PROBLEMS. Apago PDF Enhancer

Size: px
Start display at page:

Download "PROBLEMS. Apago PDF Enhancer"

Transcription

1 PROLMS mm rod rests on a horizonta tabe. force P appied as shown produces the foowing acceerations: a m/s 2 to the right, a 5 6 rad/s 2 countercockwise as viewed from above. etermine the acceeration (a) of point, (b) of point. P 0.45 m 0.45 m Fig. P and P In Prob , determine the point of the rod that (a) has no acceeration, (b) has an acceeration of 2.4 m/s 2 to the right ft stee beam is owered by means of two cabes unwinding at the same speed from overhead cranes. s the beam approaches the ground, the crane operators appy brakes to sow down the unwinding motion. t the instant considered the deceeration of the cabe attached at is 12 ft/s 2, whie that of the cabe at is 5 ft/s 2. etermine (a) the anguar acceeration of the beam, (b) the acceeration of point. pago PF nhancer The acceeration of point is 1 ft/s 2 downward and the anguar acceeration of the beam is 0.8 rad/s 2 cockwise. Knowing that the anguar veocity of the beam is zero at the instant considered, determine the acceeration of each cabe and ar is attached to two inks and. Knowing that at the instant shown ink has zero anguar acceeration and an anguar veocity of 3 rad/s cockwise, determine the acceeration (a) of point, (b) of point. 9 ft Fig. P and P ft 240 mm 240 mm 180 mm 180 mm Fig. P Fig. P

2 966 Kinematics of Rigid odies n automobie traves to the eft at a constant speed of 48 mi/h. Knowing that the diameter of the whee is 22 in., determine the acceeration (a) of point, (b) of point, (c) of point in. Fig. P Fig. P carriage is supported by a caster and a cyinder, each of 50-mm diameter. Knowing that at the instant shown the carriage has an acceeration of 2.4 m/s 2 and a veocity of 1.5 m/s, both directed to the eft, determine (a) the anguar acceerations of the caster and of the cyinder, (b) the acceerations of the centers of the caster and of the cyinder. 75 mm Fig. P and P The motion of the 75-mm-radius cyinder is controed by the cord shown. Knowing that end of the cord has a veocity of 300 mm/s and an acceeration of 480 mm/s 2, both directed upward, determine the acceeration (a) of point, (b) of point. pago PF nhancer The motion of the 75-mm-radius cyinder is controed by the cord shown. Knowing that end of the cord has a veocity of 300 mm/s and an acceeration of 480 mm/s 2, both directed upward, determine the acceerations of points and of the cyinder and in.-radius drum is rigidy attached to a 5-in.- radius drum as shown. One of the drums ros without siding on the surface shown, and a cord is wound around the other drum. Knowing that at the instant shown end of the cord has a veocity of 8 in./s and an acceeration of 30 in./s 2, both directed to the eft, determine the acceerations of points,, and of the drums. 3 in. 5 in. 3 in. 5 in. Fig. P Fig. P15.116

3 The 150-mm-radius drum ros without sipping on a bet that moves to the eft with a constant veocity of 300 mm/s. t an instant when the veocity and acceeration of the center of the drum are as shown, determine the acceerations of points,, and of the drum. Probems mm/s 900 mm/s mm/s Fig. P in The 18-in.-radius fywhee is rigidy attached to a 1.5-in.-radius shaft that can ro aong parae rais. Knowing that at the instant shown the center of the shaft has a veocity of 1.2 in./s and an acceeration of 0.5 in./s 2, both directed down to the eft, determine the acceeration (a) of point, (b) of point. pago PF nhancer In the panetary gear system shown the radius of gears,,, and is 3 in. and the radius of the outer gear is 9 in. Knowing that gear has a constant anguar veocity of 150 rpm cockwise and that the outer gear is stationary, determine the magnitude of the acceeration of the tooth of gear that is in contact with (a) gear, (b) gear. 20 Fig. P The disk shown has a constant anguar veocity of 500 rpm countercockwise. Knowing that rod is 250 mm ong, determine the acceeration of coar when (a) u 5 90, (b) u mm Fig. P Fig. P In the two-cyinder air compressor shown the connecting rods and are each 190 mm ong and crank rotates about the fixed point with a constant anguar veocity of 1500 rpm cockwise. etermine the acceeration of each piston when u 5 0. Fig. P mm 45

4 968 Kinematics of Rigid odies rm has a constant anguar veocity of 16 rad/s countercockwise. t the instant when u 5 0, determine the acceeration (a) of coar, (b) of the midpoint of bar. 10 in. 3 in. 6 in. P Fig. P15.122, P15.123, and P rm has a constant anguar veocity of 16 rad/s countercockwise. t the instant when u 5 90, determine the acceeration (a) of coar, (b) of the midpoint of bar rm has a constant anguar veocity of 16 rad/s countercockwise. t the instant when u 5 60, determine the acceeration of coar. 50 mm Fig. P and P Knowing that crank rotates about point with a constant anguar veocity of 900 rpm cockwise, determine the acceeration of the piston P when u pago PF nhancer Knowing that crank rotates about point with a constant anguar veocity of 900 rpm cockwise, determine the acceeration of the piston P when u Knowing that at the instant shown rod has zero anguar acceeration and an anguar veocity of 15 rad/s countercockwise, determine (a) the anguar acceeration of arm, (b) the acceeration of point. 4 in. 5 in. 5 in. 4 in. 3 in. Fig. P and P mm 90 mm Knowing that at the instant shown rod has zero anguar acceeration and an anguar veocity of 15 rad/s countercockwise, determine (a) the anguar acceeration of member, (b) the acceeration of point. 90 mm Knowing that at the instant shown rod has a constant anguar veocity of 6 rad/s cockwise, determine the acceeration of point. 225 mm 225 mm Fig. P and P Knowing that at the instant shown rod has a constant anguar veocity of 6 rad/s cockwise, determine (a) the anguar acceeration of member, (b) the acceeration of point.

5 Knowing that at the instant shown rod has zero anguar acceeration and an anguar veocity v 0 cockwise, determine (a) the anguar acceeration of arm, (b) the acceeration of point. Probems t the instant shown rod has zero anguar acceeration and an anguar veocity of 8 rad/s cockwise. Knowing that m, determine the acceeration of the midpoint of member and Knowing that at the instant shown bar has a constant anguar veocity of 4 rad/s cockwise, determine the anguar acceeration (a) of bar, (b) of bar. Fig. P and P mm 7 in. 4 in. 500 mm 8 in. pago PF nhancer 3 in. 400 mm 400 mm Fig. P and P Fig. P and P and Knowing that at the instant shown bar has an anguar veocity of 4 rad/s and an anguar acceeration of 2 rad/s 2, both cockwise, determine the anguar acceeration (a) of bar, (b) of bar by using the vector approach as is done in Sampe Prob enoting by r the position vector of a point of a rigid sab that is in pane motion, show that (a) the position vector r of the instantaneous center of rotation is r 5 r 1 V 3 v v 2 v Where V is the anguar veocity of the sab and v is the veocity of point, (b) the acceeration of the instantaneous center of rotation is zero if, and ony if, r w a 5 a v v 1 V 3 v O r a where 5 ak is the anguar acceeration of the sab. Fig. P15.137

6 970 Kinematics of Rigid odies * The whees attached to the ends of rod ro aong the surfaces shown. Using the method of Sec. 15.9, derive an expression for the anguar veocity of the rod in terms of v, u,, and b. b d v Fig. P and P * The whees attached to the ends of rod ro aong the surfaces shown. Using the method of Sec and knowing that the acceeration of whee is zero, derive an expression for the anguar acceeration of the rod in terms of v, u,, and b. Fig. P b * The drive disk of the Scotch crosshead mechanism shown has an anguar veocity V and an anguar acceeration, both directed countercockwise. Using the method of Sec. 15.9, derive expressions for the veocity and acceeration of point. pago PF nhancer * Rod moves over a sma whee at whie end moves to the right with a constant veocity v. Using the method of Sec. 15.9, derive expressions for the anguar veocity and anguar acceeration of the rod. b x Fig. P and P * Rod moves over a sma whee at whie end moves to the right with a constant veocity v. Using the method of Sec. 15.9, derive expressions for the horizonta and vertica components of the veocity of point. * disk of radius r ros to the right with a constant veocity v. enoting by P the point of the rim in contact with the ground at t 5 0, derive expressions for the horizonta and vertica components of the veocity of P at any time t.

7 * t the instant shown, rod rotates with an anguar veocity V and an anguar acceeration, both cockwise. Using the method of Sec. 15.9, derive expressions for the veocity and acceeration of point Rate of hange of a Vector with Respect to a Rotating Frame 971 Fig. P and P r * t the instant shown, rod rotates with an anguar veocity V and an anguar acceeration, both cockwise. Using the method of Sec. 15.9, derive expressions for the horizonta and vertica components of the veocity and acceeration of point. * The position of rod is controed by a disk of radius r which is attached to yoke. Knowing that the yoke moves verticay upward with a constant veocity v 0, derive an expression for the anguar acceeration of rod. Fig. P * In Prob , derive an expression for the anguar acceeration of rod. pago PF nhancer * whee of radius r ros without sipping aong the inside of a fixed cyinder of radius R with a constant anguar veocity V. enoting by P the point of the whee in contact with the cyinder at t 5 0, derive expressions for the horizonta and vertica components of the veocity of P at any time t. (The curve described by point P is a hypocycoid.) * In Prob , show that the path of P is a vertica straight ine when r 5 R/2. erive expressions for the corresponding veocity and acceeration of P at any time t. R r y Fig. P w P x RT OF HN OF VTOR WITH RSPT TO ROTTIN FRM We saw in Sec that the rate of change of a vector is the same with respect to a fixed frame and with respect to a frame in transation. In this section, the rates of change of a vector Q with respect to a fixed frame and with respect to a rotating frame of reference wi be considered. You wi earn to determine the rate of change of Q with respect to one frame of reference when Q is defined by its components in another frame. It is recaed that the seection of a fixed frame of reference is arbitrary. ny frame may be designated as fixed ; a others wi then be considered as moving. Photo 15.7 geneva mechanism is used to convert rotary motion into intermittent motion.

1) For a block of mass m to slide without friction up a rise of height h, the minimum initial speed of the block must be

1) For a block of mass m to slide without friction up a rise of height h, the minimum initial speed of the block must be v m 1) For a bock of mass m to side without friction up a rise of height h, the minimum initia speed of the bock must be a ) gh b ) gh d ) gh e ) gh c ) gh P h b 3 15 ft 3) A man pus a pound crate up a

More information

PHYSICS LOCUS / / d dt. ( vi) mass, m moment of inertia, I. ( ix) linear momentum, p Angular momentum, l p mv l I

PHYSICS LOCUS / / d dt. ( vi) mass, m moment of inertia, I. ( ix) linear momentum, p Angular momentum, l p mv l I 6 n terms of moment of inertia, equation (7.8) can be written as The vector form of the above equation is...(7.9 a)...(7.9 b) The anguar acceeration produced is aong the direction of appied externa torque.

More information

PROBLEM rad/s r. v = ft/s

PROBLEM rad/s r. v = ft/s PROLEM 15.38 An automobile traels to the right at a constant speed of 48 mi/h. If the diameter of a wheel is 22 in., determine the elocities of Points, C,, and E on the rim of the wheel. A 48 mi/h 70.4

More information

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE)

PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) Cass XI TARGET : JEE Main/Adv PREPARED BY: ER. VINEET LOOMBA (B.TECH. IIT ROORKEE) ALP ADVANCED LEVEL LPROBLEMS ROTATION- Topics Covered: Rigid body, moment of inertia, parae and perpendicuar axes theorems,

More information

This huge crank belongs to a Wartsila-Sulzer RTA96-C turbocharged two-stroke diesel engine. In this chapter you will learn to perform the kinematic

This huge crank belongs to a Wartsila-Sulzer RTA96-C turbocharged two-stroke diesel engine. In this chapter you will learn to perform the kinematic This huge crank belongs to a Wartsila-Sulzer RT96- turbocharged two-stroke diesel engine. In this chapter ou will learn to perform the kinematic analsis of rigid bodies that undergo translation, fied ais

More information

Dynamics Plane kinematics of rigid bodies Section 4: TJW Rotation: Example 1

Dynamics Plane kinematics of rigid bodies Section 4: TJW Rotation: Example 1 Section 4: TJW Rotation: Example 1 The pinion A of the hoist motor drives gear B, which is attached to the hoisting drum. The load L is lifted from its rest position and acquires an upward velocity of

More information

Parallel-Axis Theorem

Parallel-Axis Theorem Parae-Axis Theorem In the previous exampes, the axis of rotation coincided with the axis of symmetry of the object For an arbitrary axis, the paraeaxis theorem often simpifies cacuations The theorem states

More information

Convergence P H Y S I C S

Convergence P H Y S I C S +1 Test (Newton s Law of Motion) 1. Inertia is that property of a body by virtue of which the body is (a) Unabe to change by itsef the state of rest (b) Unabe to change by itsef the state of unifor otion

More information

TAM 212 Worksheet 9: Cornering and banked turns

TAM 212 Worksheet 9: Cornering and banked turns Name: Group members: TAM 212 Worksheet 9: Cornering and banked turns The aim of this worksheet is to understand how vehices drive around curves, how sipping and roing imit the maximum speed, and how banking

More information

Forces of Friction. through a viscous medium, there will be a resistance to the motion. and its environment

Forces of Friction. through a viscous medium, there will be a resistance to the motion. and its environment Forces of Friction When an object is in motion on a surface or through a viscous medium, there wi be a resistance to the motion This is due to the interactions between the object and its environment This

More information

Moving Reference Frame Kinematics Homework

Moving Reference Frame Kinematics Homework Chapter 3 Moving Reference Frame Kinematics Homework Freeform c 2016 3-1 3-2 Freeform c 2016 Homework 3. Given: n L-shaped telescoping arm is pinned to ground at point. The arm is rotating counterclockwise

More information

+ ] B A BA / t BA / n. B G BG / t BG / n. a = (5)(4) = 80 in./s. A G AG / t AG / n. ] + [48 in./s ]

+ ] B A BA / t BA / n. B G BG / t BG / n. a = (5)(4) = 80 in./s. A G AG / t AG / n. ] + [48 in./s ] PROLEM 15.113 3-in.-radius drum is rigidly attached to a 5-in.-radius drum as shown. One of the drums rolls without sliding on the surface shown, and a cord is wound around the other drum. Knowing that

More information

Planar Rigid Body Kinematics Homework

Planar Rigid Body Kinematics Homework Chapter 2 Planar Rigid ody Kinematics Homework Freeform c 2016 2-1 2-2 Freeform c 2016 Homework 2. Given: The pulley shown below freely rotates about point C and interacts with two rubber belts (one horizontal,

More information

Module 22: Simple Harmonic Oscillation and Torque

Module 22: Simple Harmonic Oscillation and Torque Modue : Simpe Harmonic Osciation and Torque.1 Introduction We have aready used Newton s Second Law or Conservation of Energy to anayze systems ike the boc-spring system that osciate. We sha now use torque

More information

XI PHYSICS. M. Affan Khan LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com

XI PHYSICS. M. Affan Khan LECTURER PHYSICS, AKHSS, K. https://promotephysics.wordpress.com XI PHYSICS M. Affan Khan LECTURER PHYSICS, AKHSS, K affan_414@ive.com https://promotephysics.wordpress.com [TORQUE, ANGULAR MOMENTUM & EQUILIBRIUM] CHAPTER NO. 5 Okay here we are going to discuss Rotationa

More information

Measurement of acceleration due to gravity (g) by a compound pendulum

Measurement of acceleration due to gravity (g) by a compound pendulum Measurement of acceeration due to gravity (g) by a compound penduum Aim: (i) To determine the acceeration due to gravity (g) by means of a compound penduum. (ii) To determine radius of gyration about an

More information

Solution Set Seven. 1 Goldstein Components of Torque Along Principal Axes Components of Torque Along Cartesian Axes...

Solution Set Seven. 1 Goldstein Components of Torque Along Principal Axes Components of Torque Along Cartesian Axes... : Soution Set Seven Northwestern University, Cassica Mechanics Cassica Mechanics, Third Ed.- Godstein November 8, 25 Contents Godstein 5.8. 2. Components of Torque Aong Principa Axes.......................

More information

Previous Years Problems on System of Particles and Rotional Motion for NEET

Previous Years Problems on System of Particles and Rotional Motion for NEET P-8 JPME Topicwise Soved Paper- PHYSCS Previous Years Probems on Sstem of Partices and otiona Motion for NEET This Chapter Previous Years Probems on Sstem of Partices and otiona Motion for NEET is taken

More information

Find: Determine the velocity and acceleration of end P. Write your answers as vectors.

Find: Determine the velocity and acceleration of end P. Write your answers as vectors. Homework 2. Given: ar P rotates about a shaft passing through end of the bar. t the instant shown, the angular velocity and angular acceleration of P are given by ω and α. atics Homework Problems ME 274

More information

Moving Reference Frame Kinematics Homework

Moving Reference Frame Kinematics Homework Chapter 3 Moving Reference Frame Kinematics Homework Freeform c 2018 3-1 3-2 Freeform c 2018 Homework H.3. Given: The disk shown is rotating about its center with a constant rotation rate of Ω. Four slots

More information

Problem Set 6: Solutions

Problem Set 6: Solutions University of Aabama Department of Physics and Astronomy PH 102 / LeCair Summer II 2010 Probem Set 6: Soutions 1. A conducting rectanguar oop of mass M, resistance R, and dimensions w by fas from rest

More information

Candidate Number. General Certificate of Education Advanced Level Examination January 2012

Candidate Number. General Certificate of Education Advanced Level Examination January 2012 entre Number andidate Number Surname Other Names andidate Signature Genera ertificate of Education dvanced Leve Examination January 212 Physics PHY4/1 Unit 4 Fieds and Further Mechanics Section Tuesday

More information

PLANAR RIGID BODY MOTION: TRANSLATION &

PLANAR RIGID BODY MOTION: TRANSLATION & PLANAR RIGID BODY MOTION: TRANSLATION & Today s Objectives : ROTATION Students will be able to: 1. Analyze the kinematics of a rigid body undergoing planar translation or rotation about a fixed axis. In-Class

More information

Numerical simulation of javelin best throwing angle based on biomechanical model

Numerical simulation of javelin best throwing angle based on biomechanical model ISSN : 0974-7435 Voume 8 Issue 8 Numerica simuation of javein best throwing ange based on biomechanica mode Xia Zeng*, Xiongwei Zuo Department of Physica Education, Changsha Medica University, Changsha

More information

PROBLEM 16.4 SOLUTION

PROBLEM 16.4 SOLUTION PROBLEM 16.4 The motion of the.5-kg rod AB is guided b two small wheels which roll freel in horizontal slots. If a force P of magnitude 8 N is applied at B, determine (a) the acceleration of the rod, (b)

More information

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION PROLEM 15.10 The bent rod E rotates about a line joining Points and E with a constant angular elocity of 9 rad/s. Knowing that the rotation is clockwise as iewed from E, determine the elocity and acceleration

More information

In this chapter the energy and momentum methods will be added to the tools available for your study of the motion of rigid bodies.

In this chapter the energy and momentum methods will be added to the tools available for your study of the motion of rigid bodies. In this chapter the energy and momentum methods will be added to the tools available for your study of the motion of rigid bodies. For example, by using the principle of conservation of energy and direct

More information

Chapter 8 Acceleration in Mechanisms

Chapter 8 Acceleration in Mechanisms Chapter 8 Acceleration in Mechanisms 1 2 8.2. Acceleration Diagram for a Link Example 8.1 3 The crank of a slider crank mechanism rotates cw at a constant speed of 300 rpm. The crank is 150 mm & the ConRod

More information

OSCILLATIONS. dt x = (1) Where = k m

OSCILLATIONS. dt x = (1) Where = k m OSCILLATIONS Periodic Motion. Any otion, which repeats itsef at reguar interva of tie, is caed a periodic otion. Eg: 1) Rotation of earth around sun. 2) Vibrations of a sipe penduu. 3) Rotation of eectron

More information

Planar Rigid Body Kinematics Homework

Planar Rigid Body Kinematics Homework Chapter 2: Planar Rigid ody Kinematics Homework Chapter 2 Planar Rigid ody Kinematics Homework Freeform c 2018 2-1 Chapter 2: Planar Rigid ody Kinematics Homework 2-2 Freeform c 2018 Chapter 2: Planar

More information

PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION

PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION PLANAR RIGID BODY MOTION: TRANSLATION & ROTATION Today s Objectives : Students will be able to: 1. Analyze the kinematics of a rigid body undergoing planar translation or rotation about a fixed axis. In-Class

More information

DYNAMICS ME HOMEWORK PROBLEM SETS

DYNAMICS ME HOMEWORK PROBLEM SETS DYNAMICS ME 34010 HOMEWORK PROBLEM SETS Mahmoud M. Safadi 1, M.B. Rubin 2 1 safadi@technion.ac.il, 2 mbrubin@technion.ac.il Faculty of Mechanical Engineering Technion Israel Institute of Technology Spring

More information

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work.

PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. PLANAR KINETICS OF A RIGID BODY: WORK AND ENERGY Today s Objectives: Students will be able to: 1. Define the various ways a force and couple do work. In-Class Activities: 2. Apply the principle of work

More information

12.2. Maxima and Minima. Introduction. Prerequisites. Learning Outcomes

12.2. Maxima and Minima. Introduction. Prerequisites. Learning Outcomes Maima and Minima 1. Introduction In this Section we anayse curves in the oca neighbourhood of a stationary point and, from this anaysis, deduce necessary conditions satisfied by oca maima and oca minima.

More information

Problems. B 60 mm. 80 mm. 80 mm. 120 mm

Problems. B 60 mm. 80 mm. 80 mm. 120 mm roblems roblem 4.1 When the power to an electric motor is turned on, the motor reaches its rated speed of 3300 rpm in 6 s, and when the power is turned off, the motor coasts to rest in 80 s. ssume uniformly

More information

RIGID BODY MOTION (Section 16.1)

RIGID BODY MOTION (Section 16.1) RIGID BODY MOTION (Section 16.1) There are cases where an object cannot be treated as a particle. In these cases the size or shape of the body must be considered. Rotation of the body about its center

More information

Kinematics, Dynamics, and Vibrations FE Review Session. Dr. David Herrin March 27, 2012

Kinematics, Dynamics, and Vibrations FE Review Session. Dr. David Herrin March 27, 2012 Kinematics, Dynamics, and Vibrations FE Review Session Dr. David Herrin March 7, 0 Example A 0 g ball is released vertically from a height of 0 m. The ball strikes a horizontal surface and bounces back.

More information

CHAPTER 4 STRESS AND STRAIN

CHAPTER 4 STRESS AND STRAIN CHPTER STRESS ND STRIN EXERCISE, Page 95. If a oid tone i dropped into the ea and come to ret at a depth of 5000 m beow the urface of the ea, what wi be the tre in the tone? Take the denity of eawater

More information

Rotational Dynamics Smart Pulley

Rotational Dynamics Smart Pulley Rotational Dynamics Smart Pulley The motion of the flywheel of a steam engine, an airplane propeller, and any rotating wheel are examples of a very important type of motion called rotational motion. If

More information

Mechanics 3. Elastic strings and springs

Mechanics 3. Elastic strings and springs Chapter assessment Mechanics 3 Eastic strings and springs. Two identica ight springs have natura ength m and stiffness 4 Nm -. One is suspended verticay with its upper end fixed to a ceiing and a partice

More information

UNIT II Fig (1) Fig (1)

UNIT II Fig (1) Fig (1) UNIVERSITY OF PUNE [4362]-116 S.E.(Mechanical / Automobile) Examination 2013 (2008 pattern) THEY OF MACHINES -1 [Total No. of Questions: 12] [Total No. of Printed pages: 7] [Time: 4 Hours] [Max. Marks:

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 23: Ch.16, Sec.7

CEE 271: Applied Mechanics II, Dynamics Lecture 23: Ch.16, Sec.7 1 / 26 CEE 271: Applied Mechanics II, Dynamics Lecture 23: Ch.16, Sec.7 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, Nov. 8, 2012 2 / 26 RELATIVE MOTION

More information

The University of Melbourne Engineering Mechanics

The University of Melbourne Engineering Mechanics The University of Melbourne 436-291 Engineering Mechanics Tutorial Eleven Instantaneous Centre and General Motion Part A (Introductory) 1. (Problem 5/93 from Meriam and Kraige - Dynamics) For the instant

More information

Robotics I. Figure 1: Initial placement of a rigid thin rod of length L in an absolute reference frame.

Robotics I. Figure 1: Initial placement of a rigid thin rod of length L in an absolute reference frame. Robotics I September, 7 Exercise Consider the rigid body in Fig., a thin rod of length L. The rod will be rotated by an angle α around the z axis, then by an angle β around the resulting x axis, and finally

More information

Three-bladed wind turbines, similar to the ones shown in this picture of a wind farm, are currently the most common design. In this chapter you will

Three-bladed wind turbines, similar to the ones shown in this picture of a wind farm, are currently the most common design. In this chapter you will Three-bladed wind turbines, similar to the ones shown in this picture of a wind farm, are currently the most common design. In this chapter you will learn to analyze the motion of a rigid body by considering

More information

ENGR DYNAMICS. Rigid-body Lecture 4. Relative motion analysis: acceleration. Acknowledgements

ENGR DYNAMICS. Rigid-body Lecture 4. Relative motion analysis: acceleration. Acknowledgements ENGR 2030 -DYNAMICS Rigid-body Lecture 4 Relative motion analysis: acceleration Acknowledgements These lecture slides were provided by, and are the copyright of, Prentice Hall (*) as part of the online

More information

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION. ω = 29.6 rad/s. ω = = 36 3.

PROBLEM Copyright McGraw-Hill Education. Permission required for reproduction or display. SOLUTION. ω = 29.6 rad/s. ω = = 36 3. PROLEM 15.1 The brake drum is attached to a larger flywheel that is not shown. The motion of the brake drum is defined by the relation θ = 36t 1.6 t, where θ is expressed in radians and t in seconds. Determine

More information

1 MR SAMPLE EXAM 3 FALL 2013

1 MR SAMPLE EXAM 3 FALL 2013 SAMPLE EXAM 3 FALL 013 1. A merry-go-round rotates from rest with an angular acceleration of 1.56 rad/s. How long does it take to rotate through the first rev? A) s B) 4 s C) 6 s D) 8 s E) 10 s. A wheel,

More information

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5)

RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) RELATIVE MOTION ANALYSIS: VELOCITY (Section 16.5) Today s Objectives: Students will be able to: a) Describe the velocity of a rigid body in terms of translation and rotation components. b) Perform a relative-motion

More information

Rotation. PHYS 101 Previous Exam Problems CHAPTER

Rotation. PHYS 101 Previous Exam Problems CHAPTER PHYS 101 Previous Exam Problems CHAPTER 10 Rotation Rotational kinematics Rotational inertia (moment of inertia) Kinetic energy Torque Newton s 2 nd law Work, power & energy conservation 1. Assume that

More information

Final Exam April 30, 2013

Final Exam April 30, 2013 Final Exam Instructions: You have 120 minutes to complete this exam. This is a closed-book, closed-notes exam. You are allowed to use a calculator during the exam. Usage of mobile phones and other electronic

More information

IIT JEE, 2005 (MAINS) SOLUTIONS PHYSICS 1

IIT JEE, 2005 (MAINS) SOLUTIONS PHYSICS 1 IIT JEE, 5 (MINS) SOLUTIONS YSIS iscaimer: Tis booket contains te questions of IIT-JEE 5, Main Examination based on te memory reca of students aong wit soutions provided by te facuty of riiant Tutorias.

More information

5.3 Rigid Bodies in Three-Dimensional Force Systems

5.3 Rigid Bodies in Three-Dimensional Force Systems 5.3 Rigid odies in Three-imensional Force Sstems 5.3 Rigid odies in Three-imensional Force Sstems Eample 1, page 1 of 5 1. For the rigid frame shown, determine the reactions at the knife-edge supports,,.

More information

Plane Motion of Rigid Bodies: Forces and Accelerations

Plane Motion of Rigid Bodies: Forces and Accelerations Plane Motion of Rigid Bodies: Forces and Accelerations Reference: Beer, Ferdinand P. et al, Vector Mechanics for Engineers : Dynamics, 8 th Edition, Mc GrawHill Hibbeler R.C., Engineering Mechanics: Dynamics,

More information

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law

Gauss Law. 2. Gauss s Law: connects charge and field 3. Applications of Gauss s Law Gauss Law 1. Review on 1) Couomb s Law (charge and force) 2) Eectric Fied (fied and force) 2. Gauss s Law: connects charge and fied 3. Appications of Gauss s Law Couomb s Law and Eectric Fied Couomb s

More information

Term Test AER301F. Dynamics. 5 November The value of each question is indicated in the table opposite.

Term Test AER301F. Dynamics. 5 November The value of each question is indicated in the table opposite. U N I V E R S I T Y O F T O R O N T O Facuty of Appied Science and Engineering Term Test AER31F Dynamics 5 November 212 Student Name: Last Name First Names Student Number: Instructions: 1. Attempt a questions.

More information

Kinematics of. Motion. 8 l Theory of Machines

Kinematics of. Motion. 8 l Theory of Machines 8 l Theory of Machines Features 1. 1ntroduction.. Plane Motion. 3. Rectilinear Motion. 4. Curvilinear Motion. 5. Linear Displacement. 6. Linear Velocity. 7. Linear Acceleration. 8. Equations of Linear

More information

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String

Lecture Notes for Math 251: ODE and PDE. Lecture 34: 10.7 Wave Equation and Vibrations of an Elastic String ecture Notes for Math 251: ODE and PDE. ecture 3: 1.7 Wave Equation and Vibrations of an Eastic String Shawn D. Ryan Spring 212 ast Time: We studied other Heat Equation probems with various other boundary

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 27: Ch.18, Sec.1 5

CEE 271: Applied Mechanics II, Dynamics Lecture 27: Ch.18, Sec.1 5 1 / 42 CEE 271: Applied Mechanics II, Dynamics Lecture 27: Ch.18, Sec.1 5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Tuesday, November 27, 2012 2 / 42 KINETIC

More information

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid

EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid EQUATIONS OF MOTION: ROTATION ABOUT A FIXED AXIS (Section 17.4) Today s Objectives: Students will be able to analyze the planar kinetics of a rigid body undergoing rotational motion. APPLICATIONS The crank

More information

Phys 106 Practice Problems Common Quiz 1 Spring 2003

Phys 106 Practice Problems Common Quiz 1 Spring 2003 Phys 106 Practice Problems Common Quiz 1 Spring 2003 1. For a wheel spinning with constant angular acceleration on an axis through its center, the ratio of the speed of a point on the rim to the speed

More information

Easticity. The strain produced in the stretched spring is ) Voume Strain ) Shearing Strain 3) Tensie Strain 4) None of the above. A body subjected to strain a number of times does not obey Hooke's aw due

More information

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5

CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 1 / 36 CEE 271: Applied Mechanics II, Dynamics Lecture 25: Ch.17, Sec.4-5 Prof. Albert S. Kim Civil and Environmental Engineering, University of Hawaii at Manoa Date: 2 / 36 EQUATIONS OF MOTION: ROTATION

More information

UNIT 2 KINEMATICS OF LINKAGE MECHANISMS

UNIT 2 KINEMATICS OF LINKAGE MECHANISMS UNIT 2 KINEMATICS OF LINKAGE MECHANISMS ABSOLUTE AND RELATIVE VELOCITY An absolute velocity is the velocity of a point measured from a fixed point (normally the ground or anything rigidly attached to the

More information

Physics Dynamics: Springs

Physics Dynamics: Springs F A C U L T Y O F E D U C A T I O N Department of Curricuum and Pedagogy Physics Dynamics: Springs Science and Mathematics Education Research Group Supported by UBC Teaching and Learning Enhancement Fund

More information

Webreview Torque and Rotation Practice Test

Webreview Torque and Rotation Practice Test Please do not write on test. ID A Webreview - 8.2 Torque and Rotation Practice Test Multiple Choice Identify the choice that best completes the statement or answers the question. 1. A 0.30-m-radius automobile

More information

Lecture 18. PLANAR KINEMATICS OF RIGID BODIES, GOVERNING EQUATIONS

Lecture 18. PLANAR KINEMATICS OF RIGID BODIES, GOVERNING EQUATIONS Lecture 18. PLANAR KINEMATICS OF RIGID BODIES, GOVERNING EQUATIONS Planar kinematics of rigid bodies involve no new equations. The particle kinematics results of Chapter 2 will be used. Figure 4.1 Planar

More information

Chapter 4 ( ) ( ) F Fl F y = = + Solving for k. k kt. y = = + +

Chapter 4 ( ) ( ) F Fl F y = = + Solving for k. k kt. y = = + + Chapter 4 4- For a torsion bar, k T T/ F/, and so F/k T. For a cantiever, k F/δ,δ F/k. For the assemby, k F/y, or, y F/k + δ Thus F F F y + k kt k Soving for k kkt k ns. k + kt + kt k 4- For a torsion

More information

Force and Moment. Figure 1 Figure 2

Force and Moment. Figure 1 Figure 2 Force and Moment 1 Determine the magnitude and direction of the resultant of the two forces shown, using (a) the parallelogram law (b) the sine law. [1391 N, 47.8 ] Figure 1 Figure 2 2 The force F of magnitude

More information

PhysicsAndMathsTutor.com

PhysicsAndMathsTutor.com . Two points A and B ie on a smooth horizonta tabe with AB = a. One end of a ight eastic spring, of natura ength a and moduus of easticity mg, is attached to A. The other end of the spring is attached

More information

PHYS 110B - HW #1 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased

PHYS 110B - HW #1 Fall 2005, Solutions by David Pace Equations referenced as Eq. # are from Griffiths Problem statements are paraphrased PHYS 110B - HW #1 Fa 2005, Soutions by David Pace Equations referenced as Eq. # are from Griffiths Probem statements are paraphrased [1.] Probem 6.8 from Griffiths A ong cyinder has radius R and a magnetization

More information

ELASTICITY PREVIOUS EAMCET QUESTIONS ENGINEERING

ELASTICITY PREVIOUS EAMCET QUESTIONS ENGINEERING ELASTICITY PREVIOUS EAMCET QUESTIONS ENGINEERING. If the ratio of engths, radii and young s modui of stee and brass wires shown in the figure are a, b and c respectivey, the ratio between the increase

More information

DYNAMICS MOMENT OF INERTIA

DYNAMICS MOMENT OF INERTIA DYNAMICS MOMENT OF INERTIA S TO SELF ASSESSMENT EXERCISE No.1 1. A cylinder has a mass of 1 kg, outer radius of 0.05 m and radius of gyration 0.03 m. It is allowed to roll down an inclined plane until

More information

第 1 頁, 共 7 頁 Chap10 1. Test Bank, Question 3 One revolution per minute is about: 0.0524 rad/s 0.105 rad/s 0.95 rad/s 1.57 rad/s 6.28 rad/s 2. *Chapter 10, Problem 8 The angular acceleration of a wheel

More information

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS

Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Accelerated Physics Rotational Dynamics Problem Set Page 1 of 5 Name Date Period PROBLEM SET: ROTATIONAL DYNAMICS Directions: Show all work on a separate piece of paper. Box your final answer. Don t forget

More information

Chap. 10: Rotational Motion

Chap. 10: Rotational Motion Chap. 10: Rotational Motion I. Rotational Kinematics II. Rotational Dynamics - Newton s Law for Rotation III. Angular Momentum Conservation (Chap. 10) 1 Newton s Laws for Rotation n e t I 3 rd part [N

More information

Deriving 1 DOF Equations of Motion Worked-Out Examples. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 3 Fall 2017

Deriving 1 DOF Equations of Motion Worked-Out Examples. MCE371: Vibrations. Prof. Richter. Department of Mechanical Engineering. Handout 3 Fall 2017 MCE371: Vibrations Prof. Richter Department of Mechanical Engineering Handout 3 Fall 2017 Masses with Rectilinear Motion Follow Palm, p.63, 67-72 and Sect.2.6. Refine your skill in drawing correct free

More information

400 5 Kinematics of Rigid Bodies

400 5 Kinematics of Rigid Bodies 4 5 Kinematics of Rigid odies The absolute angular acceleration of link 4 and the acceleration of are: alpha4=[,,88.9] (rad/sˆ) a5=[,-66.866,] (m/sˆ) 5. Problems 5. The dimensions for the mechanism shown

More information

Induction and Inductance

Induction and Inductance Induction and Inductance How we generate E by B, and the passive component inductor in a circuit. 1. A review of emf and the magnetic fux. 2. Faraday s Law of Induction 3. Lentz Law 4. Inductance and inductor

More information

(Specifications A and B)

(Specifications A and B) Centre Number Surname Candidate Number For Examiner s Use Other Names Candidate Signature Examiner s Initias Genera Certificate of Education Advanced Subsidiary Examination June 2011 Question 1 2 Mark

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

APC PHYSICS CHAPTER 11 Mr. Holl Rotation

APC PHYSICS CHAPTER 11 Mr. Holl Rotation APC PHYSICS CHAPTER 11 Mr. Holl Rotation Student Notes 11-1 Translation and Rotation All of the motion we have studied to this point was linear or translational. Rotational motion is the study of spinning

More information

DYNAMICS. Kinematics of Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: Tenth Edition CHAPTER

DYNAMICS. Kinematics of Rigid Bodies VECTOR MECHANICS FOR ENGINEERS: Tenth Edition CHAPTER Tenth E CHAPTER 15 VECTOR MECHANICS FOR ENGINEERS: DYNAMICS Ferdinand P. Beer E. Russell Johnston, Jr. Phillip J. Cornwell Lecture Notes: Brian P. Self California Polytechnic State University Kinematics

More information

5. Plane Kinetics of Rigid Bodies

5. Plane Kinetics of Rigid Bodies 5. Plane Kinetics of Rigid Bodies 5.1 Mass moments of inertia 5.2 General equations of motion 5.3 Translation 5.4 Fixed axis rotation 5.5 General plane motion 5.6 Work and energy relations 5.7 Impulse

More information

An Introduction to Three-Dimensional, Rigid Body Dynamics. James W. Kamman, PhD. Volume I: Kinematics. Unit 4

An Introduction to Three-Dimensional, Rigid Body Dynamics. James W. Kamman, PhD. Volume I: Kinematics. Unit 4 Summary n Introduction to Three-imensional, igid ody ynamics James W. Kamman, h Volume I: Kinematics Unit 4 Kinematics of a oint Moving on a igid ody This unit continues the development of the concepts

More information

APPENDIX C FLEXING OF LENGTH BARS

APPENDIX C FLEXING OF LENGTH BARS Fexing of ength bars 83 APPENDIX C FLEXING OF LENGTH BARS C.1 FLEXING OF A LENGTH BAR DUE TO ITS OWN WEIGHT Any object ying in a horizonta pane wi sag under its own weight uness it is infinitey stiff or

More information

Preamble. Flow and Fluid Velocity. In this section of my lectures we will be. To do this we will use as an analogy

Preamble. Flow and Fluid Velocity. In this section of my lectures we will be. To do this we will use as an analogy Preambe Resistance Physics, 8 th Edition Custom Edition Cutne & Johnson Chapter 20.3 Pages 602-605 In this section of my ectures we wi be deveoping the concept of resistance. To do this we wi use as an

More information

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA ADVANCED MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 18 NQF LEVEL 3

EDEXCEL NATIONAL CERTIFICATE/DIPLOMA ADVANCED MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 18 NQF LEVEL 3 EDEXCEL NATIONAL CERTIFICATE/DIPLOMA ADVANCED MECHANICAL PRINCIPLES AND APPLICATIONS UNIT 18 NQF LEVEL 3 OUTCOME 3 BE ABLE TO DETERMINE RELATIVE AND RESULTANT VELOCITY IN ENGINEERING SYSTEMS Resultant

More information

O -x 0. 4 kg. 12 cm. 3 kg

O -x 0. 4 kg. 12 cm. 3 kg Anwer, Key { Homework 9 { Rubin H andau 1 Thi print-out houd have 18 quetion. Check that it i compete before eaving the printer. Ao, mutipe-choice quetion may continue on the net coumn or page: nd a choice

More information

CHAPTER 11. Answer to Checkpoint Questions

CHAPTER 11. Answer to Checkpoint Questions 96 CHAPTER 11 ROTATIONAL MOTION CHAPTER 11 Answer to Checkpoint Questions 1. (b) and (c). (a) and (d) 3. (a) yes; (b) no; (c) yes; (d) yes 4. all tie 5. 1,, 4, 3 6. (a) 1 and 3 tie, 4, then and 5 tie (zero)

More information

SUREPETTE USER'S GUIDE. AccuBioTech Co., Ltd. Adjustable Volume Pipette Fixed Volume Pipette. Accurate, Reliable, Cost Effective

SUREPETTE USER'S GUIDE. AccuBioTech Co., Ltd. Adjustable Volume Pipette Fixed Volume Pipette. Accurate, Reliable, Cost Effective SUREPETTE USER'S GUIDE Adjustabe Voume Pipette SUR EPE TTE Fixed Voume Pipette AccuBioTech Co., td. Accurate, Reiabe, Cost Effective CONTENTS PAGE. INTRODUCTION 2. PARTS CHECK IST 3. DESCRIPTION 2 4.

More information

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 )

General Physics I. Lecture 8: Rotation of a Rigid Object About a Fixed Axis. Prof. WAN, Xin ( 万歆 ) General Physics I Lecture 8: Rotation of a Rigid Object About a Fixed Axis Prof. WAN, Xin ( 万歆 ) xinwan@zju.edu.cn http://zimp.zju.edu.cn/~xinwan/ New Territory Object In the past, point particle (no rotation,

More information

Rotation. Rotational Variables

Rotation. Rotational Variables Rotation Rigid Bodies Rotation variables Constant angular acceleration Rotational KE Rotational Inertia Rotational Variables Rotation of a rigid body About a fixed rotation axis. Rigid Body an object that

More information

University of Alabama Department of Physics and Astronomy. PH 105 LeClair Summer Problem Set 11

University of Alabama Department of Physics and Astronomy. PH 105 LeClair Summer Problem Set 11 University of Aabaa Departent of Physics and Astronoy PH 05 LeCair Suer 0 Instructions: Probe Set. Answer a questions beow. A questions have equa weight.. Due Fri June 0 at the start of ecture, or eectronicay

More information

Experiment 11: Rotational Inertia of Disk and Ring

Experiment 11: Rotational Inertia of Disk and Ring Experiment 11: Rotational Inertia of Disk and Ring Equipment Required ScienceWorkshop 750 Interface (CI- 6450 or CI-7599) Mini-Rotational Accessory (CI-6691) Base and Support Rod (ME-9355) Paper clips

More information

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque

CHAPTER 8: ROTATIONAL OF RIGID BODY PHYSICS. 1. Define Torque 7 1. Define Torque 2. State the conditions for equilibrium of rigid body (Hint: 2 conditions) 3. Define angular displacement 4. Define average angular velocity 5. Define instantaneous angular velocity

More information

Review of Engineering Dynamics

Review of Engineering Dynamics Review of Engineering Dynamics Part 1: Kinematics of Particles and Rigid Bodies by James Doane, PhD, PE Contents 1.0 Course Overview... 4.0 Basic Introductory Concepts... 4.1 Introduction... 4.1.1 Vectors

More information

c 2007 Society for Industrial and Applied Mathematics

c 2007 Society for Industrial and Applied Mathematics SIAM REVIEW Vo. 49,No. 1,pp. 111 1 c 7 Society for Industria and Appied Mathematics Domino Waves C. J. Efthimiou M. D. Johnson Abstract. Motivated by a proposa of Daykin [Probem 71-19*, SIAM Rev., 13 (1971),

More information

Flywheels-Function need and Operation

Flywheels-Function need and Operation STUDY OF FLYWHEEL Flywheel definition A flywheel is an inertial energy-storage device. It absorbs mechanical energy and serves as a reservoir, storing energy during the period when the supply of energy

More information

THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE

THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE THE THREE POINT STEINER PROBLEM ON THE FLAT TORUS: THE MINIMAL LUNE CASE KATIE L. MAY AND MELISSA A. MITCHELL Abstract. We show how to identify the minima path network connecting three fixed points on

More information