Phys 7654 (Basic Training in CMP- Module III)/ Physics 7636 (Solid State II) Homework 1 Solutions

Size: px
Start display at page:

Download "Phys 7654 (Basic Training in CMP- Module III)/ Physics 7636 (Solid State II) Homework 1 Solutions"

Transcription

1 Phys 7654 Basic Training in CMP- Modue III/ Physics 7636 Soid State II Homework 1 Soutions by Hitesh Changani adapted from soutions provided by Shivam Ghosh Apri 19, 011 Ex Phase sips in a wire I: variationa approach a We can put the G-L free energy density in the form 6.4. a,b by noting that, F L Ψ F L Ψ 0 = F L Ψ 0 1 F L Ψ/F L Ψ 0 1 where F L Ψ is given by, F L Ψ = α Ψ + β Ψ 4 For the case where Ψ = Ψ 0 i.e. the uniform case we have, F L Ψ 0 = α Ψ 0 + β Ψ = α β = α Pug in F L Ψ from into 1, and use 5 and = α/β, to get, F L Ψ F L Ψ 0 = F L Ψ 0 1 Ψ β α Ψ Emai: hjc55@corne.edu 1

2 = F L Ψ 0 1 Ψ + Ψ 4 Ψ where F L Ψ 0 = F cond = α /β is the condensation energy. Simiary the gradient part of the free energy density, can be recast into the form, F grad = = F cond 1 Ψ 8 F grad = m Ψ 9 Ψ =. α m β.. 1. β Ψ 10 m α α which has been written to make the famiiar identications of F cond, ξ and Ψ 0 in terms of G-L parameters α and β. Thus we get, F grad = F cond ξ Ψ 11 b We assume a variationa state, Ψ = Ψ 0 ϕ 1 + ϕ x x < = Ψ 0 x > 1 with ϕ = 1 ϕ 1, which satises the boundary condition Ψx = 0/Ψ 0 = ϕ 1. Pugging the expression for Ψ from 1 into 8 we nd F L = F cond 1 ϕ 1 + ϕ x, x < 13 Aso note that F L = 0 for x >. Thus we can compute the free energy change as, F L = ˆ F L dx = F cond ϕ C ϕ 14

3 where C ϕ is a second order poynomia given by ϕ C ϕ = 5 ϕ Now consider the contribution from the gradient term. F grad = F cond ξ ϕ for x < and F grad = 0 for x >. Integrating this part of the free energy density we get, ˆ F grad = F grad dx = 4 F cond ξ ϕ. 1 The tota change in free energy F tota is obtained by adding 14 and 16 F tota = F cond ϕ C ϕ + 4 ξ Minimizing this as a function of the variationa parameter so that F tota = opt = 0, we get the optima ength, opt = ξ 18 C ϕ Evauating the barrier U ϕ F tota opt, we get, U = 4 C ϕ F cond ϕ ξ 19 c OPTIONAL In the presence of a super current the ampitude part of G-L equation remains the same but the gradient part becomes F grad = F cond ξ ie c and aso the super current density J s is given by J s = n s [ θ e A m c ] AΨ 0 we can now express Ψ as an ampitude times a phase part Ψ = Ψ A e iθ and pug into the covariant derivative ie c ie c 1 AΨ = Ψ A e iθ + iψ θ ie AΨ c = Ψ A e iθ + i θ e A c Ψ 3 AΨ = Ψ A e iθ + i m J s Ψ 4 n s 3

4 So, F grad becomes and recognizing Ψ A = n s gives us [ F grad = F cond ξ Ψ Ψ A + 0 m [ Ψ A + ] Js Ψ A F grad Ψ = F cond ξ n s The change in the gradient free energy density can therefore be expressed as, F grad = F grad Ψ F grad Ψ 0 = F cond ξ n s m [ Ψ A + ] Js m J s n s J s n s0 where we have used the fact that the same constant current J s in the case of Ψx = Ψ 0, ensures Ψ A = 0 and θ = const. with n s0 = Note aso that we have not reay worried about A here and assume the eect is sma. Observe that the x > contributions vanish. We can then compute the tota change in free energy as before. The ony new contributions require the cacuation of the integra, which gives us, ˆ ˆ 1 Ψ A dx = 1 ϕ 1 + ϕ x [ F grad = F cond ξ ϕ The tota change can thus be written as, [ F tota = F cond + C ϕ ϕ + 4ξ m dx = 1 ϕ. 1 m We minimize the free energy to get an optima ca it opt,js opt.js = ] J s ϕ Ψ ϕ Ψ 4 0 ] ] Js ϕ + 4ξ ϕ 1 ϕ ϕ C ϕ ϕ + 4ξ m ξ 31 Js ϕ Ψ ϕ putting J s = 0 recovers for us our earier resut in 18. Aso observe that opt,js < opt. Note that U Js ϕ becomes m J U Js = 4 C ϕ ϕ + 4ξ s ϕ F cond ϕξ 3 1 ϕ which is more than U Js=0 in 19! Ψ 4 0 4

5 Ex Phase sips in a wire II: exact soution a The tota Free energy density F tota = F L + F grad is given in 6.4. F tota = F cond ξ Ψ + F L 33 simiar to the Lagrangian of a physica system. We can get the 'equation of motion' Euer- Lagrange equation using Inserting 33 in 34 we get, F tota Ψ F tota Ψ = 0 34 F cond ξ d Ψ dx F LΨ = 0 35 where F L Ψ = df L/dΨ. Aso, it is convenient to choose a abe for the constants infront of the second derivative, c = F cond ξ 36 Mutipying 35 by dψ/dx and integrating we get, ˆ ˆ c dx d Ψ x dx.dψ dx dx df L x dψ.dψ dx = 0 37 c dψ F L Ψ dx H 38 where H is the constant of integration the constant of motion and the factor of 1/ in the rst term comes from integration by parts. We can compare this to Newton's equation of motion energy constraint for a partice in a one dimensiona potentia and make the identication V Ψ = F L Ψ. b We can x the constant of motion by noting that far away from the uctuation Ψ = Ψ 0 and 35 becomes F L Ψ 0 = H 39 using which we can express 38 as c dψ = F L Ψ F L Ψ 0 40 dx c dψ = F cond 1 Ψ 41 dx 5

6 x x Trying a soution of the form Ψx = Ψ 0 tanh 0 and using 1 tanh x = sech x we get, ξ c ξ = F cond 4 which is consistent with the denition of the constant c. x 0 determines the position where the order parameter woud vanish. To obtain x 0 use the fact that Ψx = 0 = Ψ 0 ϕ 1 x0 ϕ 1 = tanh 43 ξ Recovering the x x symmetry we arrive at the function, Ψx = Ψ 0 tanh x + ξ tanh 1 ϕ 1 44 c We can now pug in this soution for Ψx in 6.4. to get F tota, F tota = 3 F cond A ˆ dx sech 4 x x0 ξ 45 making a change of variabes u = x x 0 /ξ and evauating the integra, aows us to write F tota as F tota = 3ϕ 1 + ϕ 3 1 Fcond A ξ 46 Comparing the exact soution with the variationa soution we get, F tota,ex F tota,var = = 3 ϕ ϕ F cond A ξ 47 3 ϕ ϕ 5 ϕ For ϕ is very cose to zero this ratio is 0.9, for ϕ = 0.5 it is 0.94 and for ϕ = 1 it is 15/ indicating that the variationa approximation is rather good. Ex How sma to see phase sips? a We can get the diameter of the wire by equating U B = F cond A ξ to 10k B T c and using F cond = Hc /8π, 3 10 din m = 7.10k B in S.I.T c in K 49 Hc in Tesaξin m 6

7 For Pb, T c = 7.19K,H c = 8 10 Tesa, ξ = m. Using these parameters, we nd a diameter of.44 Angstrom. Beware of conversion units Let us aso compute the energy scaes in question for these parameters, to make sense our numbers and to ensure we have a reasonabe estimate Tc 10k B T c = 10 k B T room 50 T room ev 51 We now compute F cond = H c 8π F cond = H c µ 0 giving us, This demands that, Using the given vaue of ξ we get, which impies that the wire diameter is, This is in Gaussian units. When expressed in Tesa one may use F cond = π J/m ev/m 3 53 A ξ m 3 54 A m 55 d m 56 NOTE: Some of you got answers in miimeters because of wrong conversion factors! b To compute the number of phase sips happening per second we use, d dt θ θ 1 = e V 57 Now since θ θ 1 = πn where n is an integer, the number of phase sips per second dn/dt is given by dn dt = ev 58 h 7

8 where we have used e = e. Thus for V = 1µV the phase sip rate is s 1. 8

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l Probem 7. Simpe Penduum SEMINAR. PENDULUMS A simpe penduum means a mass m suspended by a string weightess rigid rod of ength so that it can swing in a pane. The y-axis is directed down, x-axis is directed

More information

CS229 Lecture notes. Andrew Ng

CS229 Lecture notes. Andrew Ng CS229 Lecture notes Andrew Ng Part IX The EM agorithm In the previous set of notes, we taked about the EM agorithm as appied to fitting a mixture of Gaussians. In this set of notes, we give a broader view

More information

Math 124B January 31, 2012

Math 124B January 31, 2012 Math 124B January 31, 212 Viktor Grigoryan 7 Inhomogeneous boundary vaue probems Having studied the theory of Fourier series, with which we successfuy soved boundary vaue probems for the homogeneous heat

More information

$, (2.1) n="# #. (2.2)

$, (2.1) n=# #. (2.2) Chapter. Eectrostatic II Notes: Most of the materia presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartoo, Chap... Mathematica Considerations.. The Fourier series and the Fourier

More information

Math 124B January 17, 2012

Math 124B January 17, 2012 Math 124B January 17, 212 Viktor Grigoryan 3 Fu Fourier series We saw in previous ectures how the Dirichet and Neumann boundary conditions ead to respectivey sine and cosine Fourier series of the initia

More information

Physics 235 Chapter 8. Chapter 8 Central-Force Motion

Physics 235 Chapter 8. Chapter 8 Central-Force Motion Physics 35 Chapter 8 Chapter 8 Centra-Force Motion In this Chapter we wi use the theory we have discussed in Chapter 6 and 7 and appy it to very important probems in physics, in which we study the motion

More information

Term Test AER301F. Dynamics. 5 November The value of each question is indicated in the table opposite.

Term Test AER301F. Dynamics. 5 November The value of each question is indicated in the table opposite. U N I V E R S I T Y O F T O R O N T O Facuty of Appied Science and Engineering Term Test AER31F Dynamics 5 November 212 Student Name: Last Name First Names Student Number: Instructions: 1. Attempt a questions.

More information

Separation of Variables and a Spherical Shell with Surface Charge

Separation of Variables and a Spherical Shell with Surface Charge Separation of Variabes and a Spherica She with Surface Charge In cass we worked out the eectrostatic potentia due to a spherica she of radius R with a surface charge density σθ = σ cos θ. This cacuation

More information

Elements of Kinetic Theory

Elements of Kinetic Theory Eements of Kinetic Theory Statistica mechanics Genera description computation of macroscopic quantities Equiibrium: Detaied Baance/ Equipartition Fuctuations Diffusion Mean free path Brownian motion Diffusion

More information

Physics 505 Fall Homework Assignment #4 Solutions

Physics 505 Fall Homework Assignment #4 Solutions Physics 505 Fa 2005 Homework Assignment #4 Soutions Textbook probems: Ch. 3: 3.4, 3.6, 3.9, 3.0 3.4 The surface of a hoow conducting sphere of inner radius a is divided into an even number of equa segments

More information

hole h vs. e configurations: l l for N > 2 l + 1 J = H as example of localization, delocalization, tunneling ikx k

hole h vs. e configurations: l l for N > 2 l + 1 J = H as example of localization, delocalization, tunneling ikx k Infinite 1-D Lattice CTDL, pages 1156-1168 37-1 LAST TIME: ( ) ( ) + N + 1 N hoe h vs. e configurations: for N > + 1 e rij unchanged ζ( NLS) ζ( NLS) [ ζn unchanged ] Hund s 3rd Rue (Lowest L - S term of

More information

PHYS 110B - HW #1 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #1 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased PHYS 110B - HW #1 Fa 2005, Soutions by David Pace Equations referenced as Eq. # are from Griffiths Probem statements are paraphrased [1.] Probem 6.8 from Griffiths A ong cyinder has radius R and a magnetization

More information

ASummaryofGaussianProcesses Coryn A.L. Bailer-Jones

ASummaryofGaussianProcesses Coryn A.L. Bailer-Jones ASummaryofGaussianProcesses Coryn A.L. Baier-Jones Cavendish Laboratory University of Cambridge caj@mrao.cam.ac.uk Introduction A genera prediction probem can be posed as foows. We consider that the variabe

More information

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n.

Notes: Most of the material presented in this chapter is taken from Jackson, Chap. 2, 3, and 4, and Di Bartolo, Chap. 2. 2π nx i a. ( ) = G n. Chapter. Eectrostatic II Notes: Most of the materia presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartoo, Chap... Mathematica Considerations.. The Fourier series and the Fourier

More information

Supporting Information for Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers

Supporting Information for Suppressing Klein tunneling in graphene using a one-dimensional array of localized scatterers Supporting Information for Suppressing Kein tunneing in graphene using a one-dimensiona array of ocaized scatterers Jamie D Was, and Danie Hadad Department of Chemistry, University of Miami, Cora Gabes,

More information

Bohr s atomic model. 1 Ze 2 = mv2. n 2 Z

Bohr s atomic model. 1 Ze 2 = mv2. n 2 Z Bohr s atomic mode Another interesting success of the so-caed od quantum theory is expaining atomic spectra of hydrogen and hydrogen-ike atoms. The eectromagnetic radiation emitted by free atoms is concentrated

More information

Strauss PDEs 2e: Section Exercise 2 Page 1 of 12. For problem (1), complete the calculation of the series in case j(t) = 0 and h(t) = e t.

Strauss PDEs 2e: Section Exercise 2 Page 1 of 12. For problem (1), complete the calculation of the series in case j(t) = 0 and h(t) = e t. Strauss PDEs e: Section 5.6 - Exercise Page 1 of 1 Exercise For probem (1, compete the cacuation of the series in case j(t = and h(t = e t. Soution With j(t = and h(t = e t, probem (1 on page 147 becomes

More information

Module 22: Simple Harmonic Oscillation and Torque

Module 22: Simple Harmonic Oscillation and Torque Modue : Simpe Harmonic Osciation and Torque.1 Introduction We have aready used Newton s Second Law or Conservation of Energy to anayze systems ike the boc-spring system that osciate. We sha now use torque

More information

Math 220B - Summer 2003 Homework 1 Solutions

Math 220B - Summer 2003 Homework 1 Solutions Math 0B - Summer 003 Homework Soutions Consider the eigenvaue probem { X = λx 0 < x < X satisfies symmetric BCs x = 0, Suppose f(x)f (x) x=b x=a 0 for a rea-vaued functions f(x) which satisfy the boundary

More information

221B Lecture Notes Notes on Spherical Bessel Functions

221B Lecture Notes Notes on Spherical Bessel Functions Definitions B Lecture Notes Notes on Spherica Besse Functions We woud ike to sove the free Schrödinger equation [ h d r R(r) = h k R(r). () m r dr r m R(r) is the radia wave function ψ( x) = R(r)Y m (θ,

More information

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18

Quantum Mechanical Models of Vibration and Rotation of Molecules Chapter 18 Quantum Mechanica Modes of Vibration and Rotation of Moecues Chapter 18 Moecuar Energy Transationa Vibrationa Rotationa Eectronic Moecuar Motions Vibrations of Moecues: Mode approximates moecues to atoms

More information

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES Separation of variabes is a method to sove certain PDEs which have a warped product structure. First, on R n, a inear PDE of order m is

More information

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law Gauss Law 1. Review on 1) Couomb s Law (charge and force) 2) Eectric Fied (fied and force) 2. Gauss s Law: connects charge and fied 3. Appications of Gauss s Law Couomb s Law and Eectric Fied Couomb s

More information

Section 6: Magnetostatics

Section 6: Magnetostatics agnetic fieds in matter Section 6: agnetostatics In the previous sections we assumed that the current density J is a known function of coordinates. In the presence of matter this is not aways true. The

More information

4 1-D Boundary Value Problems Heat Equation

4 1-D Boundary Value Problems Heat Equation 4 -D Boundary Vaue Probems Heat Equation The main purpose of this chapter is to study boundary vaue probems for the heat equation on a finite rod a x b. u t (x, t = ku xx (x, t, a < x < b, t > u(x, = ϕ(x

More information

Fourier Series. 10 (D3.9) Find the Cesàro sum of the series. 11 (D3.9) Let a and b be real numbers. Under what conditions does a series of the form

Fourier Series. 10 (D3.9) Find the Cesàro sum of the series. 11 (D3.9) Let a and b be real numbers. Under what conditions does a series of the form Exercises Fourier Anaysis MMG70, Autumn 007 The exercises are taken from: Version: Monday October, 007 DXY Section XY of H F Davis, Fourier Series and orthogona functions EÖ Some exercises from earier

More information

Physics 566: Quantum Optics Quantization of the Electromagnetic Field

Physics 566: Quantum Optics Quantization of the Electromagnetic Field Physics 566: Quantum Optics Quantization of the Eectromagnetic Fied Maxwe's Equations and Gauge invariance In ecture we earned how to quantize a one dimensiona scaar fied corresponding to vibrations on

More information

arxiv: v1 [hep-th] 10 Dec 2018

arxiv: v1 [hep-th] 10 Dec 2018 Casimir energy of an open string with ange-dependent boundary condition A. Jahan 1 and I. Brevik 2 1 Research Institute for Astronomy and Astrophysics of Maragha (RIAAM, Maragha, Iran 2 Department of Energy

More information

Srednicki Chapter 51

Srednicki Chapter 51 Srednici Chapter 51 QFT Probems & Soutions A. George September 7, 13 Srednici 51.1. Derive the fermion-oop correction to the scaar proagator by woring through equation 5., and show that it has an extra

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String ecture Notes for Math 251: ODE and PDE. ecture 3: 1.7 Wave Equation and Vibrations of an Eastic String Shawn D. Ryan Spring 212 ast Time: We studied other Heat Equation probems with various other boundary

More information

6 Wave Equation on an Interval: Separation of Variables

6 Wave Equation on an Interval: Separation of Variables 6 Wave Equation on an Interva: Separation of Variabes 6.1 Dirichet Boundary Conditions Ref: Strauss, Chapter 4 We now use the separation of variabes technique to study the wave equation on a finite interva.

More information

Famous Mathematical Problems and Their Stories Simple Pendul

Famous Mathematical Problems and Their Stories Simple Pendul Famous Mathematica Probems and Their Stories Simpe Penduum (Lecture 3) Department of Appied Mathematics Nationa Chiao Tung University Hsin-Chu 30010, TAIWAN 23rd September 2009 History penduus: (hanging,

More information

Legendre Polynomials - Lecture 8

Legendre Polynomials - Lecture 8 Legendre Poynomias - Lecture 8 Introduction In spherica coordinates the separation of variabes for the function of the poar ange resuts in Legendre s equation when the soution is independent of the azimutha

More information

APPENDIX C FLEXING OF LENGTH BARS

APPENDIX C FLEXING OF LENGTH BARS Fexing of ength bars 83 APPENDIX C FLEXING OF LENGTH BARS C.1 FLEXING OF A LENGTH BAR DUE TO ITS OWN WEIGHT Any object ying in a horizonta pane wi sag under its own weight uness it is infinitey stiff or

More information

SCHOOL OF MATHEMATICS AND STATISTICS. Mathematics II (Materials) Section A. Find the general solution of the equation

SCHOOL OF MATHEMATICS AND STATISTICS. Mathematics II (Materials) Section A. Find the general solution of the equation Data provided: Formua Sheet MAS250 SCHOOL OF MATHEMATICS AND STATISTICS Mathematics II (Materias Autumn Semester 204 5 2 hours Marks wi be awarded for answers to a questions in Section A, and for your

More information

Week 6 Lectures, Math 6451, Tanveer

Week 6 Lectures, Math 6451, Tanveer Fourier Series Week 6 Lectures, Math 645, Tanveer In the context of separation of variabe to find soutions of PDEs, we encountered or and in other cases f(x = f(x = a 0 + f(x = a 0 + b n sin nπx { a n

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM REVIEW Vo. 49,No. 1,pp. 111 1 c 7 Society for Industria and Appied Mathematics Domino Waves C. J. Efthimiou M. D. Johnson Abstract. Motivated by a proposa of Daykin [Probem 71-19*, SIAM Rev., 13 (1971),

More information

Physics 127c: Statistical Mechanics. Fermi Liquid Theory: Collective Modes. Boltzmann Equation. The quasiparticle energy including interactions

Physics 127c: Statistical Mechanics. Fermi Liquid Theory: Collective Modes. Boltzmann Equation. The quasiparticle energy including interactions Physics 27c: Statistica Mechanics Fermi Liquid Theory: Coective Modes Botzmann Equation The quasipartice energy incuding interactions ε p,σ = ε p + f(p, p ; σ, σ )δn p,σ, () p,σ with ε p ε F + v F (p p

More information

LECTURE NOTES 8 THE TRACELESS SYMMETRIC TENSOR EXPANSION AND STANDARD SPHERICAL HARMONICS

LECTURE NOTES 8 THE TRACELESS SYMMETRIC TENSOR EXPANSION AND STANDARD SPHERICAL HARMONICS MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Eectromagnetism II October, 202 Prof. Aan Guth LECTURE NOTES 8 THE TRACELESS SYMMETRIC TENSOR EXPANSION AND STANDARD SPHERICAL HARMONICS

More information

Lecture Notes 4: Fourier Series and PDE s

Lecture Notes 4: Fourier Series and PDE s Lecture Notes 4: Fourier Series and PDE s 1. Periodic Functions A function fx defined on R is caed a periodic function if there exists a number T > such that fx + T = fx, x R. 1.1 The smaest number T for

More information

More Scattering: the Partial Wave Expansion

More Scattering: the Partial Wave Expansion More Scattering: the Partia Wave Expansion Michae Fower /7/8 Pane Waves and Partia Waves We are considering the soution to Schrödinger s equation for scattering of an incoming pane wave in the z-direction

More information

(1 ) = 1 for some 2 (0; 1); (1 + ) = 0 for some > 0:

(1 ) = 1 for some 2 (0; 1); (1 + ) = 0 for some > 0: Answers, na. Economics 4 Fa, 2009. Christiano.. The typica househod can engage in two types of activities producing current output and studying at home. Athough time spent on studying at home sacrices

More information

An approximate method for solving the inverse scattering problem with fixed-energy data

An approximate method for solving the inverse scattering problem with fixed-energy data J. Inv. I-Posed Probems, Vo. 7, No. 6, pp. 561 571 (1999) c VSP 1999 An approximate method for soving the inverse scattering probem with fixed-energy data A. G. Ramm and W. Scheid Received May 12, 1999

More information

Expectation-Maximization for Estimating Parameters for a Mixture of Poissons

Expectation-Maximization for Estimating Parameters for a Mixture of Poissons Expectation-Maximization for Estimating Parameters for a Mixture of Poissons Brandon Maone Department of Computer Science University of Hesini February 18, 2014 Abstract This document derives, in excrutiating

More information

Jackson 4.10 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 4.10 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jackson 4.10 Homework Probem Soution Dr. Christopher S. Baird University of Massachusetts Lowe PROBLEM: Two concentric conducting spheres of inner and outer radii a and b, respectivey, carry charges ±.

More information

Copyright information to be inserted by the Publishers. Unsplitting BGK-type Schemes for the Shallow. Water Equations KUN XU

Copyright information to be inserted by the Publishers. Unsplitting BGK-type Schemes for the Shallow. Water Equations KUN XU Copyright information to be inserted by the Pubishers Unspitting BGK-type Schemes for the Shaow Water Equations KUN XU Mathematics Department, Hong Kong University of Science and Technoogy, Cear Water

More information

14 Separation of Variables Method

14 Separation of Variables Method 14 Separation of Variabes Method Consider, for exampe, the Dirichet probem u t = Du xx < x u(x, ) = f(x) < x < u(, t) = = u(, t) t > Let u(x, t) = T (t)φ(x); now substitute into the equation: dt

More information

Physics 506 Winter 2006 Homework Assignment #6 Solutions

Physics 506 Winter 2006 Homework Assignment #6 Solutions Physics 506 Winter 006 Homework Assignment #6 Soutions Textbook probems: Ch. 10: 10., 10.3, 10.7, 10.10 10. Eectromagnetic radiation with eiptic poarization, described (in the notation of Section 7. by

More information

Physics 505 Fall 2007 Homework Assignment #5 Solutions. Textbook problems: Ch. 3: 3.13, 3.17, 3.26, 3.27

Physics 505 Fall 2007 Homework Assignment #5 Solutions. Textbook problems: Ch. 3: 3.13, 3.17, 3.26, 3.27 Physics 55 Fa 7 Homework Assignment #5 Soutions Textook proems: Ch. 3: 3.3, 3.7, 3.6, 3.7 3.3 Sove for the potentia in Proem 3., using the appropriate Green function otained in the text, and verify that

More information

Elements of Kinetic Theory

Elements of Kinetic Theory Eements of Kinetic Theory Statistica mechanics Genera description computation of macroscopic quantities Equiibrium: Detaied Baance/ Equipartition Fuctuations Diffusion Mean free path Brownian motion Diffusion

More information

arxiv:hep-ph/ v1 26 Jun 1996

arxiv:hep-ph/ v1 26 Jun 1996 Quantum Subcritica Bubbes UTAP-34 OCHA-PP-80 RESCEU-1/96 June 1996 Tomoko Uesugi and Masahiro Morikawa Department of Physics, Ochanomizu University, Tokyo 11, Japan arxiv:hep-ph/9606439v1 6 Jun 1996 Tetsuya

More information

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 2: The Moment Equations

22.615, MHD Theory of Fusion Systems Prof. Freidberg Lecture 2: The Moment Equations .615, MHD Theory of Fusion ystems Prof. Freidberg Lecture : The Moment Equations Botzmann-Maxwe Equations 1. Reca that the genera couped Botzmann-Maxwe equations can be written as f q + v + E + v B f =

More information

LECTURE 10. The world of pendula

LECTURE 10. The world of pendula LECTURE 0 The word of pendua For the next few ectures we are going to ook at the word of the pane penduum (Figure 0.). In a previous probem set we showed that we coud use the Euer- Lagrange method to derive

More information

C. Fourier Sine Series Overview

C. Fourier Sine Series Overview 12 PHILIP D. LOEWEN C. Fourier Sine Series Overview Let some constant > be given. The symboic form of the FSS Eigenvaue probem combines an ordinary differentia equation (ODE) on the interva (, ) with a

More information

Combining reaction kinetics to the multi-phase Gibbs energy calculation

Combining reaction kinetics to the multi-phase Gibbs energy calculation 7 th European Symposium on Computer Aided Process Engineering ESCAPE7 V. Pesu and P.S. Agachi (Editors) 2007 Esevier B.V. A rights reserved. Combining reaction inetics to the muti-phase Gibbs energy cacuation

More information

Automobile Prices in Market Equilibrium. Berry, Pakes and Levinsohn

Automobile Prices in Market Equilibrium. Berry, Pakes and Levinsohn Automobie Prices in Market Equiibrium Berry, Pakes and Levinsohn Empirica Anaysis of demand and suppy in a differentiated products market: equiibrium in the U.S. automobie market. Oigopoistic Differentiated

More information

Assignment 7 Due Tuessday, March 29, 2016

Assignment 7 Due Tuessday, March 29, 2016 Math 45 / AMCS 55 Dr. DeTurck Assignment 7 Due Tuessday, March 9, 6 Topics for this week Convergence of Fourier series; Lapace s equation and harmonic functions: basic properties, compuations on rectanges

More information

Elements of Kinetic Theory

Elements of Kinetic Theory Eements of Kinetic Theory Diffusion Mean free path rownian motion Diffusion against a density gradient Drift in a fied Einstein equation aance between diffusion and drift Einstein reation Constancy of

More information

Candidate Number. General Certificate of Education Advanced Level Examination January 2012

Candidate Number. General Certificate of Education Advanced Level Examination January 2012 entre Number andidate Number Surname Other Names andidate Signature Genera ertificate of Education dvanced Leve Examination January 212 Physics PHY4/1 Unit 4 Fieds and Further Mechanics Section Tuesday

More information

Thermophoretic interaction of heat releasing particles

Thermophoretic interaction of heat releasing particles JOURNAL OF APPLIED PHYSICS VOLUME 9, NUMBER 7 1 APRIL 200 Thermophoretic interaction of heat reeasing partices Yu Doinsky a) and T Eperin b) Department of Mechanica Engineering, The Pearstone Center for

More information

Approximate description of the two-dimensional director field in a liquid crystal display

Approximate description of the two-dimensional director field in a liquid crystal display JOURNAL OF APPLIED PHYSICS VOLUME 89, NUMBER 9 1 MAY 21 Approximate description of the two-dimensiona director fied in a iquid crysta dispay G. Panasyuk, a) D. W. Aender, J. Key Liquid Crysta Institute

More information

Vacuum Polarization Effects on Non-Relativistic Bound States. PHYS 499 Final Report

Vacuum Polarization Effects on Non-Relativistic Bound States. PHYS 499 Final Report Vacuum Poarization Effects on Non-Reativistic Bound States PHYS 499 Fina Report Ahmed Rayyan Supervisor: Aexander Penin Apri 4, 16 Contents 1 Introduction 1 Vacuum Poarization and Π µν 3 3 Ground State

More information

Dislocations in the Spacetime Continuum: Framework for Quantum Physics

Dislocations in the Spacetime Continuum: Framework for Quantum Physics Issue 4 October PROGRESS IN PHYSICS Voume 11 15 Disocations in the Spacetime Continuum: Framework for Quantum Physics Pierre A. Miette PierreAMiette@aumni.uottawa.ca, Ottawa, Canada This paper provides

More information

SVM: Terminology 1(6) SVM: Terminology 2(6)

SVM: Terminology 1(6) SVM: Terminology 2(6) Andrew Kusiak Inteigent Systems Laboratory 39 Seamans Center he University of Iowa Iowa City, IA 54-57 SVM he maxima margin cassifier is simiar to the perceptron: It aso assumes that the data points are

More information

MARKOV CHAINS AND MARKOV DECISION THEORY. Contents

MARKOV CHAINS AND MARKOV DECISION THEORY. Contents MARKOV CHAINS AND MARKOV DECISION THEORY ARINDRIMA DATTA Abstract. In this paper, we begin with a forma introduction to probabiity and expain the concept of random variabes and stochastic processes. After

More information

Formulas for Angular-Momentum Barrier Factors Version II

Formulas for Angular-Momentum Barrier Factors Version II BNL PREPRINT BNL-QGS-06-101 brfactor1.tex Formuas for Anguar-Momentum Barrier Factors Version II S. U. Chung Physics Department, Brookhaven Nationa Laboratory, Upton, NY 11973 March 19, 2015 abstract A

More information

Mat 1501 lecture notes, penultimate installment

Mat 1501 lecture notes, penultimate installment Mat 1501 ecture notes, penutimate instament 1. bounded variation: functions of a singe variabe optiona) I beieve that we wi not actuay use the materia in this section the point is mainy to motivate the

More information

Applied Nuclear Physics (Fall 2006) Lecture 7 (10/2/06) Overview of Cross Section Calculation

Applied Nuclear Physics (Fall 2006) Lecture 7 (10/2/06) Overview of Cross Section Calculation 22.101 Appied Nucear Physics (Fa 2006) Lecture 7 (10/2/06) Overview of Cross Section Cacuation References P. Roman, Advanced Quantum Theory (Addison-Wesey, Reading, 1965), Chap 3. A. Foderaro, The Eements

More information

Bayesian Learning. You hear a which which could equally be Thanks or Tanks, which would you go with?

Bayesian Learning. You hear a which which could equally be Thanks or Tanks, which would you go with? Bayesian Learning A powerfu and growing approach in machine earning We use it in our own decision making a the time You hear a which which coud equay be Thanks or Tanks, which woud you go with? Combine

More information

Measurement of acceleration due to gravity (g) by a compound pendulum

Measurement of acceleration due to gravity (g) by a compound pendulum Measurement of acceeration due to gravity (g) by a compound penduum Aim: (i) To determine the acceeration due to gravity (g) by means of a compound penduum. (ii) To determine radius of gyration about an

More information

David Eigen. MA112 Final Paper. May 10, 2002

David Eigen. MA112 Final Paper. May 10, 2002 David Eigen MA112 Fina Paper May 1, 22 The Schrodinger equation describes the position of an eectron as a wave. The wave function Ψ(t, x is interpreted as a probabiity density for the position of the eectron.

More information

Midterm 2 Review. Drew Rollins

Midterm 2 Review. Drew Rollins Midterm 2 Review Drew Roins 1 Centra Potentias and Spherica Coordinates 1.1 separation of variabes Soving centra force probems in physics (physica systems described by two objects with a force between

More information

DYNAMIC RESPONSE OF CIRCULAR FOOTINGS ON SATURATED POROELASTIC HALFSPACE

DYNAMIC RESPONSE OF CIRCULAR FOOTINGS ON SATURATED POROELASTIC HALFSPACE 3 th Word Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 4 Paper No. 38 DYNAMIC RESPONSE OF CIRCULAR FOOTINGS ON SATURATED POROELASTIC HALFSPACE Bo JIN SUMMARY The dynamic responses

More information

Stochastic Variational Inference with Gradient Linearization

Stochastic Variational Inference with Gradient Linearization Stochastic Variationa Inference with Gradient Linearization Suppementa Materia Tobias Pötz * Anne S Wannenwetsch Stefan Roth Department of Computer Science, TU Darmstadt Preface In this suppementa materia,

More information

Solution Set Seven. 1 Goldstein Components of Torque Along Principal Axes Components of Torque Along Cartesian Axes...

Solution Set Seven. 1 Goldstein Components of Torque Along Principal Axes Components of Torque Along Cartesian Axes... : Soution Set Seven Northwestern University, Cassica Mechanics Cassica Mechanics, Third Ed.- Godstein November 8, 25 Contents Godstein 5.8. 2. Components of Torque Aong Principa Axes.......................

More information

CHAPTER XIII FLOW PAST FINITE BODIES

CHAPTER XIII FLOW PAST FINITE BODIES HAPTER XIII LOW PAST INITE BODIES. The formation of shock waves in supersonic fow past bodies Simpe arguments show that, in supersonic fow past an arbitrar bod, a shock wave must be formed in front of

More information

How the backpropagation algorithm works Srikumar Ramalingam School of Computing University of Utah

How the backpropagation algorithm works Srikumar Ramalingam School of Computing University of Utah How the backpropagation agorithm works Srikumar Ramaingam Schoo of Computing University of Utah Reference Most of the sides are taken from the second chapter of the onine book by Michae Nieson: neuranetworksanddeepearning.com

More information

Collapse of a Bose gas: Kinetic approach

Collapse of a Bose gas: Kinetic approach PRAMANA c Indian Academy of Sciences Vo. 79, No. 2 journa of August 2012 physics pp. 319 325 Coapse of a Bose gas: Kinetic approach SHYAMAL BISWAS Department of Physics, University of Cacutta, 92 A.P.C.

More information

Version 2.2 NE03 - Faraday's Law of Induction

Version 2.2 NE03 - Faraday's Law of Induction Definition Version. Laboratory Manua Department of Physics he University of Hong Kong Aims o demonstrate various properties of Faraday s Law such as: 1. Verify the aw.. Demonstrate the ighty damped osciation

More information

Supplemental Notes to. Physical Geodesy GS6776. Christopher Jekeli. Geodetic Science School of Earth Sciences Ohio State University

Supplemental Notes to. Physical Geodesy GS6776. Christopher Jekeli. Geodetic Science School of Earth Sciences Ohio State University Suppementa Notes to ysica Geodesy GS6776 Cristoper Jekei Geodetic Science Scoo of Eart Sciences Oio State University 016 I. Terrain eduction (or Correction): Te terrain correction is a correction appied

More information

Chapter 7 PRODUCTION FUNCTIONS. Copyright 2005 by South-Western, a division of Thomson Learning. All rights reserved.

Chapter 7 PRODUCTION FUNCTIONS. Copyright 2005 by South-Western, a division of Thomson Learning. All rights reserved. Chapter 7 PRODUCTION FUNCTIONS Copyright 2005 by South-Western, a division of Thomson Learning. A rights reserved. 1 Production Function The firm s production function for a particuar good (q) shows the

More information

b n n=1 a n cos nx (3) n=1

b n n=1 a n cos nx (3) n=1 Fourier Anaysis The Fourier series First some terminoogy: a function f(x) is periodic if f(x ) = f(x) for a x for some, if is the smaest such number, it is caed the period of f(x). It is even if f( x)

More information

Introduction to DFT and Density Functionals. by Michel Côté Université de Montréal Département de physique

Introduction to DFT and Density Functionals. by Michel Côté Université de Montréal Département de physique Introduction to DFT and Density Functionas by Miche Côté Université de Montréa Département de physique Eampes Carbazoe moecue Inside of diamant Réf: Jean-François Brière http://www.phys.umontrea.ca/ ~miche_cote/images_scientifiques/

More information

Target Location Estimation in Wireless Sensor Networks Using Binary Data

Target Location Estimation in Wireless Sensor Networks Using Binary Data Target Location stimation in Wireess Sensor Networks Using Binary Data Ruixin Niu and Pramod K. Varshney Department of ectrica ngineering and Computer Science Link Ha Syracuse University Syracuse, NY 344

More information

Existence of solitary waves in one dimensional peridynamics

Existence of solitary waves in one dimensional peridynamics Existence of soitary waves in one dimensiona peridynamics obert L. Pego and Truong-Son Van Department of Mathematica Sciences and Center for Noninear Anaysis Carnegie Meon University, Pittsburgh, PA 15213,

More information

Lecture 9. Stability of Elastic Structures. Lecture 10. Advanced Topic in Column Buckling

Lecture 9. Stability of Elastic Structures. Lecture 10. Advanced Topic in Column Buckling Lecture 9 Stabiity of Eastic Structures Lecture 1 Advanced Topic in Coumn Bucking robem 9-1: A camped-free coumn is oaded at its tip by a oad. The issue here is to find the itica bucking oad. a) Suggest

More information

The Binary Space Partitioning-Tree Process Supplementary Material

The Binary Space Partitioning-Tree Process Supplementary Material The inary Space Partitioning-Tree Process Suppementary Materia Xuhui Fan in Li Scott. Sisson Schoo of omputer Science Fudan University ibin@fudan.edu.cn Schoo of Mathematics and Statistics University of

More information

= 1 u 6x 2 4 2x 3 4x + 5. d dv (3v2 + 9v) = 6v v + 9 3v 2 + 9v dx = ln 3v2 + 9v + C. dy dx ay = eax.

= 1 u 6x 2 4 2x 3 4x + 5. d dv (3v2 + 9v) = 6v v + 9 3v 2 + 9v dx = ln 3v2 + 9v + C. dy dx ay = eax. Math 220- Mock Eam Soutions. Fin the erivative of n(2 3 4 + 5). To fin the erivative of n(2 3 4+5) we are going to have to use the chain rue. Let u = 2 3 4+5, then u = 62 4. (n(2 3 4 + 5) = (nu) u u (

More information

MA 201: Partial Differential Equations Lecture - 10

MA 201: Partial Differential Equations Lecture - 10 MA 201: Partia Differentia Equations Lecture - 10 Separation of Variabes, One dimensiona Wave Equation Initia Boundary Vaue Probem (IBVP) Reca: A physica probem governed by a PDE may contain both boundary

More information

HYDROGEN ATOM SELECTION RULES TRANSITION RATES

HYDROGEN ATOM SELECTION RULES TRANSITION RATES DOING PHYSICS WITH MATLAB QUANTUM PHYSICS Ian Cooper Schoo of Physics, University of Sydney ian.cooper@sydney.edu.au HYDROGEN ATOM SELECTION RULES TRANSITION RATES DOWNLOAD DIRECTORY FOR MATLAB SCRIPTS

More information

<C 2 2. λ 2 l. λ 1 l 1 < C 1

<C 2 2. λ 2 l. λ 1 l 1 < C 1 Teecommunication Network Contro and Management (EE E694) Prof. A. A. Lazar Notes for the ecture of 7/Feb/95 by Huayan Wang (this document was ast LaT E X-ed on May 9,995) Queueing Primer for Muticass Optima

More information

Strain Energy in Linear Elastic Solids

Strain Energy in Linear Elastic Solids Strain Energ in Linear Eastic Soids CEE L. Uncertaint, Design, and Optimiation Department of Civi and Environmenta Engineering Duke Universit Henri P. Gavin Spring, 5 Consider a force, F i, appied gradua

More information

arxiv:quant-ph/ v3 6 Jan 1995

arxiv:quant-ph/ v3 6 Jan 1995 arxiv:quant-ph/9501001v3 6 Jan 1995 Critique of proposed imit to space time measurement, based on Wigner s cocks and mirrors L. Diósi and B. Lukács KFKI Research Institute for Partice and Nucear Physics

More information

Lecture 6 Povh Krane Enge Williams Properties of 2-nucleon potential

Lecture 6 Povh Krane Enge Williams Properties of 2-nucleon potential Lecture 6 Povh Krane Enge Wiiams Properties of -nuceon potentia 16.1 4.4 3.6 9.9 Meson Theory of Nucear potentia 4.5 3.11 9.10 I recommend Eisberg and Resnik notes as distributed Probems, Lecture 6 1 Consider

More information

On Integrals Involving Universal Associated Legendre Polynomials and Powers of the Factor (1 x 2 ) and Their Byproducts

On Integrals Involving Universal Associated Legendre Polynomials and Powers of the Factor (1 x 2 ) and Their Byproducts Commun. Theor. Phys. 66 (216) 369 373 Vo. 66, No. 4, October 1, 216 On Integras Invoving Universa Associated Legendre Poynomias and Powers of the Factor (1 x 2 ) and Their Byproducts Dong-Sheng Sun ( 孙东升

More information

Meshfree Particle Methods for Thin Plates

Meshfree Particle Methods for Thin Plates Meshfree Partice Methods for Thin Pates Hae-Soo Oh, Christopher Davis Department of Mathematics and Statistics, University of North Caroina at Charotte, Charotte, NC 28223 Jae Woo Jeong Department of Mathematics,

More information

Quasi-Particle Dynamics of Linearly Coupled Systems of Nonlinear Schrödinger Equations

Quasi-Particle Dynamics of Linearly Coupled Systems of Nonlinear Schrödinger Equations Quasi-Particle Dynamics of Linearly Coupled Systems of Nonlinear Schrödinger Equations Michail D. Todorov Faculty of Applied Mathematics and Computer Science Technical University of Sofia, Bulgaria SS25

More information

Do Schools Matter for High Math Achievement? Evidence from the American Mathematics Competitions Glenn Ellison and Ashley Swanson Online Appendix

Do Schools Matter for High Math Achievement? Evidence from the American Mathematics Competitions Glenn Ellison and Ashley Swanson Online Appendix VOL. NO. DO SCHOOLS MATTER FOR HIGH MATH ACHIEVEMENT? 43 Do Schoos Matter for High Math Achievement? Evidence from the American Mathematics Competitions Genn Eison and Ashey Swanson Onine Appendix Appendix

More information

6.434J/16.391J Statistics for Engineers and Scientists May 4 MIT, Spring 2006 Handout #17. Solution 7

6.434J/16.391J Statistics for Engineers and Scientists May 4 MIT, Spring 2006 Handout #17. Solution 7 6.434J/16.391J Statistics for Engineers and Scientists May 4 MIT, Spring 2006 Handout #17 Soution 7 Probem 1: Generating Random Variabes Each part of this probem requires impementation in MATLAB. For the

More information

SECTION A. Question 1

SECTION A. Question 1 SECTION A Question 1 (a) In the usua notation derive the governing differentia equation of motion in free vibration for the singe degree of freedom system shown in Figure Q1(a) by using Newton's second

More information