This final is a three hour open book, open notes exam. Do all four problems.

Size: px
Start display at page:

Download "This final is a three hour open book, open notes exam. Do all four problems."

Transcription

1 Physics 55 Fll 27 Finl Exm Solutions This finl is three hour open book, open notes exm. Do ll four problems. [25 pts] 1. A point electric dipole with dipole moment p is locted in vcuum pointing wy from nd distnce d wy from the flt surfce of semi-infinite dielectric with permittivity ɛ. [15] ) Find the electric potentil Φ everywhere. This problem cn be solved by the method of imges for dielectric. Recll tht for point chrge q locted distnce d from the flt surfce of semi-infinite dielectric ε ε P R 2 R 1 d q q ( q ) the electric potentil is given by where Φ(z > ) = 1 4πɛ nd where the position vectors re Φ(z < ) = 1 q 4πɛ R 1 ( ) q + q R 1 R 2 ( ) ɛ q = q, q 2ɛ = q R 1 = (x, y, z d), R2 = (x, y, z + d) Here we hve ssume tht the physicl chrge q is locted t (,, d) nd the observer is t point P given by (x, y, z). By substituting in q nd q, the potentil is more explicitly written s Φ(z > ) = q ( 1 ɛ ɛ ) 1 4πɛ R 1 R 2 Φ(z < ) = q ( ) (1) 2ɛ 1 4πɛ R 1 z

2 Since point electric dipole my be obtined by tking two chrges q nd +q seprted by distnce l in the limit l, the dipole problem my be solved by liner superposition ε ε P R 2 R 1 q q d q q ( q q ) z Since the electric potentil for dipole in free spce is given by Φ = 1 p r 4πɛ r 3 the electric dipole generliztion of the point chrge solution (1) is then ( ) Φ(z > ) = p R1 + ɛ ɛ R2 4πɛ Φ(z < ) = p 4πɛ ( R 3 1 2ɛ R1 R 3 1 R 3 2 ) (2) where p = pẑ is pointing wy from the dielectric. Note tht, ccording to the figure, the imge dipole points in the opposite direction s the physicl one, so long s we define the direction to be from q to +q. This is wht ccounts for the sign difference between the two terms in the first lines of (1) nd (2). In relity, however, since the imge chrge q hs the opposite sign s q (ssuming ɛ > ɛ ), the imge dipole ctully points in the sme direction s the physicl one. This physicl result is consistent with the plus sign in the first line of (2), which shows tht both dipoles point in the sme direction. [1] b) Wht is the electric potentil if the dipole is insted oriented prllel to the surfce of the dielectric? Note tht the orienttion of the imge dipole is different for the prllel configurtion ε ε P R 2 q q ( q ) R 1 q q ( q ) d z

3 As result, the potentil is given insted by ( Φ(z > ) = p R1 4πɛ Φ(z < ) = p 4πɛ ( R 3 1 2ɛ R1 R 3 1 ɛ ɛ R2 where p = pˆx is pointing prllel to the surfce of the dielectric. Note tht the imge solution cn be generlized for dipole t n rbitrry ngle reltive to the surfce of the dielectric. [25 pts] 2. A wire coil is wound round the surfce of solid sphere of rdius nd reltive permebility µ r. The coil is designed in such wy tht it crries surfce current density K = ˆφ(I/) sin θ. ) R 3 2 ) Find the mgnetic induction B everywhere. Despite the presence of surfce current, this problem my be solved using mgnetic sclr potentil pproch. The trick is to relize tht the two seprte regions r < nd r > re both current-free regions of spce. This llows us to introduce inside (r < ) nd outside (r > ) potentils H in = Φ in M, H out = Φ out M where Φ in M nd Φout M solve Lplce s eqution, 2 Φ M =. Using sphericl coordintes, nd tking zimuthl symmetry into ccount, we my write Φ in M = l Φ out M = l A l r l P l (cos θ) B l r l+1 P l(cos θ) (3) The effect of the surfce current K = ˆφ(I/) sin θ shows up in the mtching conditions t r = ˆr ( B out B in ) r= =, ˆr ( H out H in ) r= = K In explicit components, these conditions re B in r = Br out, Hθ in Hθ out = I sin θ (t r = )

4 Given (3), the pproprite components of the mgnetic induction nd mgnetic field re Br in = µ la l r l 1 P l (cos θ) l nd B out r H in θ = µ (l + 1) B l r l+2 P l(cos θ) = l l A l r l 1 P l (cos θ) sin θ H out θ = l B l r l+2 P l (cos θ) sin θ By orthogonlity, the mtching conditions must independently hold for ech vlue of l. Noting tht I sin θ = I P 1(cos θ) sin θ we see tht the mtching conditions re (l + 1)B l + µ r la l 2l+1 = B l A l 2l+1 = I l+1 δ l,1 These equtions re homogeneous, except for l = 1. As result, only the l = 1 mode contributes, with solution A 1 = I The mgnetic sclr potentil is then µ r /2, B 1 = I 2 µ r /2 1 + µ r /2 Φ in M = I µ r /2 r cos θ = I µ r /2 z, Φ out M = I 2 µ r /2 1 + µ r /2 This gives rise to mgnetic induction B in = µ I 1 r 2 cos θ = I2 µ r /2 1 + µ r / µ r /2ẑ B out = µ I 2 µ r /2 1 + µ r /2 3(z/r)ˆr ẑ r 3 The interior field is uniform, while the exterior field is tht of mgnetic dipole. z r 3

5 [25 pts] 3. A semi-infinite coxil cble consists of n inner conductor of rdius surrounded by n outer conductor of rdius b. A dielectric with permittivity ɛ nd permebility µ fills the volume between the conductors. V [5] ) If constnt (sttic) potentil difference V is pplied between the conductors, wht is the electric field inside the cble? Ignore fringe effects. It is nturl to use cylindricl coordintes for this problem. For the electrosttics problem, n elementry ppliction of Guss lw gives n electric field E = 1 λ 2πɛ ρ ˆρ where λ is the chrge per unit length on the inner conductor. Since the potentil difference between conductors is V, we hve b b V = E d λ dρ l = 2πɛ ρ = λ ( ) b 2πɛ log As result, the electric field is given in terms of V by V E = ρ log(b/) ˆρ [15] b) Show tht, if sinusoidl potentil difference V (t) = V e iωt is pplied t the end of the cble, then Mxwell s equtions dmit trveling wve solution B = ˆφB(ρ)e i(kz ωt), E = ˆρE(ρ)e i(kz ωt) where z is the direction long the xis of the cble. Find B(ρ) nd E(ρ) in terms of V. The sinusoidl potentil difference is of hrmonic form. Thus we my exmine the hrmonic Mxwell s equtions. Firstly, Guss lw for mgnetism, B =, is trivilly stisfied for the bove solution. For the source-free Guss lw, E =, we hve 1 ρ ( ) C ρe(ρ) = E = ρ ρ for some constnt C. This llows us to write E = ˆρ C ρ ei(kz ωt) Frdy s lw, E iω B =, then gives ik C ρ iωb = B = C ρ k ω

6 so tht B = ˆφ C ρ k ω ei(kz ωt) The remining eqution to verify is the Ampère-Mxwell eqution, B + iµɛω E =, which gives i C ρ k 2 ω + ic ρ µɛω = k = µɛ ω As result, Mxwell s equtions re solved provided we impose the stndrd dispersion reltion k = µɛ ω. Note tht, if we tke z = to be the end of the cble, we my solve for the constnt C by imposing b b V e iωt = E z= d C l = ρ e iωt dρ = Ce iωt log This gives C = V / log(b/), so tht ( ) b V E(ρ) = ρ log(b/), µɛ B(ρ) = V ρ log(b/) Note tht trveling wves in the z direction (s well s superpositions of wves) re lso possible. [5] c) Wht is the impednce Z (given by the complex Ohm s lw, V = IZ) of the cble? The impednce is given by Z = V/I. The potentil t the end of the cble (z = ) is lredy given, so ll we need is the current. The current my be obtined from Ampère s lw in integrl form B d l = µi where we integrte long circle of rdius < ρ < b locted t z =. This gives I = 1 µɛ V µ ρ log(b/) ɛ (2πρ) = 2π µ V log(b/) The impednce is then Z = 1 µ 2π ɛ log ( ) b which is rel nd independent of frequency. This is feture of coxil trnsmission lines. Note tht the displcement current term is in the ˆρ direction (since this is the direction of the electric field) nd does not contribute to the bove ppliction of Ampère s lw. Alterntively, we my clculte the current using the

7 mtching condition ˆn H S = K (where S denotes the surfce of the conductor) to obtin the surfce current density K nd they by I = (circumference) K. [25 pts] 4. A plne polrized electromgnetic wve of frequency ω in free spce is normlly incident on the flt surfce of n excellent conductor (µ = µ, ɛ = ɛ nd σ ωɛ ) which fills the region z >. Assume the incident wve is given by E = ˆxE i e i(kz ωt) [1] ) Wht is the current density J inside the conductor (in the limit σ ωɛ )? Express your result in terms of the skin depth δ = 2/µ σω. For normlly incident plne wve, we tke the incoming wve to be in medium with index of refrction n nd the trnsmitted wve to be in medium with index of refrction n. Then incident: E = ˆxEi e i(kz ωt) trnsmitted: E = ˆxE i ( 2n n + n ) e i(k z ωt) For this problem, we hve n = 1. For n, we use the excellent conductor pproximtion n = 1 + i σ i σ = 1 + i σ = (1 + i) c ωɛ ωɛ 2 ωɛ δω where δ = 2/µ σω is the skin depth. The trnsmitted wvenumber k is Hence k = ω c n 1 + i δ E 2 = ˆxE i 1 + n ei(k z ωt) 2 ˆxE i n ei(k z ωt) ˆxE i (1 i) δω c ei(z/δ ωt) e z/δ The current density inside the conductor is then J = σe ˆxE i (1 i) δωσ c ei(z/δ ωt) e z/δ = ˆx E i (1 i) 2 µ δ ei(z/δ ωt) e z/δ (4) [5] b) Now ssume tht the conductor is perfect. Solve for the reflected wve in the limit of perfect conductor. (Note tht E vnishes t the surfce of perfect conductor.) If wve E = ˆxE i e i(kz ωt) is normlly incident on perfect conductor, the reflected wve will hve the form E = ˆxE e i( kz ωt). The totl electric field t z = (the surfce of the conductor) is then ˆx(E i + E )e iωt. Since this is in the prllel direction, it must vnish. Hence E = E i. The reflected wve is then E = ˆxE i e i( kz ωt)

8 This is interpreted s 18 phse shift. [1] c) Compute the idelized surfce current density K on the surfce of the perfect conductor, nd show tht it stisfies the reltion K = J dz where J is the current density found in prt. The surfce current density is given by K = ẑ ( H H H ) z= = 1 µ ẑ ( B + B ) z= where we used the fct tht the trnsmitted wve B vnishes in perfect conductor. The incident nd reflected mgnetic inductions re B = µ ɛ ẑ E, B = µ ɛ ( ẑ) E Hence K = ẑ ( ẑ ( E µ E ) ) z= = ( E µ E ) z= Substituting in E nd E gives K = ˆx µ (2E i )e ωt We now compre this with the current density found in prt. From (4) we hve Jdz = ˆx E i (1 i) 2 µ δ e iωt e (1 i)z/δ dz = ˆx E i (1 i) 2 δ µ δ e iωt 1 i = ˆx 2E i e iωt µ So we see tht K = J dz is indeed stisfied.

Candidates must show on each answer book the type of calculator used.

Candidates must show on each answer book the type of calculator used. UNIVERSITY OF EAST ANGLIA School of Mthemtics My/June UG Exmintion 2007 2008 ELECTRICITY AND MAGNETISM Time llowed: 3 hours Attempt FIVE questions. Cndidtes must show on ech nswer book the type of clcultor

More information

Phys 6321 Final Exam - Solutions May 3, 2013

Phys 6321 Final Exam - Solutions May 3, 2013 Phys 6321 Finl Exm - Solutions My 3, 2013 You my NOT use ny book or notes other thn tht supplied with this test. You will hve 3 hours to finish. DO YOUR OWN WORK. Express your nswers clerly nd concisely

More information

Problems for HW X. C. Gwinn. November 30, 2009

Problems for HW X. C. Gwinn. November 30, 2009 Problems for HW X C. Gwinn November 30, 2009 These problems will not be grded. 1 HWX Problem 1 Suppose thn n object is composed of liner dielectric mteril, with constnt reltive permittivity ɛ r. The object

More information

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016

Physics 3323, Fall 2016 Problem Set 7 due Oct 14, 2016 Physics 333, Fll 16 Problem Set 7 due Oct 14, 16 Reding: Griffiths 4.1 through 4.4.1 1. Electric dipole An electric dipole with p = p ẑ is locted t the origin nd is sitting in n otherwise uniform electric

More information

Phys 4321 Final Exam December 14, 2009

Phys 4321 Final Exam December 14, 2009 Phys 4321 Finl Exm December 14, 2009 You my NOT use the text book or notes to complete this exm. You nd my not receive ny id from nyone other tht the instructor. You will hve 3 hours to finish. DO YOUR

More information

Problem 1. Solution: a) The coordinate of a point on the disc is given by r r cos,sin,0. The potential at P is then given by. r z 2 rcos 2 rsin 2

Problem 1. Solution: a) The coordinate of a point on the disc is given by r r cos,sin,0. The potential at P is then given by. r z 2 rcos 2 rsin 2 Prolem Consider disc of chrge density r r nd rdius R tht lies within the xy-plne. The origin of the coordinte systems is locted t the center of the ring. ) Give the potentil t the point P,,z in terms of,r,

More information

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.26 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson 2.26 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: The two-dimensionl region, ρ, φ β, is bounded by conducting surfces t φ =, ρ =, nd φ = β held t zero

More information

Chapter 7 Steady Magnetic Field. september 2016 Microwave Laboratory Sogang University

Chapter 7 Steady Magnetic Field. september 2016 Microwave Laboratory Sogang University Chpter 7 Stedy Mgnetic Field september 2016 Microwve Lbortory Sogng University Teching point Wht is the mgnetic field? Biot-Svrt s lw: Coulomb s lw of Mgnetic field Stedy current: current flow is independent

More information

Homework Assignment 3 Solution Set

Homework Assignment 3 Solution Set Homework Assignment 3 Solution Set PHYCS 44 6 Ferury, 4 Prolem 1 (Griffiths.5(c The potentil due to ny continuous chrge distriution is the sum of the contriutions from ech infinitesiml chrge in the distriution.

More information

Electromagnetism Answers to Problem Set 10 Spring 2006

Electromagnetism Answers to Problem Set 10 Spring 2006 Electromgnetism 76 Answers to Problem Set 1 Spring 6 1. Jckson Prob. 5.15: Shielded Bifilr Circuit: Two wires crrying oppositely directed currents re surrounded by cylindricl shell of inner rdius, outer

More information

Homework Assignment #1 Solutions

Homework Assignment #1 Solutions Physics 56 Winter 8 Textook prolems: h. 8: 8., 8.4 Homework Assignment # Solutions 8. A trnsmission line consisting of two concentric circulr cylinders of metl with conductivity σ nd skin depth δ, s shown,

More information

Homework Assignment 9 Solution Set

Homework Assignment 9 Solution Set Homework Assignment 9 Solution Set PHYCS 44 3 Mrch, 4 Problem (Griffiths 77) The mgnitude of the current in the loop is loop = ε induced = Φ B = A B = π = π µ n (µ n) = π µ nk According to Lense s Lw this

More information

The Velocity Factor of an Insulated Two-Wire Transmission Line

The Velocity Factor of an Insulated Two-Wire Transmission Line The Velocity Fctor of n Insulted Two-Wire Trnsmission Line Problem Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 Mrch 7, 008 Estimte the velocity fctor F = v/c nd the

More information

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4

Theoretische Physik 2: Elektrodynamik (Prof. A.-S. Smith) Home assignment 4 WiSe 1 8.1.1 Prof. Dr. A.-S. Smith Dipl.-Phys. Ellen Fischermeier Dipl.-Phys. Mtthis Sb m Lehrstuhl für Theoretische Physik I Deprtment für Physik Friedrich-Alexnder-Universität Erlngen-Nürnberg Theoretische

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

Reference. Vector Analysis Chapter 2

Reference. Vector Analysis Chapter 2 Reference Vector nlsis Chpter Sttic Electric Fields (3 Weeks) Chpter 3.3 Coulomb s Lw Chpter 3.4 Guss s Lw nd pplictions Chpter 3.5 Electric Potentil Chpter 3.6 Mteril Medi in Sttic Electric Field Chpter

More information

CAPACITORS AND DIELECTRICS

CAPACITORS AND DIELECTRICS Importnt Definitions nd Units Cpcitnce: CAPACITORS AND DIELECTRICS The property of system of electricl conductors nd insultors which enbles it to store electric chrge when potentil difference exists between

More information

P812 Midterm Examination February Solutions

P812 Midterm Examination February Solutions P8 Midterm Exmintion Februry s. A one dimensionl chin of chrges consist of e nd e lterntively plced with neighbouring distnce. Show tht the potentil energy of ech chrge is given by U = ln. 4πε Explin qulittively

More information

Prof. Anchordoqui. Problems set # 4 Physics 169 March 3, 2015

Prof. Anchordoqui. Problems set # 4 Physics 169 March 3, 2015 Prof. Anchordoui Problems set # 4 Physics 169 Mrch 3, 15 1. (i) Eight eul chrges re locted t corners of cube of side s, s shown in Fig. 1. Find electric potentil t one corner, tking zero potentil to be

More information

Physics 202, Lecture 14

Physics 202, Lecture 14 Physics 202, Lecture 14 Tody s Topics Sources of the Mgnetic Field (Ch. 28) Biot-Svrt Lw Ampere s Lw Mgnetism in Mtter Mxwell s Equtions Homework #7: due Tues 3/11 t 11 PM (4th problem optionl) Mgnetic

More information

Waveguide Guide: A and V. Ross L. Spencer

Waveguide Guide: A and V. Ross L. Spencer Wveguide Guide: A nd V Ross L. Spencer I relly think tht wveguide fields re esier to understnd using the potentils A nd V thn they re using the electric nd mgnetic fields. Since Griffiths doesn t do it

More information

Homework Assignment 5 Solution Set

Homework Assignment 5 Solution Set Homework Assignment 5 Solution Set PHYCS 44 3 Februry, 4 Problem Griffiths 3.8 The first imge chrge gurntees potentil of zero on the surfce. The secon imge chrge won t chnge the contribution to the potentil

More information

Conducting Ellipsoid and Circular Disk

Conducting Ellipsoid and Circular Disk 1 Problem Conducting Ellipsoid nd Circulr Disk Kirk T. McDonld Joseph Henry Lbortories, Princeton University, Princeton, NJ 08544 (September 1, 00) Show tht the surfce chrge density σ on conducting ellipsoid,

More information

Physics 2135 Exam 1 February 14, 2017

Physics 2135 Exam 1 February 14, 2017 Exm Totl / 200 Physics 215 Exm 1 Ferury 14, 2017 Printed Nme: Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the est or most nerly correct nswer. 1. Two chrges 1 nd 2 re seprted

More information

ragsdale (zdr82) HW2 ditmire (58335) 1

ragsdale (zdr82) HW2 ditmire (58335) 1 rgsdle (zdr82) HW2 ditmire (58335) This print-out should hve 22 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. 00 0.0 points A chrge of 8. µc

More information

Physics Graduate Prelim exam

Physics Graduate Prelim exam Physics Grdute Prelim exm Fll 2008 Instructions: This exm hs 3 sections: Mechnics, EM nd Quntum. There re 3 problems in ech section You re required to solve 2 from ech section. Show ll work. This exm is

More information

in a uniform magnetic flux density B = Boa z. (a) Show that the electron moves in a circular path. (b) Find the radius r o

in a uniform magnetic flux density B = Boa z. (a) Show that the electron moves in a circular path. (b) Find the radius r o 6. THE TATC MAGNETC FELD 6- LOENTZ FOCE EQUATON Lorent force eqution F = Fe + Fm = q ( E + v B ) Exmple 6- An electron hs n initil velocity vo = vo y in uniform mgnetic flux density B = Bo. () how tht

More information

Physics 202, Lecture 13. Today s Topics

Physics 202, Lecture 13. Today s Topics Physics 202, Lecture 13 Tody s Topics Sources of the Mgnetic Field (Ch. 30) Clculting the B field due to currents Biot-Svrt Lw Emples: ring, stright wire Force between prllel wires Ampere s Lw: infinite

More information

Chapter 6 Electrostatic Boundary Value Problems. Dr. Talal Skaik

Chapter 6 Electrostatic Boundary Value Problems. Dr. Talal Skaik Chpter 6 Electrosttic Boundry lue Problems Dr. Tll Skik 1 1 Introduction In previous chpters, E ws determined by coulombs lw or Guss lw when chrge distribution is known, or potentil is known throughout

More information

Homework Assignment 6 Solution Set

Homework Assignment 6 Solution Set Homework Assignment 6 Solution Set PHYCS 440 Mrch, 004 Prolem (Griffiths 4.6 One wy to find the energy is to find the E nd D fields everywhere nd then integrte the energy density for those fields. We know

More information

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students.

- 5 - TEST 2. This test is on the final sections of this session's syllabus and. should be attempted by all students. - 5 - TEST 2 This test is on the finl sections of this session's syllbus nd should be ttempted by ll students. Anything written here will not be mrked. - 6 - QUESTION 1 [Mrks 22] A thin non-conducting

More information

IMPORTANT. Read these directions carefully:

IMPORTANT. Read these directions carefully: Physics 208: Electricity nd Mgnetism Finl Exm, Secs. 506 510. 7 My. 2004 Instructor: Dr. George R. Welch, 415 Engineering-Physics, 845-7737 Print your nme netly: Lst nme: First nme: Sign your nme: Plese

More information

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes

200 points 5 Problems on 4 Pages and 20 Multiple Choice/Short Answer Questions on 5 pages 1 hour, 48 minutes PHYSICS 132 Smple Finl 200 points 5 Problems on 4 Pges nd 20 Multiple Choice/Short Answer Questions on 5 pges 1 hour, 48 minutes Student Nme: Recittion Instructor (circle one): nme1 nme2 nme3 nme4 Write

More information

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell

Jackson 2.7 Homework Problem Solution Dr. Christopher S. Baird University of Massachusetts Lowell Jckson.7 Homework Problem Solution Dr. Christopher S. Bird University of Msschusetts Lowell PROBLEM: Consider potentil problem in the hlf-spce defined by, with Dirichlet boundry conditions on the plne

More information

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. of ECE. Notes 31 Inductance

ECE 3318 Applied Electricity and Magnetism. Spring Prof. David R. Jackson Dept. of ECE. Notes 31 Inductance ECE 3318 Applied Electricity nd Mgnetism Spring 018 Prof. Dvid R. Jckson Dept. of ECE Notes 31 nductnce 1 nductnce ˆn S Single turn coil The current produces flux though the loop. Definition of inductnce:

More information

Phys. 506 Electricity and Magnetism Winter 2004 Prof. G. Raithel Problem Set 1 Total 30 Points. 1. Jackson Points

Phys. 506 Electricity and Magnetism Winter 2004 Prof. G. Raithel Problem Set 1 Total 30 Points. 1. Jackson Points Phys. 56 Electricity nd Mgnetism Winter 4 Prof. G. Rithel Prolem Set Totl 3 Points. Jckson 8. Points : The electric field is the sme s in the -dimensionl electrosttic prolem of two concentric cylinders,

More information

potentials A z, F z TE z Modes We use the e j z z =0 we can simply say that the x dependence of E y (1)

potentials A z, F z TE z Modes We use the e j z z =0 we can simply say that the x dependence of E y (1) 3e. Introduction Lecture 3e Rectngulr wveguide So fr in rectngulr coordintes we hve delt with plne wves propgting in simple nd inhomogeneous medi. The power density of plne wve extends over ll spce. Therefore

More information

Problem Set 3 Solutions

Problem Set 3 Solutions Msschusetts Institute of Technology Deprtment of Physics Physics 8.07 Fll 2005 Problem Set 3 Solutions Problem 1: Cylindricl Cpcitor Griffiths Problems 2.39: Let the totl chrge per unit length on the inner

More information

Summary: Method of Separation of Variables

Summary: Method of Separation of Variables Physics 246 Electricity nd Mgnetism I, Fll 26, Lecture 22 1 Summry: Method of Seprtion of Vribles 1. Seprtion of Vribles in Crtesin Coordintes 2. Fourier Series Suggested Reding: Griffiths: Chpter 3, Section

More information

Phys. 506 Electricity and Magnetism Winter 2004 Prof. G. Raithel Problem Set 2 Total 40 Points. 1. Problem Points

Phys. 506 Electricity and Magnetism Winter 2004 Prof. G. Raithel Problem Set 2 Total 40 Points. 1. Problem Points Phys. 56 Electricity nd Mgnetism Winter 4 Prof. G. ithel Problem Set Totl 4 Points 1. Problem 8.6 1 Points : TM mnp : ω mnp = 1 µɛ x mn + p π y with y = L where m, p =, 1,.. nd n = 1,,.. nd x mn is the

More information

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions

Physics 116C Solution of inhomogeneous ordinary differential equations using Green s functions Physics 6C Solution of inhomogeneous ordinry differentil equtions using Green s functions Peter Young November 5, 29 Homogeneous Equtions We hve studied, especilly in long HW problem, second order liner

More information

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B

Exam 1 Solutions (1) C, D, A, B (2) C, A, D, B (3) C, B, D, A (4) A, C, D, B (5) D, C, A, B PHY 249, Fll 216 Exm 1 Solutions nswer 1 is correct for ll problems. 1. Two uniformly chrged spheres, nd B, re plced t lrge distnce from ech other, with their centers on the x xis. The chrge on sphere

More information

Physics Jonathan Dowling. Lecture 9 FIRST MIDTERM REVIEW

Physics Jonathan Dowling. Lecture 9 FIRST MIDTERM REVIEW Physics 10 Jonthn Dowling Physics 10 ecture 9 FIRST MIDTERM REVIEW A few concepts: electric force, field nd potentil Electric force: Wht is the force on chrge produced by other chrges? Wht is the force

More information

Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS & Autumn Semester ASTRONOMY

Data Provided: A formula sheet and table of physical constants is attached to this paper. DEPARTMENT OF PHYSICS & Autumn Semester ASTRONOMY PHY221 PHY472 Dt Provided: Formul sheet nd physicl constnts Dt Provided: A formul sheet nd tble of physicl constnts is ttched to this pper. DEPARTMENT OF PHYSICS & Autumn Semester 2009-2010 ASTRONOMY DEPARTMENT

More information

Lecture Outline. Dispersion Relation Electromagnetic Wave Polarization 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3c

Lecture Outline. Dispersion Relation Electromagnetic Wave Polarization 8/7/2018. EE 4347 Applied Electromagnetics. Topic 3c Course Instructor Dr. Rymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mil: rcrumpf@utep.edu EE 4347 Applied Electromgnetics Topic 3c Wve Dispersion & Polriztion Wve Dispersion These notes & Polriztion

More information

Lecture 1: Electrostatic Fields

Lecture 1: Electrostatic Fields Lecture 1: Electrosttic Fields Instructor: Dr. Vhid Nyyeri Contct: nyyeri@iust.c.ir Clss web site: http://webpges.iust.c. ir/nyyeri/courses/bee 1.1. Coulomb s Lw Something known from the ncient time (here

More information

Physics 712 Electricity and Magnetism Solutions to Final Exam, Spring 2016

Physics 712 Electricity and Magnetism Solutions to Final Exam, Spring 2016 Physics 7 Electricity nd Mgnetism Solutions to Finl Em, Spring 6 Plese note tht some possibly helpful formuls pper on the second pge The number of points on ech problem nd prt is mrked in squre brckets

More information

Energy creation in a moving solenoid? Abstract

Energy creation in a moving solenoid? Abstract Energy cretion in moving solenoid? Nelson R. F. Brg nd Rnieri V. Nery Instituto de Físic, Universidde Federl do Rio de Jneiro, Cix Postl 68528, RJ 21941-972 Brzil Abstrct The electromgnetic energy U em

More information

Summary of equations chapters 7. To make current flow you have to push on the charges. For most materials:

Summary of equations chapters 7. To make current flow you have to push on the charges. For most materials: Summry of equtions chpters 7. To mke current flow you hve to push on the chrges. For most mterils: J E E [] The resistivity is prmeter tht vries more thn 4 orders of mgnitude between silver (.6E-8 Ohm.m)

More information

Partial Differential Equations

Partial Differential Equations Prtil Differentil Equtions Notes by Robert Piché, Tmpere University of Technology reen s Functions. reen s Function for One-Dimensionl Eqution The reen s function provides complete solution to boundry

More information

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011

Physics 9 Fall 2011 Homework 2 - Solutions Friday September 2, 2011 Physics 9 Fll 0 Homework - s Fridy September, 0 Mke sure your nme is on your homework, nd plese box your finl nswer. Becuse we will be giving prtil credit, be sure to ttempt ll the problems, even if you

More information

#6A&B Magnetic Field Mapping

#6A&B Magnetic Field Mapping #6A& Mgnetic Field Mpping Gol y performing this lb experiment, you will: 1. use mgnetic field mesurement technique bsed on Frdy s Lw (see the previous experiment),. study the mgnetic fields generted by

More information

Physics 1402: Lecture 7 Today s Agenda

Physics 1402: Lecture 7 Today s Agenda 1 Physics 1402: Lecture 7 Tody s gend nnouncements: Lectures posted on: www.phys.uconn.edu/~rcote/ HW ssignments, solutions etc. Homework #2: On Msterphysics tody: due Fridy Go to msteringphysics.com Ls:

More information

2.57/2.570 Midterm Exam No. 1 March 31, :00 am -12:30 pm

2.57/2.570 Midterm Exam No. 1 March 31, :00 am -12:30 pm 2.57/2.570 Midterm Exm No. 1 Mrch 31, 2010 11:00 m -12:30 pm Instructions: (1) 2.57 students: try ll problems (2) 2.570 students: Problem 1 plus one of two long problems. You cn lso do both long problems,

More information

Reading from Young & Freedman: For this topic, read the introduction to chapter 24 and sections 24.1 to 24.5.

Reading from Young & Freedman: For this topic, read the introduction to chapter 24 and sections 24.1 to 24.5. PHY1 Electricity Topic 5 (Lectures 7 & 8) pcitors nd Dielectrics In this topic, we will cover: 1) pcitors nd pcitnce ) omintions of pcitors Series nd Prllel 3) The energy stored in cpcitor 4) Dielectrics

More information

) 4n+2 sin[(4n + 2)φ] n=0. a n ρ n sin(nφ + α n ) + b n ρ n sin(nφ + β n ) n=1. n=1. [A k ρ k cos(kφ) + B k ρ k sin(kφ)] (1) 2 + k=1

) 4n+2 sin[(4n + 2)φ] n=0. a n ρ n sin(nφ + α n ) + b n ρ n sin(nφ + β n ) n=1. n=1. [A k ρ k cos(kφ) + B k ρ k sin(kφ)] (1) 2 + k=1 Physics 505 Fll 2007 Homework Assignment #3 Solutions Textbook problems: Ch. 2: 2.4, 2.5, 2.22, 2.23 2.4 A vrint of the preceeding two-dimensionl problem is long hollow conducting cylinder of rdius b tht

More information

3 Mathematics of the Poisson Equation

3 Mathematics of the Poisson Equation 3 Mthemtics of the Poisson Eqution 3. Green functions nd the Poisson eqution () The Dirichlet Green function stisfies the Poisson eqution with delt-function chrge 2 G D (r, r o ) = δ 3 (r r o ) (3.) nd

More information

MATH 253 WORKSHEET 24 MORE INTEGRATION IN POLAR COORDINATES. r dr = = 4 = Here we used: (1) The half-angle formula cos 2 θ = 1 2

MATH 253 WORKSHEET 24 MORE INTEGRATION IN POLAR COORDINATES. r dr = = 4 = Here we used: (1) The half-angle formula cos 2 θ = 1 2 MATH 53 WORKSHEET MORE INTEGRATION IN POLAR COORDINATES ) Find the volume of the solid lying bove the xy-plne, below the prboloid x + y nd inside the cylinder x ) + y. ) We found lst time the set of points

More information

Hung problem # 3 April 10, 2011 () [4 pts.] The electric field points rdilly inwrd [1 pt.]. Since the chrge distribution is cylindriclly symmetric, we pick cylinder of rdius r for our Gussin surfce S.

More information

Physics 2135 Exam 3 April 21, 2015

Physics 2135 Exam 3 April 21, 2015 Em Totl hysics 2135 Em 3 April 21, 2015 Key rinted Nme: 200 / 200 N/A Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the best or most nerly correct nswer. 1. C Two long stright

More information

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10

University of Washington Department of Chemistry Chemistry 453 Winter Quarter 2010 Homework Assignment 4; Due at 5p.m. on 2/01/10 University of Wshington Deprtment of Chemistry Chemistry 45 Winter Qurter Homework Assignment 4; Due t 5p.m. on // We lerned tht the Hmiltonin for the quntized hrmonic oscilltor is ˆ d κ H. You cn obtin

More information

(See Notes on Spontaneous Emission)

(See Notes on Spontaneous Emission) ECE 240 for Cvity from ECE 240 (See Notes on ) Quntum Rdition in ECE 240 Lsers - Fll 2017 Lecture 11 1 Free Spce ECE 240 for Cvity from Quntum Rdition in The electromgnetic mode density in free spce is

More information

, the action per unit length. We use g = 1 and will use the function. gψd 2 x = A 36. Ψ 2 d 2 x = A2 45

, the action per unit length. We use g = 1 and will use the function. gψd 2 x = A 36. Ψ 2 d 2 x = A2 45 Gbriel Brello - Clssicl Electrodynmics.. For this problem, we compute A L z, the ction per unit length. We use g = nd will use the function Ψx, y = Ax x y y s the form of our pproximte solution. First

More information

Problem Solving 7: Faraday s Law Solution

Problem Solving 7: Faraday s Law Solution MASSACHUSETTS NSTTUTE OF TECHNOLOGY Deprtment of Physics: 8.02 Prolem Solving 7: Frdy s Lw Solution Ojectives 1. To explore prticulr sitution tht cn led to chnging mgnetic flux through the open surfce

More information

Version 001 Exam 1 shih (57480) 1

Version 001 Exam 1 shih (57480) 1 Version 001 Exm 1 shih 57480) 1 This print-out should hve 6 questions. Multiple-choice questions my continue on the next column or pge find ll choices before nswering. Holt SF 17Rev 1 001 prt 1 of ) 10.0

More information

APPLICATIONS OF THE DEFINITE INTEGRAL

APPLICATIONS OF THE DEFINITE INTEGRAL APPLICATIONS OF THE DEFINITE INTEGRAL. Volume: Slicing, disks nd wshers.. Volumes by Slicing. Suppose solid object hs boundries extending from x =, to x = b, nd tht its cross-section in plne pssing through

More information

Magnetic forces on a moving charge. EE Lecture 26. Lorentz Force Law and forces on currents. Laws of magnetostatics

Magnetic forces on a moving charge. EE Lecture 26. Lorentz Force Law and forces on currents. Laws of magnetostatics Mgnetic forces on moving chrge o fr we ve studied electric forces between chrges t rest, nd the currents tht cn result in conducting medium 1. Mgnetic forces on chrge 2. Lws of mgnetosttics 3. Mgnetic

More information

Density of Energy Stored in the Electric Field

Density of Energy Stored in the Electric Field Density of Energy Stored in the Electric Field Deprtment of Physics, Cornell University c Tomás A. Aris October 14, 01 Figure 1: Digrm of Crtesin vortices from René Descrtes Principi philosophie, published

More information

Today in Physics 122: work, energy and potential in electrostatics

Today in Physics 122: work, energy and potential in electrostatics Tody in Physics 1: work, energy nd potentil in electrosttics Leftovers Perfect conductors Fields from chrges distriuted on perfect conductors Guss s lw for grvity Work nd energy Electrosttic potentil energy,

More information

2. THE HEAT EQUATION (Joseph FOURIER ( ) in 1807; Théorie analytique de la chaleur, 1822).

2. THE HEAT EQUATION (Joseph FOURIER ( ) in 1807; Théorie analytique de la chaleur, 1822). mpc2w4.tex Week 4. 2.11.2011 2. THE HEAT EQUATION (Joseph FOURIER (1768-1830) in 1807; Théorie nlytique de l chleur, 1822). One dimension. Consider uniform br (of some mteril, sy metl, tht conducts het),

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #1 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Deprtment 8.044 Sttisticl Physics I Spring Term 03 Problem : Doping Semiconductor Solutions to Problem Set # ) Mentlly integrte the function p(x) given in

More information

Data Provided: A formula sheet and table of physical constants is attached to this paper.

Data Provided: A formula sheet and table of physical constants is attached to this paper. PHY15-B PHY47 Dt Provided: Formul sheet nd physicl constnts Dt Provided: A formul sheet nd tble of physicl constnts is ttched to this pper. DEPARTMENT OF PHYSICS & Autumn Semester 009-010 ASTRONOMY DEPARTMENT

More information

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space.

Space Curves. Recall the parametric equations of a curve in xy-plane and compare them with parametric equations of a curve in space. Clculus 3 Li Vs Spce Curves Recll the prmetric equtions of curve in xy-plne nd compre them with prmetric equtions of curve in spce. Prmetric curve in plne x = x(t) y = y(t) Prmetric curve in spce x = x(t)

More information

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams

Chapter 4 Contravariance, Covariance, and Spacetime Diagrams Chpter 4 Contrvrince, Covrince, nd Spcetime Digrms 4. The Components of Vector in Skewed Coordintes We hve seen in Chpter 3; figure 3.9, tht in order to show inertil motion tht is consistent with the Lorentz

More information

Note 16. Stokes theorem Differential Geometry, 2005

Note 16. Stokes theorem Differential Geometry, 2005 Note 16. Stokes theorem ifferentil Geometry, 2005 Stokes theorem is the centrl result in the theory of integrtion on mnifolds. It gives the reltion between exterior differentition (see Note 14) nd integrtion

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

Flow of Energy and Momentum in a Coaxial Cable

Flow of Energy and Momentum in a Coaxial Cable Flow of Energy nd Momentum in Coxil Cle 1 Prolem Kirk T. McDonld Joseph Henry Lortories, Princeton University, Princeton, NJ 08544 (Mrch 31, 007) Discuss the flow of energy nd of momentum in, s well s

More information

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions

Quantum Mechanics Qualifying Exam - August 2016 Notes and Instructions Quntum Mechnics Qulifying Exm - August 016 Notes nd Instructions There re 6 problems. Attempt them ll s prtil credit will be given. Write on only one side of the pper for your solutions. Write your lis

More information

Method of Localisation and Controlled Ejection of Swarms of Likely Charged Particles

Method of Localisation and Controlled Ejection of Swarms of Likely Charged Particles Method of Loclistion nd Controlled Ejection of Swrms of Likely Chrged Prticles I. N. Tukev July 3, 17 Astrct This work considers Coulom forces cting on chrged point prticle locted etween the two coxil,

More information

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions:

Physics 121 Sample Common Exam 1 NOTE: ANSWERS ARE ON PAGE 8. Instructions: Physics 121 Smple Common Exm 1 NOTE: ANSWERS ARE ON PAGE 8 Nme (Print): 4 Digit ID: Section: Instructions: Answer ll questions. uestions 1 through 16 re multiple choice questions worth 5 points ech. You

More information

Sample Exam 5 - Skip Problems 1-3

Sample Exam 5 - Skip Problems 1-3 Smple Exm 5 - Skip Problems 1-3 Physics 121 Common Exm 2: Fll 2010 Nme (Print): 4 igit I: Section: Honors Code Pledge: As n NJIT student I, pledge to comply with the provisions of the NJIT Acdemic Honor

More information

Theoretical foundations of Gaussian quadrature

Theoretical foundations of Gaussian quadrature Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

More information

Physics 24 Exam 1 February 18, 2014

Physics 24 Exam 1 February 18, 2014 Exm Totl / 200 Physics 24 Exm 1 Februry 18, 2014 Printed Nme: Rec. Sec. Letter: Five multiple choice questions, 8 points ech. Choose the best or most nerly correct nswer. 1. The totl electric flux pssing

More information

Waveguides Free Space. Modal Excitation. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware

Waveguides Free Space. Modal Excitation. Daniel S. Weile. Department of Electrical and Computer Engineering University of Delaware Modl Excittion Dniel S. Weile Deprtment of Electricl nd Computer Engineering University of Delwre ELEG 648 Modl Excittion in Crtesin Coordintes Outline 1 Aperture Excittion Current Excittion Outline 1

More information

Chapter 5 Waveguides and Resonators

Chapter 5 Waveguides and Resonators 5-1 Chpter 5 Wveguides nd Resontors Dr. Sturt Long 5- Wht is wveguide (or trnsmission line)? Structure tht trnsmits electromgnetic wves in such wy tht the wve intensity is limited to finite cross-sectionl

More information

KINEMATICS OF RIGID BODIES

KINEMATICS OF RIGID BODIES KINEMTICS OF RIGID ODIES Introduction In rigid body kinemtics, e use the reltionships governing the displcement, velocity nd ccelertion, but must lso ccount for the rottionl motion of the body. Description

More information

Electric Potential. Concepts and Principles. An Alternative Approach. A Gravitational Analogy

Electric Potential. Concepts and Principles. An Alternative Approach. A Gravitational Analogy . Electric Potentil Concepts nd Principles An Alterntive Approch The electric field surrounding electric chrges nd the mgnetic field surrounding moving electric chrges cn both be conceptulized s informtion

More information

Chapter 1 VECTOR ALGEBRA

Chapter 1 VECTOR ALGEBRA Chpter 1 VECTOR LGEBR INTRODUCTION: Electromgnetics (EM) m be regrded s the stud of the interctions between electric chrges t rest nd in motion. Electromgnetics is brnch of phsics or electricl engineering

More information

The Wave Equation I. MA 436 Kurt Bryan

The Wave Equation I. MA 436 Kurt Bryan 1 Introduction The Wve Eqution I MA 436 Kurt Bryn Consider string stretching long the x xis, of indeterminte (or even infinite!) length. We wnt to derive n eqution which models the motion of the string

More information

Electricity and Magnetism

Electricity and Magnetism PHY472 Dt Provided: Formul sheet nd physicl constnts Dt Provided: A formul sheet nd tble of physicl constnts is ttched to this pper. DEPARTMENT OF PHYSICS & Autumn Semester 2009-2010 ASTRONOMY DEPARTMENT

More information

Name Solutions to Test 3 November 8, 2017

Name Solutions to Test 3 November 8, 2017 Nme Solutions to Test 3 November 8, 07 This test consists of three prts. Plese note tht in prts II nd III, you cn skip one question of those offered. Some possibly useful formuls cn be found below. Brrier

More information

Electromagnetic Potentials and Topics for Circuits and Systems

Electromagnetic Potentials and Topics for Circuits and Systems C H A P T E R 5 Electromgnetic Potentils nd Topics for Circuits nd Systems In Chpters 2, 3, nd 4, we introduced progressively Mxwell s equtions nd studied uniform plne wves nd ssocited topics. Two quntities

More information

Version 001 HW#6 - Electromagnetism arts (00224) 1

Version 001 HW#6 - Electromagnetism arts (00224) 1 Version 001 HW#6 - Electromgnetism rts (00224) 1 This print-out should hve 11 questions. Multiple-choice questions my continue on the next column or pge find ll choices efore nswering. rightest Light ul

More information

R. I. Badran Solid State Physics

R. I. Badran Solid State Physics I Bdrn Solid Stte Physics Crystl vibrtions nd the clssicl theory: The ssmption will be mde to consider tht the men eqilibrim position of ech ion is t Brvis lttice site The ions oscillte bot this men position

More information

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f

g i fφdx dx = x i i=1 is a Hilbert space. We shall, henceforth, abuse notation and write g i f(x) = f 1. Appliction of functionl nlysis to PEs 1.1. Introduction. In this section we give little introduction to prtil differentil equtions. In prticulr we consider the problem u(x) = f(x) x, u(x) = x (1) where

More information

Notes on length and conformal metrics

Notes on length and conformal metrics Notes on length nd conforml metrics We recll how to mesure the Eucliden distnce of n rc in the plne. Let α : [, b] R 2 be smooth (C ) rc. Tht is α(t) (x(t), y(t)) where x(t) nd y(t) re smooth rel vlued

More information

Partial Derivatives. Limits. For a single variable function f (x), the limit lim

Partial Derivatives. Limits. For a single variable function f (x), the limit lim Limits Prtil Derivtives For single vrible function f (x), the limit lim x f (x) exists only if the right-hnd side limit equls to the left-hnd side limit, i.e., lim f (x) = lim f (x). x x + For two vribles

More information

SECTION PROBLEMS IN POLAR, CYLINDRICAL AND SPHERICAL COORDINATES

SECTION PROBLEMS IN POLAR, CYLINDRICAL AND SPHERICAL COORDINATES CHAPTER 9 SECTION 9. 353 PROBLEMS IN POLAR, CYLINDRICAL AND SPHERICAL COORDINATES 9. Homogeneous Problems in Polr, Cylindricl, nd Sphericl Coordintes In Section 6.3, seprtion of vribles ws used to solve

More information

Mathematics for Physicists and Astronomers

Mathematics for Physicists and Astronomers PHY472 Dt Provided: Formul sheet nd physicl constnts Dt Provided: A formul sheet nd tble of physicl constnts is ttched to this pper. DEPARTMENT OF PHYSICS & Autumn Semester 2009-2010 ASTRONOMY DEPARTMENT

More information

December 4, U(x) = U 0 cos 4 πx 8

December 4, U(x) = U 0 cos 4 πx 8 PHZ66: Fll 013 Problem set # 5: Nerly-free-electron nd tight-binding models: Solutions due Wednesdy, 11/13 t the time of the clss Instructor: D L Mslov mslov@physufledu 39-0513 Rm 11 Office hours: TR 3

More information