find the general solution of the equation Data provided: Formua Sheet MAS250 SCHOOL OF MATHEMATICS AND STATISTICS Mathematics II (Materias Autumn Semester 204 5 2 hours Marks wi be awarded for answers to a questions in Section A, and for your

More information