Kai Sun. University of Michigan, Ann Arbor

Size: px
Start display at page:

Download "Kai Sun. University of Michigan, Ann Arbor"

Transcription

1 Ki Sun University of Michign, Ann Arbor

2 How to see toms in solid? For conductors, we cn utilize scnning tunneling microscope (STM) to see toms (Nobel Prize in Physics in 1986) Limittions: (1) conductors only nd (2) surfce only Imges from wikipedi

3 How do we know there re toms or molecules? Now we hve technique to see tom directly (Scnning tunneling microscope, developed in the 80s), but people knows the eistences of toms long before we cn see them. Q: How did people know there re toms before we cn relly see them? A1: For liquid/gs, from the study on Brownin motion (Einstein 1905) A2: For solids, from the X-ry crystllogrphy Brownin motion: rndom moving of prticles suspended in fluid

4 X-ry scttering A single crystl Polycrystl: mny smll pieces of crystls

5 Sctterings nd Diffrction

6 Crystl Plnes Crystl plnes: we cn consider 3D crystl s lyers of 2D plnes. These 2D plnes re crystl plnes Ø It is geometry concept, insted of mechnicl one. Sometimes, these 2D plnes re wekly coupled (grphene) For other cses, the 2D plnes re coupled very strongly.

7 Crystl Plnes

8 Inde System for Crystl Plnes Ø Define three es 1,2 nd 3 using the three lttice vectors #, $ nd % The three lttice vectors could be primitive or conventionl lttice vectors Ø Find the intercepts on the es in terms of lttice constnts #, $ nd % : We find three numbers We only consider the cse tht they re rtionl number i.e. p # /q #, p $ /q $ nd p % /q % (for the figure: 3, 2, 2) Ø Tke the reciprocls of these numbers Ø q # /p #, q $ /p $ nd q % /p % (for the figure: 1/3,1/2,1/2) Ø Find the lest common multiple of p #, p $ nd p % : n (for the figure: 6) Ø So, we cn define three integers h = n -., k = n - 2 nd l = n - 4 /. / 2 / 4 Ø We use (hkl) to mrk this crystl plne

9 Inde System for Crystl Plnes Ø If one of the integer is negtive, we put br on top of it (hk7l) Ø We use prentheses (hkl) to mrk crystl plnes Ø We use squre brket hkl to mrk directions in crystl:v = h # + k $ + l % Ø In cubic crystls, the direction hkl is perpendiculr to the plne (hkl), but this is not true for generic lttices

10 The Brgg lw: mirror reflection by crystl plnes Constructive interference Destructive interference Ø The pth difference: 2d sin θ Ø Constructive interference: 2d sin θ = n λ Ø Intensity peks: θ = rcsin F G $H θ: Brgg ngle The direction of the bem is chnged by 2 θ

11 The Brgg lw: mirror reflection by crystl plnes Brgg s lw: 2d sin θ = n λ. So sin θ = n λ/2d Ø sin θ 1, so G 1. In other words: λ 2 d $H Ø d~size of n tom (bout 1A = 10 U#V m), so λ~1a Ø Visible light, λ~ A, too lrge for Brg sctterings Ø X-rys, electrons, or neutrons Ø Prticles (v c): E = /2, so p = 2 E m $[ Ø Prticles re wves (QM) k = p/ħ λ = 2π k = 2πħ p = h 2 E m

12 Fourier Anlysis: very powerful tool for periodic functions A 1D emple: For 1D function with periodicity, n + = n(), we cn lwys write it s the sum of cos nd sin functions: n = n V + [C / cos with p being n positive integer. /fv It is esy to check tht n + = n : n + = n V + {C / cos /fv = n V + C / cos /fv = n V + C / cos /fv + + S / sin + + S / sin = n() + S / sin + S / sin ] + } +

13 Fourier Anlysis Another wy to write down the Fourier series: with p being n integer. n = n / ep i / Ø Equivlent to the cos nd sin formul shown on the previous pge (e n o = cos + i sin ) Ø If n is rel function [n = n ], n / = n U/ n = n / ep i / = n V + n / cos /fv + i n / sin = n V + (n / + n U/ ) cos i /fv = n V + C / cos /fv = n V + n / ep i /fv + n U/ cos i + n U/ ep i + i(n / n U/ ) sin + S / sin i n U/ sin

14 Rel function n = n / ep i Ø If n is rel function [n = n ], n / = n U/ / n = n / ep i Compre n nd n, it is esy to see tht if n = n, we must hve n / = n U/ n = n V + (n / + n U/ ) cos i + i(n / n U/ ) sin /fv = n V + (n / + n / ) cos i /fv = n V + 2Re n / cos i /fv = n V + C / cos /fv So: C / = 2Re(n / ) nd S / = 2Im(n / ) / = n U/ / + i(n / n / ) sin 2Im(n /) sin + S / sin ep i

15 Reciprocl lttice n = n / ep i / Periodic function: lttice $t / u : the reciprocl lttice

16 Proof: Inversion of Fourier Series n = n / ep i / u n / = U# v d n ep i u V r.h.s. = U# v d n ep i V u = U# v d n /w ep i ep i V /w u = U# n /w v d /w Ø If p w u p, d ep i $t /{ U/ V Ø If p w u = p, d ep i $t /{ U/ V u u V r.h.s. = U# n /w /w = ep i w p u {ep i $t /{ U/ $t / { U/ n u u u = d 1 V V = d ep 0 δ /,/w = n /w /w 1}=0 = δ /,/ { = n / = l. h. s.

17 Higher dimensions n = n / ep i / u n / = U# v d n ep i V n r = n ep ig r n = V U# v dv n r ep G r n r is 3D periodic function: n r = n r + T, Ø T is the lttice vector: T = u # # + u $ $ + u % % u #, u $ nd u % re three rbitrry integers #, $ nd % re the lttice vectors, Ø G is the reciprocl lttice vector: G = v # b # + v $ b $ + v % b % v #, v $ nd v % re three integers b # = 2π u 2 u 4 u. (u 2 u 4 ), b $ = 2π u 4 u. u. (u 2 u 4 ) nd b % = 2π u. u 2 u. (u 2 u 4 ) Ø Another wy to define b #, b $ nd b % : n b = 2πδ n, If i j, then n b If i = j, then n b n = 2π For orthorhombic nd cubic lttices, b n = 2π/ n, but in generl this is not ture.

18 Brvis Lttice nd Reciprocl lttice T = u # # + u $ $ + u % % G = v # b # + v $ b $ + v % b % $ b # # Rel spce b $ k-spce/ momentum spce Ø Reciprocl vectors plys the role of wve-vector (momentum) in Fourier trnsformtions. Ø Three primitive lttice vectors #, $ nd % defines Brvis lttice with lttice sites locted t T = u # # + u $ $ + u % % (lttice vectors) Ø These primitive lttice vectors lso give us three reciprocl lttice vectors b #, b $ nd b % Ø Using b #, b $ nd b % (s primitive lttice vectors ), we cn define lttice, which is clled the reciprocl lttice: G = v # b # + v $ b $ + v % b % (reciprocl lttice vectors). Ø The primitive (conventionl) unit cell in the reciprocl lttice is known the Brillouin zone. Dulity: A Brvis lttice nd its reciprocl lttice re dul to ech other (1) If we know one, we know the other. (2) X-ry mesures the reciprocl lttice, nd thus we cn obtin the Brvis lttice

19 Diffrction Conditions Ø Number of prticles: F(k ) $ Ø k = k w k Scttering mplitude: F = dv n r ep[i(k k ) r ] = dv n r ep i k r Scttering strength t r Pth difference

20 Diffrction Conditions Scttering mplitude: F = dv n r ep[i(k k ) r ] = dv n r ep i k r Scttering strength t r Pth difference Ø n r is periodic function: n r = n r + T with T = u # # + u $ $ + u % % So we know: n r = n ep ig r Using n, we cn rewrite F s: F = v dv n ep ig r Ø If k = G, F = dv n = n V ep i k r = v dv n Ø If k differs from G slightly, F will be very tiny Ø So there is pek, whenever k being lttice vector. ep i(g k) r

21 Diffrction Conditions k = k w k = G For elstic sctterings ( k w = k ) k w = k + G = k So (k + G ) (k + G ) = k k 2k G + G $ = 0 If G is reciprocl lttice, so is G 2k G G $ = 0 So, the diffrction condition: Q: Is this the sme s the Brgg s lw (2d sin θ = n λ)? A: Yes 2k G = G $

22 Diffrction Conditions 2k G = G $ v (hkl) plnes re perpendiculr to G = h b # + k b $ + l b % Proof: three intercepts re p # /q # #, p $ /q $ $, p % /q % % And h = n -., k = n - 2 nd l = n - 4 /. / 2 / 4 It is esy to show tht G is perpendiculr to lines 12, 23 nd 31 So G is perpendiculr to the plne. p # G q # p $ # q $ = 2π h p # k p $ = 2π n n = 0 $ q # q $ v Seprtion between two neighboring lyers for (hkl) plnes: d hkl = G G p # q # # = 2π h p # q # G = 2πn/ G From figure on the previous slides: G = 2 k sin θ, So 2πn/d hkl = 2 k sin θ. 2 sin θ d hkl = 2πn = n λ k

23 Lue Equtions k = G Using the following two conditions: k = G = v # b # + v $ b $ + v % b % nd n b = 2πδ n, it is esy to note tht n k = 2πv n where i = 1,2 nd 3.

24 Structure fctor Scttering mplitude: F = dv n r ep i k r When the diffrction condition is stisfied k = G, one cn prove tht every unit cell contributes the sme mount to the integrl: v This is becuse ## dv n r ep i k r = v dv n r ep i k r #$ v #$ dv n r ep i k r = v dv n r + T ep i k r + T ## = v dv n r ep i k r ## Here we used the fct tht ep ig T = 1. Therefore, F = N v dv n r ep i k r = NS where N is the number of unit cells nd S is clled the structure fctor.

25 Atomic structure fctor S = v dv n r ep ig r Ø Similr to the scttering mplitude F, but the integrl is limited to 1 unit cell (F integrtes over the whole spce): S = F /N Ø Wvevector must be reciprocl lttice vector (must stisfy the diffrction condition) š If single cell contins s toms (j = 1,2,, s), n r = # n (r r ) where r is the loction of ech tom nd n (r ) is the contribution from one tom. Therefore: š S = v dv n (r r ) ep ig r š # = v dv n (r r ) ep[ ig (r r )] ep ig r š # š = ep ig r # v dvn (ρ ) ep ig ρ = ep ig r # f

26 Atomic structure fctor where the structure fctor is: š F = NS S = ep ig r # where the tomic structure fctor is: f f = v dvn (ρ ) ep ig ρ For sme type of tom, they shre the sme the tomic structure fctor! Using bcc nd fcc s n emple

27 bcc In one conventionl cell, there re two identicl toms locted t (0,0,0) nd ( # $, # $, # $ ) $ S = ep ig r # f = f {1 + ep ig If G = v # b # + v $ b $ + v % b %, we hve $ S = ep ig r # Ø If v # + v $ + v % = even, S =2 f Ø If v # + v $ + v % = odd, S =0 1 2 # $ % } f = f {1 + ep[ i π v # + v $ + v % ]} Nïve diffrction condition: pek if k = G = v # b # + v $ b $ + v % b % Not quite true for bcc (conventionl cell) Hlf of k (v # + v $ + v % = odd) hs no pek. Insted, the mplitude is 0!

28 fcc In one conventionl cell, there re four identicl toms locted t (0,0,0), ( # $, # $, 0), (# $, 0, # $ ) nd (0, # $, # $ ) S = ep ig r # f 1 = f{1 + ep ig 2 # $ + ep ig If G = v # b # + v $ b $ + v % b %, we hve $ S = ep ig r # For v #, v $ nd v % Ø All odd or ll even: S =4 f Ø 1 odd nd 2 even, S =0 Ø 2 odd nd 1 even, S =0 1 2 # % + ep ig 1 2 $ % } f = f{1 + ep i π v # + v $ + ep i π v # + v % + ep[ i π v $ + v % ]} Nïve diffrction condition: pek if k = G = v # b # + v $ b $ + v % b % Not true for fcc (conventionl cell) Some of k (1 odd 2 even or 2 odd 1 even) hs no pek. Insted, the mplitude is 0!

29 Atomic structure fctor of n isotropic tom f = v dvn (ρ ) ep ig ρ Ø Assume the tom is isotropic (pproimtion) Ø n (ρ ) is the density of electrons f = 2π v ρ $ dρ sin α dα n ρ ep igρ cos α = 2π v ρ $ dρn ρ ep igρ ep igρ i Gρ = 4π v dρn ρ sin Gρ Gρ ρ $ For very smll Gρ, ª ª 1 where Z is the number of tomic electrons f = 4π v dρn ρ ρ $ = Z

30 Single crystls vs polycrystls A single crystl Polycrystl: mny smll pieces of crystls

Point Lattices: Bravais Lattices

Point Lattices: Bravais Lattices Physics for Solid Stte Applictions Februry 18, 2004 Lecture 7: Periodic Structures (cont.) Outline Review 2D & 3D Periodic Crystl Structures: Mthemtics X-Ry Diffrction: Observing Reciprocl Spce Point Lttices:

More information

QUB XRD Course. The crystalline state. The Crystalline State

QUB XRD Course. The crystalline state. The Crystalline State QUB XRD Course Introduction to Crystllogrphy 1 The crystlline stte Mtter Gseous Stte Solid stte Liquid Stte Amorphous (disordered) Crystlline (ordered) 2 The Crystlline Stte A crystl is constructed by

More information

PHY 140A: Solid State Physics. Solution to Midterm #1

PHY 140A: Solid State Physics. Solution to Midterm #1 PHY 140A: Solid Stte Physics Solution to Midterm #1 TA: Xun Ji 1 October 24, 2006 1 Emil: jixun@physics.ucl.edu Problem #1 (20pt)Clculte the pcking frction of the body-centered cubic lttice. Solution:

More information

Miller indices and Family of the Planes

Miller indices and Family of the Planes SOLID4 Miller Indices ltest Fmily of Plnes nd Miller indices; Miller indices nd Fmily of the Plnes The geometricl fetures of the crystls represented by lttice points re clled Rtionl. Thus lttice point

More information

fiziks Institute for NET/JRF, GATE, IIT JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics

fiziks Institute for NET/JRF, GATE, IIT JAM, M.Sc. Entrance, JEST, TIFR and GRE in Physics Solid Stte Physics JEST-0 Q. bem of X-rys is incident on BCC crystl. If the difference between the incident nd scttered wvevectors is K nxˆkyˆlzˆ where xˆ, yˆ, zˆ re the unit vectors of the ssocited cubic

More information

Partial Differential Equations

Partial Differential Equations Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for One-Dimensionl Eqution The reen s function provides complete solution to boundry

More information

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon

Energy Bands Energy Bands and Band Gap. Phys463.nb Phenomenon Phys463.nb 49 7 Energy Bnds Ref: textbook, Chpter 7 Q: Why re there insultors nd conductors? Q: Wht will hppen when n electron moves in crystl? In the previous chpter, we discussed free electron gses,

More information

Materials Analysis MATSCI 162/172 Laboratory Exercise No. 1 Crystal Structure Determination Pattern Indexing

Materials Analysis MATSCI 162/172 Laboratory Exercise No. 1 Crystal Structure Determination Pattern Indexing Mterils Anlysis MATSCI 16/17 Lbortory Exercise No. 1 Crystl Structure Determintion Pttern Inexing Objectives: To inex the x-ry iffrction pttern, ientify the Brvis lttice, n clculte the precise lttice prmeters.

More information

Department of Electrical and Computer Engineering, Cornell University. ECE 4070: Physics of Semiconductors and Nanostructures.

Department of Electrical and Computer Engineering, Cornell University. ECE 4070: Physics of Semiconductors and Nanostructures. Deprtment of Electricl nd Computer Engineering, Cornell University ECE 4070: Physics of Semiconductors nd Nnostructures Spring 2014 Exm 2 ` April 17, 2014 INSTRUCTIONS: Every problem must be done in the

More information

( ) ( ) Chapter 5 Diffraction condition. ρ j

( ) ( ) Chapter 5 Diffraction condition. ρ j Grdute School of Engineering Ngo Institute of Technolog Crstl Structure Anlsis Tkshi Id (Advnced Cermics Reserch Center) Updted Nov. 3 3 Chpter 5 Diffrction condition In Chp. 4 it hs been shown tht the

More information

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson.7 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: Consider potentil problem in the hlf-spce defined by, with Dirichlet boundry conditions on the plne

More information

Analytical Methods for Materials

Analytical Methods for Materials Anlyticl Methods for Mterils Lesson 7 Crystl Geometry nd Crystllogrphy, Prt 1 Suggested Reding Chpters 2 nd 6 in Wsed et l. 169 Slt crystls N Cl http://helthfreedoms.org/2009/05/24/tble-slt-vs-unrefined-se-slt--primer/

More information

LUMS School of Science and Engineering

LUMS School of Science and Engineering LUMS School of Science nd Engineering PH- Solution of ssignment Mrch, 0, 0 Brvis Lttice Answer: We hve given tht c.5(î + ĵ + ˆk) 5 (î + ĵ + ˆk) 0 (î + ĵ + ˆk) c (î + ĵ + ˆk) î + ĵ + ˆk + b + c î, b ĵ nd

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

ragsdale (zdr82) HW2 ditmire (58335) 1

ragsdale (zdr82) HW2 ditmire (58335) 1 rgsdle (zdr82) HW2 ditmire (58335) This print-out should hve 22 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. 00 0.0 points A chrge of 8. µc

More information

References and Resources:

References and Resources: Surfce nd Interfce Science Physics 627; Chemistry 542 Lectures 4 Feb 3, 2013 Determining Surfce Structure Diffrction methods: LEED; RHEED Rel Spce: STEM References nd Resources: Woodruff nd Delchr (2 nd

More information

Problem 3: Band Structure of YBa 2 Cu 3 O 7

Problem 3: Band Structure of YBa 2 Cu 3 O 7 HW 5 SSP 601-2017. here is very relistic clcultion which uses the concepts of lttice, reciprocl spce, Brillouin zone nd tight-binding pproximtion. Go over the solution nd fill up every step nd every detil

More information

arxiv: v1 [physics.ed-ph] 23 Jul 2013

arxiv: v1 [physics.ed-ph] 23 Jul 2013 A proper understnding of the Dvisson nd Germer experiments for undergrdute modern physics course Mstsugu Suzuki nd Itsuko S. Suzuki Deprtment of Physics, Stte University of New York t Binghmton, Binghmton

More information

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS

13.3 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS 33 CLASSICAL STRAIGHTEDGE AND COMPASS CONSTRUCTIONS As simple ppliction of the results we hve obtined on lgebric extensions, nd in prticulr on the multiplictivity of extension degrees, we cn nswer (in

More information

R. I. Badran Solid State Physics

R. I. Badran Solid State Physics I Bdrn Solid Stte Physics Crystl vibrtions nd the clssicl theory: The ssmption will be mde to consider tht the men eqilibrim position of ech ion is t Brvis lttice site The ions oscillte bot this men position

More information

2.57/2.570 Midterm Exam No. 1 March 31, :00 am -12:30 pm

2.57/2.570 Midterm Exam No. 1 March 31, :00 am -12:30 pm 2.57/2.570 Midterm Exm No. 1 Mrch 31, 2010 11:00 m -12:30 pm Instructions: (1) 2.57 students: try ll problems (2) 2.570 students: Problem 1 plus one of two long problems. You cn lso do both long problems,

More information

13: Diffusion in 2 Energy Groups

13: Diffusion in 2 Energy Groups 3: Diffusion in Energy Groups B. Rouben McMster University Course EP 4D3/6D3 Nucler Rector Anlysis (Rector Physics) 5 Sept.-Dec. 5 September Contents We study the diffusion eqution in two energy groups

More information

1 ST ROUND, SOLUTIONS

1 ST ROUND, SOLUTIONS ST ROUND, SOLUTIONS Problem (Lithuni) Self destructing pper ( points) Solution ( ) ( ) ( ) [Al HO OH ) ph pk lg [Al H O ( ) ( ) [Al H O OH [Al ( ).9 [Al H O.9.47 [Al ( ) ( ) ( ) [Al H O OH.9 pk ph lg.

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wve Phenomen Physics 15c Lecture Diffrction (H&L Chpter 11) Wht We Did Lst Time! Studied interference! or more wves overlp " Amplitudes dd up " Intensity = (mplitude) does not dd up! Thin-film interference!

More information

221B Lecture Notes WKB Method

221B Lecture Notes WKB Method Clssicl Limit B Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using

More information

Math 32B Discussion Session Session 7 Notes August 28, 2018

Math 32B Discussion Session Session 7 Notes August 28, 2018 Mth 32B iscussion ession ession 7 Notes August 28, 28 In tody s discussion we ll tlk bout surfce integrls both of sclr functions nd of vector fields nd we ll try to relte these to the mny other integrls

More information

STRUCTURAL ISSUES IN SEMICONDUCTORS

STRUCTURAL ISSUES IN SEMICONDUCTORS Chpter 1 STRUCTURAL ISSUES IN SEMICONDUCTORS Most semiconductor devices re mde from crystlline mterils. The following gures provide n overview of importnt crystlline properties of semiconductors, like

More information

Chapter 1: Fundamentals

Chapter 1: Fundamentals Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

Crystalline Structures The Basics

Crystalline Structures The Basics Crystlline Structures The sics Crystl structure of mteril is wy in which toms, ions, molecules re sptilly rrnged in 3-D spce. Crystl structure = lttice (unit cell geometry) + bsis (tom, ion, or molecule

More information

a * a (2,1) 1,1 0,1 1,1 2,1 hkl 1,0 1,0 2,0 O 2,1 0,1 1,1 0,2 1,2 2,2

a * a (2,1) 1,1 0,1 1,1 2,1 hkl 1,0 1,0 2,0 O 2,1 0,1 1,1 0,2 1,2 2,2 18 34.3 The Reciprocl Lttice The inverse of the intersections of plne with the unit cell xes is used to find the Miller indices of the plne. The inverse of the d-spcing etween plnes ppers in expressions

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

STRAND B: NUMBER THEORY

STRAND B: NUMBER THEORY Mthemtics SKE, Strnd B UNIT B Indices nd Fctors: Tet STRAND B: NUMBER THEORY B Indices nd Fctors Tet Contents Section B. Squres, Cubes, Squre Roots nd Cube Roots B. Inde Nottion B. Fctors B. Prime Fctors,

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

Consequently, the temperature must be the same at each point in the cross section at x. Let:

Consequently, the temperature must be the same at each point in the cross section at x. Let: HW 2 Comments: L1-3. Derive the het eqution for n inhomogeneous rod where the therml coefficients used in the derivtion of the het eqution for homogeneous rod now become functions of position x in the

More information

Is there an easy way to find examples of such triples? Why yes! Just look at an ordinary multiplication table to find them!

Is there an easy way to find examples of such triples? Why yes! Just look at an ordinary multiplication table to find them! PUSHING PYTHAGORAS 009 Jmes Tnton A triple of integers ( bc,, ) is clled Pythgoren triple if exmple, some clssic triples re ( 3,4,5 ), ( 5,1,13 ), ( ) fond of ( 0,1,9 ) nd ( 119,10,169 ). + b = c. For

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10 University of Wshington Deprtment of Chemistry Chemistry 45 Winter Qurter Homework Assignment 4; Due t 5p.m. on // We lerned tht the Hmiltonin for the quntized hrmonic oscilltor is ˆ d κ H. You cn obtin

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

Chapter 6 Notes, Larson/Hostetler 3e

Chapter 6 Notes, Larson/Hostetler 3e Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn

More information

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences

UNIVERSITY OF OSLO. Faculty of Mathematics and Natural Sciences UNIVERSITY OF OSLO Fculty of Mthemtics nd Nturl Sciences Midterm exm in MENA3100 Dy of exm: 19 th Mrch 2018 Exm hours: 14:30 17:30 This exmintion pper consists of 4 pges including 1 ppendix pge. Permitted

More information

Notes on length and conformal metrics

Notes on length and conformal metrics Notes on length nd conforml metrics We recll how to mesure the Eucliden distnce of n rc in the plne. Let α : [, b] R 2 be smooth (C ) rc. Tht is α(t) (x(t), y(t)) where x(t) nd y(t) re smooth rel vlued

More information

and that at t = 0 the object is at position 5. Find the position of the object at t = 2.

and that at t = 0 the object is at position 5. Find the position of the object at t = 2. 7.2 The Fundmentl Theorem of Clculus 49 re mny, mny problems tht pper much different on the surfce but tht turn out to be the sme s these problems, in the sense tht when we try to pproimte solutions we

More information

IV. CONDENSED MATTER PHYSICS

IV. CONDENSED MATTER PHYSICS IV. CONDENSED MATTER PHYSICS UNIT I CRYSTAL PHYSICS Lecture - II Dr. T. J. Shinde Deprtment of Physics Smt. K. R. P. Kny Mhvidyly, Islmpur Simple Crystl Structures Simple cubic (SC) Fce centered cubic

More information

Math 113 Exam 1-Review

Math 113 Exam 1-Review Mth 113 Exm 1-Review September 26, 2016 Exm 1 covers 6.1-7.3 in the textbook. It is dvisble to lso review the mteril from 5.3 nd 5.5 s this will be helpful in solving some of the problems. 6.1 Are Between

More information

What is thin film/layer?

What is thin film/layer? High-esolution XD Wht is thin film/lyer? Mteril so thin tht its chrcteristics re dominted primrily by two dimensionl effects nd re mostly different thn its bulk properties Source: semiconductorglossry.com

More information

Section 14.3 Arc Length and Curvature

Section 14.3 Arc Length and Curvature Section 4.3 Arc Length nd Curvture Clculus on Curves in Spce In this section, we ly the foundtions for describing the movement of n object in spce.. Vector Function Bsics In Clc, formul for rc length in

More information

8 Laplace s Method and Local Limit Theorems

8 Laplace s Method and Local Limit Theorems 8 Lplce s Method nd Locl Limit Theorems 8. Fourier Anlysis in Higher DImensions Most of the theorems of Fourier nlysis tht we hve proved hve nturl generliztions to higher dimensions, nd these cn be proved

More information

221A Lecture Notes WKB Method

221A Lecture Notes WKB Method A Lecture Notes WKB Method Hmilton Jcobi Eqution We strt from the Schrödinger eqution for single prticle in potentil i h t ψ x, t = [ ] h m + V x ψ x, t. We cn rewrite this eqution by using ψ x, t = e

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

4 The dynamical FRW universe

4 The dynamical FRW universe 4 The dynmicl FRW universe 4.1 The Einstein equtions Einstein s equtions G µν = T µν (7) relte the expnsion rte (t) to energy distribution in the universe. On the left hnd side is the Einstein tensor which

More information

DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS

DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS 3 DEFINITION OF ASSOCIATIVE OR DIRECT PRODUCT AND ROTATION OF VECTORS This chpter summrizes few properties of Cli ord Algebr nd describe its usefulness in e ecting vector rottions. 3.1 De nition of Associtive

More information

Chapter 0. What is the Lebesgue integral about?

Chapter 0. What is the Lebesgue integral about? Chpter 0. Wht is the Lebesgue integrl bout? The pln is to hve tutoril sheet ech week, most often on Fridy, (to be done during the clss) where you will try to get used to the ides introduced in the previous

More information

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.)

MORE FUNCTION GRAPHING; OPTIMIZATION. (Last edited October 28, 2013 at 11:09pm.) MORE FUNCTION GRAPHING; OPTIMIZATION FRI, OCT 25, 203 (Lst edited October 28, 203 t :09pm.) Exercise. Let n be n rbitrry positive integer. Give n exmple of function with exctly n verticl symptotes. Give

More information

1.Bravais Lattices The Bravais lattices Bravais Lattice detail

1.Bravais Lattices The Bravais lattices Bravais Lattice detail 1.Brvis Lttices 12.1. The Brvis lttices 2.2.4 Brvis Lttice detil The Brvis lttice re the distinct lttice types which when repeted cn fill the whole spce. The lttice cn therefore be generted by three unit

More information

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B PHY 249, Fll 216 Exm 1 Solutions nswer 1 is correct for ll problems. 1. Two uniformly chrged spheres, nd B, re plced t lrge distnce from ech other, with their centers on the x xis. The chrge on sphere

More information

Surface Integrals of Vector Fields

Surface Integrals of Vector Fields Mth 32B iscussion ession Week 7 Notes Februry 21 nd 23, 2017 In lst week s notes we introduced surfce integrls, integrting sclr-vlued functions over prmetrized surfces. As with our previous integrls, we

More information

Applied Physics Introduction to Vibrations and Waves (with a focus on elastic waves) Course Outline

Applied Physics Introduction to Vibrations and Waves (with a focus on elastic waves) Course Outline Applied Physics Introduction to Vibrtions nd Wves (with focus on elstic wves) Course Outline Simple Hrmonic Motion && + ω 0 ω k /m k elstic property of the oscilltor Elstic properties of terils Stretching,

More information

What is solid state physics?

What is solid state physics? Wht is solid stte physics? Explins the properties of solid mterils. Explins the properties of collection of tomic nuclei nd electrons intercting with electrosttic forces. Formultes fundmentl lws tht govern

More information

Chapter 5. , r = r 1 r 2 (1) µ = m 1 m 2. r, r 2 = R µ m 2. R(m 1 + m 2 ) + m 2 r = r 1. m 2. r = r 1. R + µ m 1

Chapter 5. , r = r 1 r 2 (1) µ = m 1 m 2. r, r 2 = R µ m 2. R(m 1 + m 2 ) + m 2 r = r 1. m 2. r = r 1. R + µ m 1 Tor Kjellsson Stockholm University Chpter 5 5. Strting with the following informtion: R = m r + m r m + m, r = r r we wnt to derive: µ = m m m + m r = R + µ m r, r = R µ m r 3 = µ m R + r, = µ m R r. 4

More information

Candidates must show on each answer book the type of calculator used.

Candidates must show on each answer book the type of calculator used. UNIVERSITY OF EAST ANGLIA School of Mthemtics My/June UG Exmintion 2007 2008 ELECTRICITY AND MAGNETISM Time llowed: 3 hours Attempt FIVE questions. Cndidtes must show on ech nswer book the type of clcultor

More information

Chapter 3: The Structure of Crystalline Solids (2)

Chapter 3: The Structure of Crystalline Solids (2) Chpter 3: The Structure of Crstlline Solids (2) Clss Eercise Drw the unit cell structure for simple cubic (SC), bodcentered cubic (BCC), nd fce-centered cubic (FCC) lttices Give coordintion number (CN)

More information

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15

Physics 202H - Introductory Quantum Physics I Homework #08 - Solutions Fall 2004 Due 5:01 PM, Monday 2004/11/15 Physics H - Introductory Quntum Physics I Homework #8 - Solutions Fll 4 Due 5:1 PM, Mondy 4/11/15 [55 points totl] Journl questions. Briefly shre your thoughts on the following questions: Of the mteril

More information

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution

Multiple Integrals. Review of Single Integrals. Planar Area. Volume of Solid of Revolution Multiple Integrls eview of Single Integrls eding Trim 7.1 eview Appliction of Integrls: Are 7. eview Appliction of Integrls: Volumes 7.3 eview Appliction of Integrls: Lengths of Curves Assignment web pge

More information

Physics 2135 Exam 3 April 21, 2015

Physics 2135 Exam 3 April 21, 2015 Em Totl hysics 2135 Em 3 April 21, 2015 Key rinted Nme: 200 / 200 N/A Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the best or most nerly correct nswer. 1. C Two long stright

More information

Improper Integrals, and Differential Equations

Improper Integrals, and Differential Equations Improper Integrls, nd Differentil Equtions October 22, 204 5.3 Improper Integrls Previously, we discussed how integrls correspond to res. More specificlly, we sid tht for function f(x), the region creted

More information

Quantum Analogs Chapter 4 Student Manual

Quantum Analogs Chapter 4 Student Manual Quntum Anlogs Chpter 4 Student Mnul Modeling One Dimensionl Solid Professor Rene Mtzdorf Universitet Kssel Stud. Mn. Rev 2.0 12/09 4. Modeling one-dimensionl solid There re two different wys to explin

More information

Chapter 8: Methods of Integration

Chapter 8: Methods of Integration Chpter 8: Methods of Integrtion Bsic Integrls 8. Note: We hve the following list of Bsic Integrls p p+ + c, for p sec tn + c p + ln + c sec tn sec + c e e + c tn ln sec + c ln + c sec ln sec + tn + c ln

More information

. Double-angle formulas. Your answer should involve trig functions of θ, and not of 2θ. sin 2 (θ) =

. Double-angle formulas. Your answer should involve trig functions of θ, and not of 2θ. sin 2 (θ) = Review of some needed Trig. Identities for Integrtion. Your nswers should be n ngle in RADIANS. rccos( 1 ) = π rccos( - 1 ) = 2π 2 3 2 3 rcsin( 1 ) = π rcsin( - 1 ) = -π 2 6 2 6 Cn you do similr problems?

More information

December 4, U(x) = U 0 cos 4 πx 8

December 4, U(x) = U 0 cos 4 πx 8 PHZ66: Fll 013 Problem set # 5: Nerly-free-electron nd tight-binding models: Solutions due Wednesdy, 11/13 t the time of the clss Instructor: D L Mslov mslov@physufledu 39-0513 Rm 11 Office hours: TR 3

More information

Week 10: Line Integrals

Week 10: Line Integrals Week 10: Line Integrls Introduction In this finl week we return to prmetrised curves nd consider integrtion long such curves. We lredy sw this in Week 2 when we integrted long curve to find its length.

More information

Graduate Students do all problems. Undergraduate students choose three problems.

Graduate Students do all problems. Undergraduate students choose three problems. OPTI 45/55 Midterm Due: Februr, Grdute Students do ll problems. Undergrdute students choose three problems.. Google Erth is improving the resolution of its globl mps with dt from the SPOT5 stellite. The

More information

set is not closed under matrix [ multiplication, ] and does not form a group.

set is not closed under matrix [ multiplication, ] and does not form a group. Prolem 2.3: Which of the following collections of 2 2 mtrices with rel entries form groups under [ mtrix ] multipliction? i) Those of the form for which c d 2 Answer: The set of such mtrices is not closed

More information

Physics 215 Quantum Mechanics 1 Assignment 2

Physics 215 Quantum Mechanics 1 Assignment 2 Physics 15 Quntum Mechnics 1 Assignment Logn A. Morrison Jnury, 16 Problem 1 Clculte p nd p on the Gussin wve pcket α whose wve function is x α = 1 ikx x 1/4 d 1 Solution Recll tht where ψx = x ψ. Additionlly,

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

Physics 712 Electricity and Magnetism Solutions to Final Exam, Spring 2016

Physics 712 Electricity and Magnetism Solutions to Final Exam, Spring 2016 Physics 7 Electricity nd Mgnetism Solutions to Finl Em, Spring 6 Plese note tht some possibly helpful formuls pper on the second pge The number of points on ech problem nd prt is mrked in squre brckets

More information

CHAPTER 4 MULTIPLE INTEGRALS

CHAPTER 4 MULTIPLE INTEGRALS CHAPTE 4 MULTIPLE INTEGAL The objects of this chpter re five-fold. They re: (1 Discuss when sclr-vlued functions f cn be integrted over closed rectngulr boxes in n ; simply put, f is integrble over iff

More information

DIFFRACTION OF LIGHT

DIFFRACTION OF LIGHT DIFFRACTION OF LIGHT The phenomenon of bending of light round the edges of obstcles or nrrow slits nd hence its encrochment into the region of geometricl shdow is known s diffrction. P Frunhofer versus

More information

Name Solutions to Test 3 November 8, 2017

Name Solutions to Test 3 November 8, 2017 Nme Solutions to Test 3 November 8, 07 This test consists of three prts. Plese note tht in prts II nd III, you cn skip one question of those offered. Some possibly useful formuls cn be found below. Brrier

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

Math 61CM - Solutions to homework 9

Math 61CM - Solutions to homework 9 Mth 61CM - Solutions to homework 9 Cédric De Groote November 30 th, 2018 Problem 1: Recll tht the left limit of function f t point c is defined s follows: lim f(x) = l x c if for ny > 0 there exists δ

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

ES.182A Topic 32 Notes Jeremy Orloff

ES.182A Topic 32 Notes Jeremy Orloff ES.8A Topic 3 Notes Jerem Orloff 3 Polr coordintes nd double integrls 3. Polr Coordintes (, ) = (r cos(θ), r sin(θ)) r θ Stndrd,, r, θ tringle Polr coordintes re just stndrd trigonometric reltions. In

More information

Chapter 6 Techniques of Integration

Chapter 6 Techniques of Integration MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

More information

5.2 Volumes: Disks and Washers

5.2 Volumes: Disks and Washers 4 pplictions of definite integrls 5. Volumes: Disks nd Wshers In the previous section, we computed volumes of solids for which we could determine the re of cross-section or slice. In this section, we restrict

More information

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014 SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 014 Mrk Scheme: Ech prt of Question 1 is worth four mrks which re wrded solely for the correct nswer.

More information

Log1 Contest Round 3 Theta Individual. 4 points each 1 What is the sum of the first 5 Fibonacci numbers if the first two are 1, 1?

Log1 Contest Round 3 Theta Individual. 4 points each 1 What is the sum of the first 5 Fibonacci numbers if the first two are 1, 1? 008 009 Log1 Contest Round Thet Individul Nme: points ech 1 Wht is the sum of the first Fiboncci numbers if the first two re 1, 1? If two crds re drwn from stndrd crd deck, wht is the probbility of drwing

More information

USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year

USA Mathematical Talent Search Round 1 Solutions Year 21 Academic Year 1/1/21. Fill in the circles in the picture t right with the digits 1-8, one digit in ech circle with no digit repeted, so tht no two circles tht re connected by line segment contin consecutive digits.

More information

Abstract inner product spaces

Abstract inner product spaces WEEK 4 Abstrct inner product spces Definition An inner product spce is vector spce V over the rel field R equipped with rule for multiplying vectors, such tht the product of two vectors is sclr, nd the

More information

Problems for HW X. C. Gwinn. November 30, 2009

Problems for HW X. C. Gwinn. November 30, 2009 Problems for HW X C. Gwinn November 30, 2009 These problems will not be grded. 1 HWX Problem 1 Suppose thn n object is composed of liner dielectric mteril, with constnt reltive permittivity ɛ r. The object

More information

This final is a three hour open book, open notes exam. Do all four problems.

This final is a three hour open book, open notes exam. Do all four problems. Physics 55 Fll 27 Finl Exm Solutions This finl is three hour open book, open notes exm. Do ll four problems. [25 pts] 1. A point electric dipole with dipole moment p is locted in vcuum pointing wy from

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

B M S INSTITUTE OF TECHNOLOGY [Approved by AICTE NEW DELHI, Affiliated to VTU BELGAUM] DEPARTMENT OF PHYSICS. Crystal Structure

B M S INSTITUTE OF TECHNOLOGY [Approved by AICTE NEW DELHI, Affiliated to VTU BELGAUM] DEPARTMENT OF PHYSICS. Crystal Structure B M S INSTITUTE OF TECHNOLOGY [Approved by AICTE NEW DELHI, Affilited to VTU BELGAUM] DEPARTMENT OF PHYSICS COURSE MATERIAL SUBJECT: - Engineering Physics MODULE -IV SUBJECT CODE: - 14 PHY 1 / Crystl Structure

More information

df dt f () b f () a dt

df dt f () b f () a dt Vector lculus 16.7 tokes Theorem Nme: toke's Theorem is higher dimensionl nlogue to Green's Theorem nd the Fundmentl Theorem of clculus. Why, you sk? Well, let us revisit these theorems. Fundmentl Theorem

More information

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that

( dg. ) 2 dt. + dt. dt j + dh. + dt. r(t) dt. Comparing this equation with the one listed above for the length of see that Arc Length of Curves in Three Dimensionl Spce If the vector function r(t) f(t) i + g(t) j + h(t) k trces out the curve C s t vries, we cn mesure distnces long C using formul nerly identicl to one tht we

More information

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!!

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!! Nme: Algebr II Honors Pre-Chpter Homework Before we cn begin Ch on Rdicls, we need to be fmilir with perfect squres, cubes, etc Try nd do s mny s you cn without clcultor!!! n The nth root of n n Be ble

More information

INTRODUCTION TO LINEAR ALGEBRA

INTRODUCTION TO LINEAR ALGEBRA ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR AGEBRA Mtrices nd Vectors Prof. Dr. Bülent E. Pltin Spring Sections & / ME Applied Mthemtics for Mechnicl Engineers INTRODUCTION TO INEAR

More information