Size: px
Start display at page:

Download ""

Transcription

1 CE601-Structura Anaysis I UNIT-IV SOPE-DEFECTION METHOD 1. What are the assumptions made in sope-defection method? (i) Between each pair of the supports the beam section is constant. (ii) The joint in structure may rotate or defect as a whoe, but the anges between the members meeting at that joint remain the same.. How many sope defection equations are avaiabe for a two span continuous beam? There wi be nos. of sope-defection equations, two for each span.. What is the moment at a hinged end of a simpe beam? Moment at the hinged ends of a simpe beam is zero.. What are the quantities in terms of which the unknown moments are expressed in sope-defection method? In sope-defection method, unknown moments are expressed in terms of (i) sopes (θ) and (ii) defections ( ). The beam shown in Fig. is to be anaysed by sope-defection method. What are the unknowns and, to determine them, what are the conditions used? A B C Unknowns: θa, θb, θc Equiibrium equations used: (i) MAB = 0 (ii) MBA + MBC = 0 (iii) MCB = 0 6. How do you account for sway in sope defection method for porta frames? Because of sway, there wi br rotations in the vertica members of a frame. This causes moments in the vertica members. To account for this, besides the equiibrium, one more equation namey shear equation connecting the joint-moments is used. 7. Write down the equation for sway correction for the porta frame shown in Fig. The shear equation (sway correction) is MAB + MBA + MCD + MDC =

2 CE601-Structura Anaysis I D A. Write down the sope defection equation for a fixed end support. B A C The sope defection equation for end A is MAB D = M AB + EI θa + θb + Here θa= 0. Since there is no support settement, = 0. MAB = M AB + EI θb + 9. Write down the equiibrium equations for the frame shown in Fig. B C Unknowns : θ B, θc Equiibrium equations : At B, MBA + MBC = 0 h At C, MCB + MCD = 0 P MDC + P Shear equation : MAB + MBA Ph + =0 A MCD + D 10. Who introduced sope-defection method of anaysis? Sope-defection method was introduced by Prof. George A.Maney in Write down the genera sope-defection equations and state what each term represents? A B

3 CE601-Structura Anaysis I Genera sope-defection equations: MAB = M AB + EI θa + θb + MBA = M BA + EI θb + θa + where, M AB, M BA = Fixed end moment at A and B respectivey due to the given oading. θa, θb = Sopes at A and B respectivey = Sinking of support A with respect to B 1. Mention any three reasons due to which sway may occur in porta frames. Sway in porta frames may occur due to (i) unsymmetry in geometry of the frame (ii) unsymmetry in oading or (iii) Settement of one end of a frame. 1. How many sope-defection equations are avaiabe for each span? Two numbers of sope-defection equations are avaiabe for each span, describing the moment at each end of the span. 1. Write the fixed end moments for a beam carrying a centra cockwise moment. M A B / / Fixed end moments : M AB = M BA = M 1. State the imitations of sope defection method. (i) It is not easy to account for varying member sections (ii) It becomes very cumbersome when the unknown dispacements are arge in number. 16.Why is sope-defection method caed a dispacement method?

4 CE601-Structura Anaysis I In sope-defection method, dispacements (ike sopes and dispacements) are treated as unknowns and hence the method is a dispacement method. 17. Define degrees of freedom. In a structure, the number of independent joint dispacements that the structure can undrgo are known as degrees of freedom. 1. In a continuous beam, one of the support sinks. What wi happen to the span and support moments associated with the sinking of support. C D E 1 et support D sinks by. This wi not affect span moments. Fixed end moments (support moments) wi get deveoped as under M CD = M DC = -6EI 1 M DE = M ED = -6EI A rigid frame is having totay 10 joints incuding support joints. Out of sope-defection and moment distribution methods, which method woud you prefer for anaysis? Why? Moment distribution method is preferabe. If we use sope-defection method, there woud be 10 (or more) unknown dispacements and an equa number of equiibrium equations. In addition, there woud be unknown support momentsper span and the same number of sope-defection equations. Soving them is difficut. 0. What is the basis on which the sway equation is formed for a structure? Sway is deat with in sope-defection method by considering the horizonta equiibrium of the whoe frame taking into account the shears at the base eve of coumns and externa horizonta forces. The shear condition is MAB + MBA Ph + MCD + MDC + P =

5 CE601-Structura Anaysis I Sope defection equations The sope defection equations express the member end moments in terms of rotations anges. The sope defection equations of member ab of fexura rigidity EIab and ength ab are: where θa, θb are the sope anges of ends a and b respectivey, Δ is the reative atera dispacement of ends a and b. The absence of cross-sectiona area of the member in these equations impies that the sope defection method negects the effect of shear and axia deformations. The sope defection equations can aso be written using the stiffness factor chord rotation and the : Derivation of sope defection equations When a simpe beam of ength ab and fexura rigidity E Iab is oaded at each end with cockwise moments Mab and Mba, member end rotations occur in the same direction. These rotation anges can be cacuated using the unit dummy force method or the moment-area theorem. Rearranging these equations, the sope defection equations are derived. Equiibrium conditions

6 CE601-Structura Anaysis I Joint equiibrium Joint equiibrium conditions impy that each joint with a degree of freedom shoud have no unbaanced moments i.e. be in equiibrium. Therefore, Here, Mmember are the member end moments, Mf are the fixed end moments, and Mjoint are the externa moments directy appied at the joint. Shear equiibrium When there are chord rotations in a frame, additiona equiibrium conditions, namey the shear equiibrium conditions need to be taken into account. Degrees of freedom Rotation anges θa, θb, θc, θd of joints A, B, C, D respectivey are taken as the unknowns. There are no chord rotations due to other causes incuding support settement. Fixed end moments Fixed end moments are:

7 CE601-Structura Anaysis I Sope defection equations The sope defection equations are constructed as foows: Joint equiibrium equations Joints A, B, C shoud suffice the equiibrium condition. Therefore

8 CE601-Structura Anaysis I Rotation anges The rotation anges are cacuated from simutaneous equations above. Member end moments Substitution of these vaues back into the sope defection equations yieds the member end moments (in knm): Exampe: Anayze the propped cantiever shown by using sope defection method. Then draw Bending moment and shear force diagram

9 CE601-Structura Anaysis I Soution: End A is fixed hence A =0 End B is Hinged hence B 0 Assume both ends are fixed and therefore fixed end moments are FAB w w, FBA 1 1 The Sope defection equations for fina moment at each end are EI A B w EI B 1 EI B A MBA FBA w EI B 1 MAB FAB (1) ( ) In the above equations there is ony one unknown B. To sove we have boundary condition at B; Since B is simpy supported, the BM at B is zero ie. MBA=0. From equation () MBA EI B w EI B 0 1 w - ve sign indicates the rotation is anticockw ise Substituting the vaue of EI B in equation (1) and () we have end moments MAB MBA w w w - ve sign indicates moment is anticockw ise 1 w w

10 CE601-Structura Anaysis I MBA has to be zero, because it is hinged. Now consider the free body diagram of the beam and find reactions using equations of equiibrium. MB 0 R A M AB w w w w R A w V 0 R A R B w R B w R A w w w Probem can be treated as

11 CE601-Structura Anaysis I The bending moment diagram for the given probem is as beow

12 CE601-Structura Anaysis I The max BM occurs where SF=0. Consider SF equation at a distance of x from right support w wx 0 X SX Hence the max BM occurs at Mmax from support B w MX w 9 w 1 And point of contra fexure occurs where BM=0, Consider BM equation at a distance of x from right support. X MX wx w 0 X For shear force diagram, consider SF equation from B w wx S X 0 SB w S X S A w SX Exampe: Anayze continuous beam ABCD by sope defection method and then draw bending moment diagram. Take EI constant

13 CE601-Structura Anaysis I Soution: A 0, B 0, C 0 FEMS FAB Wab KN M 6 FBA Wab 100. KNM 6 w 0 F BC KNM 1 1 w 0 F CB 1.67 KNM 1 1 FCD KN M Sope defection equations: MAB F AB EI A B. 1 EI B MBA FBA EI B A.9 EI B EI B C 1.67 EI B EI C EI C B 1.67 EI C EI B MCB FCB MBC FBC MCD 0 KNM

14 CE601-Structura Anaysis I In the above equations we have two unknown rotations B and C, accordingy the boundary conditions are: MBA MBC 0 MCB MCD 0 EI B 1.67 EI B EI C 7. EI B EI C 0 1 Now, MBA MBC.9 EI C EI B EI B EI C And, MCB MCD Soving () and (6) we get EI B.67 B anticockw ise EI C 1.7 B cockwise Substituting vaue of EI B and EI C in sope defection equations we have KNM MBA KNM MBC KNM MCB KNM MCD 0 KNM MAB

15 CE601-Structura Anaysis I Reactions: Consider free body diagram of beam AB, BC and CD as shown Span AB

16 CE601-Structura Anaysis I RB RB KN R A 100 RB.1 KN Span BC RC RC. KN RB 0 RB 7. KN Maximum Bending Moments: Span AB: Occurs under point oad Max KNM 6 Span BC: where SF=0, consider SF equation with C as reference S X. 0 x 0 x..1 m 0 Mmax KN M Exampe: Anayse the continuous beam ABCD shown in figure by sope defection method. The support B sinks by 1mm. 6 Take E KN / m and I m

17 CE601-Structura Anaysis I Soution: In this probem A =0, B 0, C 0, =1mm FEMs: FAB Wab. KNM FBA Wa b.9 KNM FBC w 1.67 KNM FCB w 1.67 KNM FEM due to yied of support B For span AB: 6EI KNM mab mba For span BC: 6EI KNM 1000 mbc mcb Sope defection equation

18 CE601-Structura Anaysis I EI ( A B ) EI 6EI F AB A B 1 -. EI B EI B EI 6EI MBA FBA ( B A ).9 EI B 6.9 EI B EI 6EI MBC FBC ( B C ) EI B C.6.0 EI B EI C EI 6EI MCB FCB ( C B ) 1.67 EI C B EI C EI B MCD 0 KNM MAB F AB There are ony two unknown rotations B and C. Accordingy the boundary conditions are MBA MBC 0 MCB MCD 0 Now, M M 9.6 EI EI 0 BA BC B C 1 MCB MCD 0.1 EI B EI C 0 Soving these equations we get

19 CE601-Structura Anaysis I EI B 1. Anticockwise EI C 9.71 Anticockwise Substituting these vaues in sope defections we get the fina moments: KNM MBA KNM MBC KNM MCB KNM MCD 0 KNM MAB 0. Consider the free body diagram of continuous beam for finding reactions Reactions: Span AB: RB 6 = 100 x RB = 66. RA = 100 RB =.1 KN Span BC:

20 CE601-Structura Anaysis I RB = 0 x x RB = 6.0 KN RC = 0 x - RB =.60 KN Exampe: Three span continuous beam ABCD is fixed at A and continuous over B, C and D. The beam subjected to oads as shown. Anayse the beam by sope defection method and draw bending moment and shear force diagram

21 CE601-Structura Anaysis I Soution: Since end A is fixed A 0, B 0, c 0, D 0 FEMs: F AB W 60-0 KNM FBA W 60 0 KNM FBC M 1. KNM FCB M 1. KNM FCD w KNM 1 1 w 10 FDC 1. KNM 1 1 Sope defection equations: M AB F AB EI A B - 0 EI 0 B EI B MBA F BA EI B A

22 CE601-Structura Anaysis I 0 EI B EI B MBC F BC EI B C 1. EI B C EI B 0.EI C M CB F CB EI C B 1. EI C B EI C 0. EI B M CD F CD EI C D - 1. EI C D 1. EI C 0.EI D MDC F DC EI D C 1. EI D C EI C EI D In the above Equations there are three unknowns, EI B,EI C & EI D, accordingy the boundary conditions are: i MBA MBC 0 ii MCB MCD 0 iii MDC 0 ( hinged)

23 CE601-Structura Anaysis I Now MBA MBC 0 0 EI B 1. EI B 0.EI C 0 EI B 0.EI C. 0 7 MCB MBC 0 1. EI C 0.EI B 1. EI C 0.EI D 0 0.EI B EI C 0.EI D 0. 0 MDC EI C EI D 0 By soving (7), () & (9), we get EI B.0 EI C 11.1 EI D 1.90 By substituting the vaues of B, c and D in respective equations we get MAB KNM MBA KNM MBC KNM MCB KNM MCD KNM MDC KNM Reactions: Consider the free body diagram of beam. Beam AB:

24 CE601-Structura Anaysis I KN R A 60 RB 0.01 KN RB Beam BC: KN RB RC 1.9 KN RB is downward RC Beam CD: KN RC 10 RD.91 KN RD

25 CE601-Structura Anaysis I Exampe: Anayse the continuous beam shown using sope defection method. Then draw bending moment and shear force diagram. Soution: In this probem A 0, end A is fixed FEMs: FAB w KNM 1 1 w FBA. KNM 1 FBC FCD W KNM W.0 KNM Sope defection equations: M AB F AB EI A B -. E I 0 B

26 CE601-Structura Anaysis I MBA F BA EI B A.. MBC F BC E I B EI B EI B C -. EI B C 6 -. EI B EI C M CB F CB EI B EI C B. EI C B 6. EI C EI B In the above equation there are two unknown B and C, accordingy the boundary conditions are: i MBA MBC 0 ii MCB 0 EI B. EI B EI C 17. EI B EI C 0 6 Now, MBA MBC

27 CE601-Structura Anaysis I and MCB. EI C EI B 0 1 EI C 11. EI B (6) Substituting in eqn. () 17 1 EI B 11. EI B EI B EI B 17. rotation anticockwise 1. from equation (6) rotation anticockwise EI C Substituting EI B 17. and EI C.19 in the sope defection equation we get Fina Moments: KNM MBA KNM MAB KNM MCB..19 ( 17.) 0.00 MBC. Reactions: Consider free body diagram of beams as shown

28 CE601-Structura Anaysis I Span AB: KN R A 10 RB.7 KN RB Span BC: KN 6 RC 0 RB 6.7 KN RB

29 CE601-Structura Anaysis I Max BM Span AB: Max BM occurs where SF=0, consider SF equation with A as origin S x.7-10x 0 x.7 m.7 M max KNM Span BC: Max BM occurs under point oad BC Mmax KN M

STRUCTURAL ANALYSIS - I UNIT-I DEFLECTION OF DETERMINATE STRUCTURES

STRUCTURAL ANALYSIS - I UNIT-I DEFLECTION OF DETERMINATE STRUCTURES STRUCTURL NLYSIS - I UNIT-I DEFLECTION OF DETERMINTE STRUCTURES 1. Why is it necessary to compute defections in structures? Computation of defection of structures is necessary for the foowing reasons:

More information

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL ENGINEERING. Question Bank. Sub. Code/Name: CE1303 Structural Analysis-I

KINGS COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL ENGINEERING. Question Bank. Sub. Code/Name: CE1303 Structural Analysis-I KINGS COLLEGE OF ENGINEERING DEPARTMENT OF CIVIL ENGINEERING Question Bank Sub. Code/Name: CE1303 Structura Anaysis-I Year: III Sem:V UNIT-I DEFLECTION OF DETERMINATE STRUCTURES 1.Why is it necessary to

More information

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur

Module 2. Analysis of Statically Indeterminate Structures by the Matrix Force Method. Version 2 CE IIT, Kharagpur odue 2 naysis of Staticay ndeterminate Structures by the atri Force ethod Version 2 E T, Kharagpur esson 12 The Three-oment Equations- Version 2 E T, Kharagpur nstructiona Objectives fter reading this

More information

Work and energy method. Exercise 1 : Beam with a couple. Exercise 1 : Non-linear loaddisplacement. Exercise 2 : Horizontally loaded frame

Work and energy method. Exercise 1 : Beam with a couple. Exercise 1 : Non-linear loaddisplacement. Exercise 2 : Horizontally loaded frame Work and energy method EI EI T x-axis Exercise 1 : Beam with a coupe Determine the rotation at the right support of the construction dispayed on the right, caused by the coupe T using Castigiano s nd theorem.

More information

3.10 Implications of Redundancy

3.10 Implications of Redundancy 118 IB Structures 2008-9 3.10 Impications of Redundancy An important aspect of redundant structures is that it is possibe to have interna forces within the structure, with no externa oading being appied.

More information

QUESTION BANK. SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I

QUESTION BANK. SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I QUESTION BANK DEPARTMENT: CIVIL SEMESTER: V SUBJECT CODE / Name: CE 6501 / STRUCTURAL ANALYSIS-I Unit 5 MOMENT DISTRIBUTION METHOD PART A (2 marks) 1. Differentiate between distribution factors and carry

More information

APPENDIX C FLEXING OF LENGTH BARS

APPENDIX C FLEXING OF LENGTH BARS Fexing of ength bars 83 APPENDIX C FLEXING OF LENGTH BARS C.1 FLEXING OF A LENGTH BAR DUE TO ITS OWN WEIGHT Any object ying in a horizonta pane wi sag under its own weight uness it is infinitey stiff or

More information

Lecture 9. Stability of Elastic Structures. Lecture 10. Advanced Topic in Column Buckling

Lecture 9. Stability of Elastic Structures. Lecture 10. Advanced Topic in Column Buckling Lecture 9 Stabiity of Eastic Structures Lecture 1 Advanced Topic in Coumn Bucking robem 9-1: A camped-free coumn is oaded at its tip by a oad. The issue here is to find the itica bucking oad. a) Suggest

More information

Lecture 6: Moderately Large Deflection Theory of Beams

Lecture 6: Moderately Large Deflection Theory of Beams Structura Mechanics 2.8 Lecture 6 Semester Yr Lecture 6: Moderatey Large Defection Theory of Beams 6.1 Genera Formuation Compare to the cassica theory of beams with infinitesima deformation, the moderatey

More information

UNIT-V MOMENT DISTRIBUTION METHOD

UNIT-V MOMENT DISTRIBUTION METHOD UNIT-V MOMENT DISTRIBUTION METHOD Distribution and carryover of moments Stiffness and carry over factors Analysis of continuous beams Plane rigid frames with and without sway Neylor s simplification. Hardy

More information

METHOD OF LEAST WORK

METHOD OF LEAST WORK METHOD OF EAST WORK 91 METHOD OF EAST WORK CHAPTER TWO The method of least work is used for the analysis of statically indeterminate beams, frames and trusses. Indirect use of the Castigliano s nd theorem

More information

CE 2302 STRUCTURAL ANALYSIS I UNIT-I DEFLECTION OF DETERMINATE STRUCTURES

CE 2302 STRUCTURAL ANALYSIS I UNIT-I DEFLECTION OF DETERMINATE STRUCTURES CE 2302 STRUCTURAL ANALYSIS I UNIT-I DEFLECTION OF DETERMINATE STRUCTURES 1.Why is it necessary to compute deflections in structures? Computation of deflection of structures is necessary for the following

More information

Torsion and shear stresses due to shear centre eccentricity in SCIA Engineer Delft University of Technology. Marijn Drillenburg

Torsion and shear stresses due to shear centre eccentricity in SCIA Engineer Delft University of Technology. Marijn Drillenburg Torsion and shear stresses due to shear centre eccentricity in SCIA Engineer Deft University of Technoogy Marijn Drienburg October 2017 Contents 1 Introduction 2 1.1 Hand Cacuation....................................

More information

Unit 48: Structural Behaviour and Detailing for Construction. Deflection of Beams

Unit 48: Structural Behaviour and Detailing for Construction. Deflection of Beams Unit 48: Structura Behaviour and Detaiing for Construction 4.1 Introduction Defection of Beams This topic investigates the deformation of beams as the direct effect of that bending tendency, which affects

More information

STRUCTURAL ANALYSIS BFC Statically Indeterminate Beam & Frame

STRUCTURAL ANALYSIS BFC Statically Indeterminate Beam & Frame STRUCTURA ANAYSIS BFC 21403 Statically Indeterminate Beam & Frame Introduction Analysis for indeterminate structure of beam and frame: 1. Slope-deflection method 2. Moment distribution method Displacement

More information

(1) Class Test Solution (STRUCTURE) Answer key. 31. (d) 32. (b) 33. (b) IES MASTER. 34. (c) 35. (b) 36. (c) 37. (b) 38. (c) 39.

(1) Class Test Solution (STRUCTURE) Answer key. 31. (d) 32. (b) 33. (b) IES MASTER. 34. (c) 35. (b) 36. (c) 37. (b) 38. (c) 39. () ass Test Soution (STRUTUR) 7-09-07 nswer key. (b). (b). (c). (a) 5. (b) 6. (a) 7. (c) 8. (c) 9. (b) 0. (d). (c). (d). (d). (c) 5. (d) 6. (a) 7. (c) 8. (d) 9. (b) 0. (c). (a). (a). (b) (b) 5. (b) 6.

More information

Problem 7.1 Determine the soil pressure distribution under the footing. Elevation. Plan. M 180 e 1.5 ft P 120. (a) B= L= 8 ft L e 1.5 ft 1.

Problem 7.1 Determine the soil pressure distribution under the footing. Elevation. Plan. M 180 e 1.5 ft P 120. (a) B= L= 8 ft L e 1.5 ft 1. Problem 7.1 Determine the soil pressure distribution under the footing. Elevation Plan M 180 e 1.5 ft P 10 (a) B= L= 8 ft L e 1.5 ft 1.33 ft 6 1 q q P 6 (P e) 180 6 (180) 4.9 kip/ft B L B L 8(8) 8 3 P

More information

1 Equations of Motion 3: Equivalent System Method

1 Equations of Motion 3: Equivalent System Method 8 Mechanica Vibrations Equations of Motion : Equivaent System Method In systems in which masses are joined by rigid ins, evers, or gears and in some distributed systems, various springs, dampers, and masses

More information

(1) Class Test Solution (STRUCTURE) Answer key. 31. (d) 32. (b) 33. (b) IES MASTER. 34. (c) 35. (b) 36. (c) 37. (b) 38. (c) 39.

(1) Class Test Solution (STRUCTURE) Answer key. 31. (d) 32. (b) 33. (b) IES MASTER. 34. (c) 35. (b) 36. (c) 37. (b) 38. (c) 39. () ass Test Soution (STRUTUR) 7-08-08 nswer key. (b). (b). (c). (a) 5. (b) 6. (a) 7. (c) 8. (c) 9. (b) 0. (d). (c). (d). (d). (c) 5. (b, d) 6. ( ) 7. (c) 8. (d) 9. (b) 0. (c). (a). (a). (b) (b) 5. (b)

More information

UNIT-IV SLOPE DEFLECTION METHOD

UNIT-IV SLOPE DEFLECTION METHOD UNITIV SOPE EETION ETHO ontinuous beams and rigid frames (with and without sway) Symmetry and antisymmetry Simplification for hinged end Support displacements Introduction: This method was first proposed

More information

6. KANIS METHOD OR ROTATION CONTRIBUTION METHOD OF FRAME ANALYSIS

6. KANIS METHOD OR ROTATION CONTRIBUTION METHOD OF FRAME ANALYSIS 288 THEORY OF INDETERMINTE STRUCTURES CHPTER SIX 6. KNIS METHOD OR ROTTION CONTRIBUTION METHOD OF FRME NLYSIS This method may be considered as a further simplification of moment distribution method wherein

More information

2.1. Cantilever The Hooke's law

2.1. Cantilever The Hooke's law .1. Cantiever.1.1 The Hooke's aw The cantiever is the most common sensor of the force interaction in atomic force microscopy. The atomic force microscope acquires any information about a surface because

More information

SECTION A. Question 1

SECTION A. Question 1 SECTION A Question 1 (a) In the usua notation derive the governing differentia equation of motion in free vibration for the singe degree of freedom system shown in Figure Q1(a) by using Newton's second

More information

1 Equivalent SDOF Approach. Sri Tudjono 1,*, and Patria Kusumaningrum 2

1 Equivalent SDOF Approach. Sri Tudjono 1,*, and Patria Kusumaningrum 2 MATEC Web of Conferences 159, 01005 (018) IJCAET & ISAMPE 017 https://doi.org/10.1051/matecconf/01815901005 Dynamic Response of RC Cantiever Beam by Equivaent Singe Degree of Freedom Method on Eastic Anaysis

More information

UI FORMULATION FOR CABLE STATE OF EXISTING CABLE-STAYED BRIDGE

UI FORMULATION FOR CABLE STATE OF EXISTING CABLE-STAYED BRIDGE UI FORMULATION FOR CABLE STATE OF EXISTING CABLE-STAYED BRIDGE Juan Huang, Ronghui Wang and Tao Tang Coege of Traffic and Communications, South China University of Technoogy, Guangzhou, Guangdong 51641,

More information

UNIT II SLOPE DEFLECION AND MOMENT DISTRIBUTION METHOD

UNIT II SLOPE DEFLECION AND MOMENT DISTRIBUTION METHOD SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

> 2 CHAPTER 3 SLAB 3.1 INTRODUCTION 3.2 TYPES OF SLAB

> 2 CHAPTER 3 SLAB 3.1 INTRODUCTION 3.2 TYPES OF SLAB CHAPTER 3 SLAB 3. INTRODUCTION Reinforced concrete sabs are one of the most widey used structura eements. In many structures, in addition to providing a versatie and economica method of supporting gravity

More information

Finite element method for structural dynamic and stability analyses

Finite element method for structural dynamic and stability analyses Finite eement method for structura dynamic and stabiity anayses Modue-9 Structura stabiity anaysis Lecture-33 Dynamic anaysis of stabiity and anaysis of time varying systems Prof C S Manohar Department

More information

Structural Analysis III Revised Semester 2 Exam Information. Semester /9

Structural Analysis III Revised Semester 2 Exam Information. Semester /9 Structura naysis III Structura naysis III Revised Semester Exam Information Semester 008/9 Dr. oin aprani Dr.. aprani Structura naysis III. Exam Format Introduction The exam format is being atered this

More information

Module 22: Simple Harmonic Oscillation and Torque

Module 22: Simple Harmonic Oscillation and Torque Modue : Simpe Harmonic Osciation and Torque.1 Introduction We have aready used Newton s Second Law or Conservation of Energy to anayze systems ike the boc-spring system that osciate. We sha now use torque

More information

СРАВНИТЕЛЕН АНАЛИЗ НА МОДЕЛИ НА ГРЕДИ НА ЕЛАСТИЧНА ОСНОВА COMPARATIVE ANALYSIS OF ELASTIC FOUNDATION MODELS FOR BEAMS

СРАВНИТЕЛЕН АНАЛИЗ НА МОДЕЛИ НА ГРЕДИ НА ЕЛАСТИЧНА ОСНОВА COMPARATIVE ANALYSIS OF ELASTIC FOUNDATION MODELS FOR BEAMS СРАВНИТЕЛЕН АНАЛИЗ НА МОДЕЛИ НА ГРЕДИ НА ЕЛАСТИЧНА ОСНОВА Милко Стоянов Милошев 1, Константин Савков Казаков 2 Висше Строително Училище Л. Каравелов - София COMPARATIVE ANALYSIS OF ELASTIC FOUNDATION MODELS

More information

techie-touch.blogspot.com DEPARTMENT OF CIVIL ENGINEERING ANNA UNIVERSITY QUESTION BANK CE 2302 STRUCTURAL ANALYSIS-I TWO MARK QUESTIONS UNIT I DEFLECTION OF DETERMINATE STRUCTURES 1. Write any two important

More information

Nonlinear Analysis of Spatial Trusses

Nonlinear Analysis of Spatial Trusses Noninear Anaysis of Spatia Trusses João Barrigó October 14 Abstract The present work addresses the noninear behavior of space trusses A formuation for geometrica noninear anaysis is presented, which incudes

More information

Bending Analysis of Continuous Castellated Beams

Bending Analysis of Continuous Castellated Beams Bending Anaysis of Continuous Casteated Beams * Sahar Eaiwi 1), Boksun Kim ) and Long-yuan Li 3) 1), ), 3) Schoo of Engineering, Pymouth University, Drake Circus, Pymouth, UK PL4 8AA 1) sahar.eaiwi@pymouth.ac.uk

More information

Forces of Friction. through a viscous medium, there will be a resistance to the motion. and its environment

Forces of Friction. through a viscous medium, there will be a resistance to the motion. and its environment Forces of Friction When an object is in motion on a surface or through a viscous medium, there wi be a resistance to the motion This is due to the interactions between the object and its environment This

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String ecture Notes for Math 251: ODE and PDE. ecture 3: 1.7 Wave Equation and Vibrations of an Eastic String Shawn D. Ryan Spring 212 ast Time: We studied other Heat Equation probems with various other boundary

More information

Analysis of Cylindrical Tanks with Flat Bases by Moment Distribution Methods

Analysis of Cylindrical Tanks with Flat Bases by Moment Distribution Methods May, 958 65 Anaysis of Cyindrica Tanks with Fat Bases by Moment Distribution Methods T. SyopSis by AminGhai, HE moment distribution method is used to find the moments and the ring tension in the was and

More information

PHYSICS LOCUS / / d dt. ( vi) mass, m moment of inertia, I. ( ix) linear momentum, p Angular momentum, l p mv l I

PHYSICS LOCUS / / d dt. ( vi) mass, m moment of inertia, I. ( ix) linear momentum, p Angular momentum, l p mv l I 6 n terms of moment of inertia, equation (7.8) can be written as The vector form of the above equation is...(7.9 a)...(7.9 b) The anguar acceeration produced is aong the direction of appied externa torque.

More information

1D Heat Propagation Problems

1D Heat Propagation Problems Chapter 1 1D Heat Propagation Probems If the ambient space of the heat conduction has ony one dimension, the Fourier equation reduces to the foowing for an homogeneous body cρ T t = T λ 2 + Q, 1.1) x2

More information

Technical Data for Profiles. Groove position, external dimensions and modular dimensions

Technical Data for Profiles. Groove position, external dimensions and modular dimensions Technica Data for Profies Extruded Profie Symbo A Mg Si 0.5 F 25 Materia number.206.72 Status: artificiay aged Mechanica vaues (appy ony in pressing direction) Tensie strength Rm min. 245 N/mm 2 Yied point

More information

Slender Structures Load carrying principles

Slender Structures Load carrying principles Sender Structures Load carrying principes Cabes and arches v018-1 ans Weeman 1 Content (preiminary schedue) Basic cases Extension, shear, torsion, cabe Bending (Euer-Bernoui) Combined systems - Parae systems

More information

Chapter 11. Displacement Method of Analysis Slope Deflection Method

Chapter 11. Displacement Method of Analysis Slope Deflection Method Chapter 11 Displacement ethod of Analysis Slope Deflection ethod Displacement ethod of Analysis Two main methods of analyzing indeterminate structure Force method The method of consistent deformations

More information

VTU-NPTEL-NMEICT Project

VTU-NPTEL-NMEICT Project MODUE-X -CONTINUOUS SYSTEM : APPROXIMATE METHOD VIBRATION ENGINEERING 14 VTU-NPTE-NMEICT Project Progress Report The Project on Deveopment of Remaining Three Quadrants to NPTE Phase-I under grant in aid

More information

SIMULATION OF TEXTILE COMPOSITE REINFORCEMENT USING ROTATION FREE SHELL FINITE ELEMENT

SIMULATION OF TEXTILE COMPOSITE REINFORCEMENT USING ROTATION FREE SHELL FINITE ELEMENT 8 TH INTERNATIONAL CONFERENCE ON COMPOSITE MATERIALS SIMULATION OF TEXTILE COMPOSITE REINFORCEMENT USING ROTATION FREE SHELL FINITE ELEMENT P. Wang, N. Hamia *, P. Boisse Universite de Lyon, INSA-Lyon,

More information

Lobontiu: System Dynamics for Engineering Students Website Chapter 3 1. z b z

Lobontiu: System Dynamics for Engineering Students Website Chapter 3 1. z b z Chapter W3 Mechanica Systems II Introduction This companion website chapter anayzes the foowing topics in connection to the printed-book Chapter 3: Lumped-parameter inertia fractions of basic compiant

More information

ELASTICITY PREVIOUS EAMCET QUESTIONS ENGINEERING

ELASTICITY PREVIOUS EAMCET QUESTIONS ENGINEERING ELASTICITY PREVIOUS EAMCET QUESTIONS ENGINEERING. If the ratio of engths, radii and young s modui of stee and brass wires shown in the figure are a, b and c respectivey, the ratio between the increase

More information

FIXED BEAMS CONTINUOUS BEAMS

FIXED BEAMS CONTINUOUS BEAMS FIXED BEAMS CONTINUOUS BEAMS INTRODUCTION A beam carried over more than two supports is known as a continuous beam. Railway bridges are common examples of continuous beams. But the beams in railway bridges

More information

Chapter 4 ( ) ( ) F Fl F y = = + Solving for k. k kt. y = = + +

Chapter 4 ( ) ( ) F Fl F y = = + Solving for k. k kt. y = = + + Chapter 4 4- For a torsion bar, k T T/ F/, and so F/k T. For a cantiever, k F/δ,δ F/k. For the assemby, k F/y, or, y F/k + δ Thus F F F y + k kt k Soving for k kkt k ns. k + kt + kt k 4- For a torsion

More information

THINKING IN PYRAMIDS

THINKING IN PYRAMIDS ECS 178 Course Notes THINKING IN PYRAMIDS Kenneth I. Joy Institute for Data Anaysis and Visuaization Department of Computer Science University of Caifornia, Davis Overview It is frequenty usefu to think

More information

UNIT IV FLEXIBILTY AND STIFFNESS METHOD

UNIT IV FLEXIBILTY AND STIFFNESS METHOD SIDDHARTH GROUP OF INSTITUTIONS :: PUTTUR Siddharth Nagar, Narayanavanam Road 517583 QUESTION BANK (DESCRIPTIVE) Subject with Code : SA-II (13A01505) Year & Sem: III-B.Tech & I-Sem Course & Branch: B.Tech

More information

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l

SEMINAR 2. PENDULUMS. V = mgl cos θ. (2) L = T V = 1 2 ml2 θ2 + mgl cos θ, (3) d dt ml2 θ2 + mgl sin θ = 0, (4) θ + g l Probem 7. Simpe Penduum SEMINAR. PENDULUMS A simpe penduum means a mass m suspended by a string weightess rigid rod of ength so that it can swing in a pane. The y-axis is directed down, x-axis is directed

More information

THE OUT-OF-PLANE BEHAVIOUR OF SPREAD-TOW FABRICS

THE OUT-OF-PLANE BEHAVIOUR OF SPREAD-TOW FABRICS ECCM6-6 TH EUROPEAN CONFERENCE ON COMPOSITE MATERIALS, Sevie, Spain, -6 June 04 THE OUT-OF-PLANE BEHAVIOUR OF SPREAD-TOW FABRICS M. Wysocki a,b*, M. Szpieg a, P. Heström a and F. Ohsson c a Swerea SICOMP

More information

Instructional Objectives:

Instructional Objectives: Instructiona Objectives: At te end of tis esson, te students soud be abe to understand: Ways in wic eccentric oads appear in a weded joint. Genera procedure of designing a weded joint for eccentric oading.

More information

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C

2. Determine the deflection at C of the beam given in fig below. Use principal of virtual work. W L/2 B A L C CE-1259, Strength of Materials UNIT I STRESS, STRAIN DEFORMATION OF SOLIDS Part -A 1. Define strain energy density. 2. State Maxwell s reciprocal theorem. 3. Define proof resilience. 4. State Castigliano

More information

Measurement of acceleration due to gravity (g) by a compound pendulum

Measurement of acceleration due to gravity (g) by a compound pendulum Measurement of acceeration due to gravity (g) by a compound penduum Aim: (i) To determine the acceeration due to gravity (g) by means of a compound penduum. (ii) To determine radius of gyration about an

More information

AN INVESTIGATION ON SEISMIC ANALYSIS OF SHALLOW TUNEELS IN SOIL MEDIUM

AN INVESTIGATION ON SEISMIC ANALYSIS OF SHALLOW TUNEELS IN SOIL MEDIUM The 4 th October -7, 8, Beijing, China AN INVESTIGATION ON SEISMIC ANALYSIS OF SHALLOW TUNEELS IN SOIL MEDIUM J. Boouri Bazaz and V. Besharat Assistant Professor, Dept. of Civi Engineering, Ferdowsi University,

More information

THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE

THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE KATIE L. MAY AND MELISSA A. MITCHELL Abstract. We show how to identify the minima path network connecting three fixed points on

More information

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law Gauss Law 1. Review on 1) Couomb s Law (charge and force) 2) Eectric Fied (fied and force) 2. Gauss s Law: connects charge and fied 3. Appications of Gauss s Law Couomb s Law and Eectric Fied Couomb s

More information

In-plane shear stiffness of bare steel deck through shell finite element models. G. Bian, B.W. Schafer. June 2017

In-plane shear stiffness of bare steel deck through shell finite element models. G. Bian, B.W. Schafer. June 2017 In-pane shear stiffness of bare stee deck through she finite eement modes G. Bian, B.W. Schafer June 7 COLD-FORMED STEEL RESEARCH CONSORTIUM REPORT SERIES CFSRC R-7- SDII Stee Diaphragm Innovation Initiative

More information

DYNAMIC RESPONSE OF CIRCULAR FOOTINGS ON SATURATED POROELASTIC HALFSPACE

DYNAMIC RESPONSE OF CIRCULAR FOOTINGS ON SATURATED POROELASTIC HALFSPACE 3 th Word Conference on Earthquake Engineering Vancouver, B.C., Canada August -6, 4 Paper No. 38 DYNAMIC RESPONSE OF CIRCULAR FOOTINGS ON SATURATED POROELASTIC HALFSPACE Bo JIN SUMMARY The dynamic responses

More information

9. EXERCISES ON THE FINITE-ELEMENT METHOD

9. EXERCISES ON THE FINITE-ELEMENT METHOD 9. EXERCISES O THE FIITE-ELEMET METHOD Exercise Thickness: t=; Pane strain proem (ν 0): Surface oad Voume oad; 4 p f ( x, ) ( x ) 0 E D 0 0 0 ( ) 4 p F( xy, ) Interna constrain: rigid rod etween D and

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE AHAAKSHI ENGINEERING COEGE TIRUCHIRAPAI - 611. QUESTION WITH ANSWERS DEPARTENT : CIVI SEESTER: V SU.CODE/ NAE: CE 5 / Strength of aterials UNIT INDETERINATE EAS 1. Define statically indeterminate beams.

More information

UNIT I ENERGY PRINCIPLES

UNIT I ENERGY PRINCIPLES UNIT I ENERGY PRINCIPLES Strain energy and strain energy density- strain energy in traction, shear in flexure and torsion- Castigliano s theorem Principle of virtual work application of energy theorems

More information

Add Math (4044/02) (+) x (+) 2. Find the coordinates of the points of intersection of the curve xy 2 the line 2y 1 x 0. [5]

Add Math (4044/02) (+) x (+) 2. Find the coordinates of the points of intersection of the curve xy 2 the line 2y 1 x 0. [5] Add Math (444/) Requirement : Answer a questions Tota mars : 7 Duration : hour 45 minutes. Sove the inequaity 5 and represent the soution set on the number ine. [4] 5 4 From the setch on number ine, we

More information

Strain Energy in Linear Elastic Solids

Strain Energy in Linear Elastic Solids Strain Energ in Linear Eastic Soids CEE L. Uncertaint, Design, and Optimiation Department of Civi and Environmenta Engineering Duke Universit Henri P. Gavin Spring, 5 Consider a force, F i, appied gradua

More information

MAHALAKSHMI ENGINEERING COLLEGE

MAHALAKSHMI ENGINEERING COLLEGE CE840-STRENGTH OF TERIS - II PGE 1 HKSHI ENGINEERING COEGE TIRUCHIRPI - 611. QUESTION WITH NSWERS DEPRTENT : CIVI SEESTER: IV SU.CODE/ NE: CE 840 / Strength of aterials -II UNIT INDETERINTE ES 1. Define

More information

CABLE SUPPORTED STRUCTURES

CABLE SUPPORTED STRUCTURES CABLE SUPPORTED STRUCTURES STATIC AND DYNAMIC ANALYSIS OF CABLES 3/22/2005 Prof. dr Stanko Brcic 1 Cabe Supported Structures Suspension bridges Cabe-Stayed Bridges Masts Roof structures etc 3/22/2005 Prof.

More information

ENGINEERING MECHANICS SOLUTIONS UNIT-I

ENGINEERING MECHANICS SOLUTIONS UNIT-I LONG QUESTIONS ENGINEERING MECHANICS SOLUTIONS UNIT-I 1. A roller shown in Figure 1 is mass 150 Kg. What force P is necessary to start the roller over the block A? =90+25 =115 = 90+25.377 = 115.377 = 360-(115+115.377)

More information

Malaysian Journal of Civil Engineering 30(2): (2018)

Malaysian Journal of Civil Engineering 30(2): (2018) Maaysian Journa of Ci Engineering 3():331-346 (18) BUBNOV-GALERKIN METHOD FOR THE ELASTIC BUCKLING OF EULER COLUMNS Ofondu I.O. 1, Ikwueze E. U. & Ike C. C. * 1 Dept. of Mechanica and Production Engineering,

More information

CHAPTER 9. Columns and Struts

CHAPTER 9. Columns and Struts CHATER 9 Coumns and Struts robem. Compare the ratio of the strength of soid stee coumn to that of the hoow stee coumn of the same cross-sectiona area. The interna diameter of the hoow coumn is /th of the

More information

COUPLED FLEXURAL TORSIONAL VIBRATION AND STABILITY ANALYSIS OF PRE-LOADED BEAMS USING CONVENTIONAL AND DYNAMIC FINITE ELEMENT METHODS

COUPLED FLEXURAL TORSIONAL VIBRATION AND STABILITY ANALYSIS OF PRE-LOADED BEAMS USING CONVENTIONAL AND DYNAMIC FINITE ELEMENT METHODS COUPLED FLEXURAL TORSIONAL VIBRATION AND STABILITY ANALYSIS OF PRE-LOADED BEAMS USING CONVENTIONAL AND DYNAMIC FINITE ELEMENT METHODS by Heenkenda Jayasinghe, B. Eng Aeronautica Engineering City University

More information

EECS 117 Homework Assignment 3 Spring ω ω. ω ω. ω ω. Using the values of the inductance and capacitance, the length of 2 cm corresponds 1.5π.

EECS 117 Homework Assignment 3 Spring ω ω. ω ω. ω ω. Using the values of the inductance and capacitance, the length of 2 cm corresponds 1.5π. EES 7 Homework Assignment Sprg 4. Suppose the resonant frequency is equa to ( -.5. The oad impedance is If, is equa to ( ( The ast equaity hods because ( -.5. Furthermore, ( Usg the vaues of the ductance

More information

A Brief Introduction to Markov Chains and Hidden Markov Models

A Brief Introduction to Markov Chains and Hidden Markov Models A Brief Introduction to Markov Chains and Hidden Markov Modes Aen B MacKenzie Notes for December 1, 3, &8, 2015 Discrete-Time Markov Chains You may reca that when we first introduced random processes,

More information

(Refer Slide Time: 2:34) L C V

(Refer Slide Time: 2:34) L C V Microwave Integrated Circuits Professor Jayanta Mukherjee Department of Eectrica Engineering Indian Intitute of Technoogy Bombay Modue 1 Lecture No 2 Refection Coefficient, SWR, Smith Chart. Heo wecome

More information

Automobile Prices in Market Equilibrium. Berry, Pakes and Levinsohn

Automobile Prices in Market Equilibrium. Berry, Pakes and Levinsohn Automobie Prices in Market Equiibrium Berry, Pakes and Levinsohn Empirica Anaysis of demand and suppy in a differentiated products market: equiibrium in the U.S. automobie market. Oigopoistic Differentiated

More information

1) For a block of mass m to slide without friction up a rise of height h, the minimum initial speed of the block must be

1) For a block of mass m to slide without friction up a rise of height h, the minimum initial speed of the block must be v m 1) For a bock of mass m to side without friction up a rise of height h, the minimum initia speed of the bock must be a ) gh b ) gh d ) gh e ) gh c ) gh P h b 3 15 ft 3) A man pus a pound crate up a

More information

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE)

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) Cass XI TARGET : JEE Main/Adv PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) ALP ADVANCED LEVEL LPROBLEMS ROTATION- Topics Covered: Rigid body, moment of inertia, parae and perpendicuar axes theorems,

More information

12.2. Maxima and Minima. Introduction. Prerequisites. Learning Outcomes

12.2. Maxima and Minima. Introduction. Prerequisites. Learning Outcomes Maima and Minima 1. Introduction In this Section we anayse curves in the oca neighbourhood of a stationary point and, from this anaysis, deduce necessary conditions satisfied by oca maima and oca minima.

More information

Unit II Shear and Bending in Beams

Unit II Shear and Bending in Beams Unit II Shear and Bending in Beams Syllabus: Beams and Bending- Types of loads, supports - Shear Force and Bending Moment Diagrams for statically determinate beam with concentrated load, UDL, uniformly

More information

MODULE 3 ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES BY THE DISPLACEMENT METHOD

MODULE 3 ANALYSIS OF STATICALLY INDETERMINATE STRUCTURES BY THE DISPLACEMENT METHOD ODULE 3 ANALYI O TATICALLY INDETERINATE TRUCTURE BY THE DIPLACEENT ETHOD LEON 19 THE OENT- DITRIBUTION ETHOD: TATICALLY INDETERINATE BEA WITH UPPORT ETTLEENT Instructional Objectives After reading this

More information

Deformations of statically determinate bar structures

Deformations of statically determinate bar structures Statics of Buiding Structures I., ERASMUS Deformations of staticay determinate bar structures Department of Structura Mechanics Facuty of Civi Engineering, VŠB-Technica University of Ostrava Outine of

More information

$, (2.1) n="# #. (2.2)

$, (2.1) n=# #. (2.2) Chapter. Eectrostatic II Notes: Most of the materia presented in this chapter is taken from Jackson, Chap.,, and 4, and Di Bartoo, Chap... Mathematica Considerations.. The Fourier series and the Fourier

More information

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES

MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES MATH 172: MOTIVATION FOR FOURIER SERIES: SEPARATION OF VARIABLES Separation of variabes is a method to sove certain PDEs which have a warped product structure. First, on R n, a inear PDE of order m is

More information

Structural Analysis III Moment Distribution

Structural Analysis III Moment Distribution Structural Analysis III oment Distribution 2009/10 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 Overview... 4 1.2 The Basic Idea... 5 2. Development... 10 2.1 Carry-Over Factor... 10 2.2 Fixed-End

More information

First-Order Corrections to Gutzwiller s Trace Formula for Systems with Discrete Symmetries

First-Order Corrections to Gutzwiller s Trace Formula for Systems with Discrete Symmetries c 26 Noninear Phenomena in Compex Systems First-Order Corrections to Gutzwier s Trace Formua for Systems with Discrete Symmetries Hoger Cartarius, Jörg Main, and Günter Wunner Institut für Theoretische

More information

1. Measurements and error calculus

1. Measurements and error calculus EV 1 Measurements and error cacuus 11 Introduction The goa of this aboratory course is to introduce the notions of carrying out an experiment, acquiring and writing up the data, and finay anayzing the

More information

High Efficiency Development of a Reciprocating Compressor by Clarification of Loss Generation in Bearings

High Efficiency Development of a Reciprocating Compressor by Clarification of Loss Generation in Bearings Purdue University Purdue e-pubs Internationa Compressor Engineering Conference Schoo of Mechanica Engineering 2010 High Efficiency Deveopment of a Reciprocating Compressor by Carification of Loss Generation

More information

CS229 Lecture notes. Andrew Ng

CS229 Lecture notes. Andrew Ng CS229 Lecture notes Andrew Ng Part IX The EM agorithm In the previous set of notes, we taked about the EM agorithm as appied to fitting a mixture of Gaussians. In this set of notes, we give a broader view

More information

Experimental Investigation and Numerical Analysis of New Multi-Ribbed Slab Structure

Experimental Investigation and Numerical Analysis of New Multi-Ribbed Slab Structure Experimenta Investigation and Numerica Anaysis of New Muti-Ribbed Sab Structure Jie TIAN Xi an University of Technoogy, China Wei HUANG Xi an University of Architecture & Technoogy, China Junong LU Xi

More information

Structural Analysis III Moment Distribution

Structural Analysis III Moment Distribution Structural Analysis III oment Distribution 2008/9 Dr. Colin Caprani 1 Contents 1. Introduction... 4 1.1 Overview... 4 1.2 The Basic Idea... 5 2. Development... 10 2.1 Carry-Over... 10 2.2 Fixed End oments...

More information

ANALYTICAL AND EXPERIMENTAL STUDY OF FRP-STRENGTHENED RC BEAM-COLUMN JOINTS. Abstract

ANALYTICAL AND EXPERIMENTAL STUDY OF FRP-STRENGTHENED RC BEAM-COLUMN JOINTS. Abstract ANALYTICAL AND EXPERIMENTAL STUDY OF FRP-STRENGTHENED RC BEAM-COLUMN JOINTS Dr. Costas P. Antonopouos, University of Patras, Greece Assoc. Prof. Thanasis C. Triantafiou, University of Patras, Greece Abstract

More information

Types of Structures & Loads

Types of Structures & Loads Structure Analysis I Chapter 4 1 Types of Structures & Loads 1Chapter Chapter 4 Internal lloading Developed in Structural Members Internal loading at a specified Point In General The loading for coplanar

More information

Term Test AER301F. Dynamics. 5 November The value of each question is indicated in the table opposite.

Term Test AER301F. Dynamics. 5 November The value of each question is indicated in the table opposite. U N I V E R S I T Y O F T O R O N T O Facuty of Appied Science and Engineering Term Test AER31F Dynamics 5 November 212 Student Name: Last Name First Names Student Number: Instructions: 1. Attempt a questions.

More information

UNIT I ENERGY PRINCIPLES

UNIT I ENERGY PRINCIPLES UNIT I ENERGY PRINCIPLES Strain energy and strain energy density- strain energy in traction, shear in flexure and torsion- Castigliano s theorem Principle of virtual work application of energy theorems

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 21 The oment- Distribution ethod: rames with Sidesway Instructional Objectives After reading this chapter the student

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . Two points A and B ie on a smooth horizonta tabe with AB = a. One end of a ight eastic spring, of natura ength a and moduus of easticity mg, is attached to A. The other end of the spring is attached

More information

Chemical Kinetics Part 2

Chemical Kinetics Part 2 Integrated Rate Laws Chemica Kinetics Part 2 The rate aw we have discussed thus far is the differentia rate aw. Let us consider the very simpe reaction: a A à products The differentia rate reates the rate

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 16 The Slope-Deflection ethod: rames Without Sidesway Instructional Objectives After reading this chapter the student

More information

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method

Module 3. Analysis of Statically Indeterminate Structures by the Displacement Method odule 3 Analysis of Statically Indeterminate Structures by the Displacement ethod Lesson 14 The Slope-Deflection ethod: An Introduction Introduction As pointed out earlier, there are two distinct methods

More information

Problem Set 6: Solutions

Problem Set 6: Solutions University of Aabama Department of Physics and Astronomy PH 102 / LeCair Summer II 2010 Probem Set 6: Soutions 1. A conducting rectanguar oop of mass M, resistance R, and dimensions w by fas from rest

More information