Production of Efimov molecules in an optical lattice

Size: px
Start display at page:

Download "Production of Efimov molecules in an optical lattice"

Transcription

1 Production of Efimov molecules in an optical lattice Thorsten Köhler Still at: Clarendon Laboratory, Department of Physics, University of Oxford, Parks Road, Oxford, OX1 3PU, United Kingdom Leaving to: Department of Physics and Astronomy, University College London, Gower Street, London, WC1E 6BT, United Kingdom Santa Barbara 27 p.1

2 Outline Quantum halos Feshbach molecules in cold gases Efimov states Three-body recombination in 87 Rb and 133 Cs gases Excited 133 Cs 3 Efimov states Production of excited 85 Rb 3 Efimov states Conclusions Santa Barbara 27 p.2

3 Quantum Halos The average separation between constituent particles exceeds the distance scale set by the classical motion in the potential well! Potential Energy [a.u He 4πr 2 φ b (r) Radial Probability Density [1/a r [a Classic examples: 4 He 2 and deuteron Review: A.S. Jensen, K. Riisager, D.V. Fedorov, and E. Garrido, RMP 76, 215 (24) Santa Barbara 27 p.3

4 Quantum Halos Universal properties of weakly bound diatomic molecules Hamiltonian: H 2B = 2 m 2 + V (r) van der Waals potential: V (r) C 6 /r 6 r Bound-state energy: E b = 2 /(ma 2 ) Bound-state wave function: φ b (r) = 1 e r/a 2πa r Potential Energy [a.u He 4πr 2 φ b (r) r [a Radial Probability Density [1/a Santa Barbara 27 p.3

5 Quantum Halos Universality: Physical properties are determined by a single length scale, the s-wave scattering length, a! Hamiltonian: H 2B = 2 m 2 + V (r) van der Waals potential: V (r) C 6 /r 6 r Bound-state energy: E b = 2 /(ma 2 ) Bound-state wave function: φ b (r) = 1 e r/a 2πa r Potential Energy [a.u He 4πr 2 φ b (r) r [a Radial Probability Density [1/a Santa Barbara 27 p.3

6 Quantum Halos Characteristic length scales Bond length: r = a/2 Classical turning point: r classical = [a(2l vdw ) 2 1/3 van der Waals length: l vdw = 1 2 (mc 6/ 2 ) 1/4 Characteristic property: Potential Energy [a.u He r classical 4πr 2 φ b (r) r [a Radial Probability Density [1/a a r classical Santa Barbara 27 p.3

7 Quantum Halos Properties of the helium dimer Bond length: r = 5.2 ±.4 nm Classical turning point: r classical = 1.4 nm Characteristic property: a = 1.4 nm r classical Potential Energy [a.u He r classical 4πr 2 φ b (r) Radial Probability Density [1/a r [a R.E. Grisenti, W. Schöllkopf, J.P. Toennies, G.C. Hegerfeldt, TK, and M. Stoll, PRL 85, 2284 (2) Santa Barbara 27 p.3

8 Feshbach molecules in cold gases a(b) [a Rb Scattering length goes to ±. A new vibrational bound state emerges at the collision threshold. E/h [Ghz B [G Theory: E. Tiesinga, B.J. Verhaar, and H.T.C. Stoof, PRA 47, 4114 (1993) Experiment: S. Inouyé et al., Nature 392, 151 (1998) Review: TK, K. Góral, and P.S. Julienne, RMP 78, 1311 (26) Santa Barbara 27 p.4

9 Feshbach molecules in cold gases Near-resonant bound-state energies become universal! B Rb E b (B)/h [MHz h - 2 / ma 2 two channels coupled channels Claussen et al B [G Experiment: N.R. Claussen, S.J.J.M.F. Kokkelmans, S.T. Thompson, E.A. Donley, E. Hodby, and C.E. Wieman, PRA 67, 671(R) (23) Review: TK, K. Góral, and P.S. Julienne, RMP 78, 1311 (26) Santa Barbara 27 p.4

10 Feshbach molecules in cold gases Efimov plot: K = m E b / 2 vs. 1/a -.1 a< a> universal coupled channels Claussen et al. K [1/a a(b) [a 5-5 a bg a= B [G /a [1/a V. Efimov, Phys. Lett. 33B, 563 (197) Santa Barbara 27 p.4

11 Feshbach molecules in cold gases Near-resonant Feshbach molecules are halo states! K [1/a a(b) [a a< a> 5-5 a bg a= B [G universal coupled channels Claussen et al /a [1/a (4π) 1/2 rφ b (r) (4π) 1/2 rφ b (r) l vdw r classical closed channel entrance channel B=16 G r classical B=155.5 G r [a TK, T. Gasenzer, and K. Burnett, PRA 67, 1361 (23) TK, T. Gasenzer, P.S. Julienne, and K. Burnett, PRL 91, 2341 (23) Santa Barbara 27 p.4

12 Feshbach molecules in cold gases 85 Rb (F = 2,mF = 2) is an excited state 85 Rb2 Feshbach molecules decay due to spin relaxation! 1 coupled channels Lifetime [ms B [G Santa Barbara 27 p.4

13 Feshbach molecules in cold gases The lifetime depends on the size of the molecule! Average volume of a halo state: V = 4π r 3 /3 = πa 3 Rate equation for spin relaxation: Ṅ(t) = K 2 n(t) N(t) Lifetime of the halo state: τ = V/[K 2 (B)/4 = 4πa 3 (B)/K 2 (B) Lifetime [ms πa 3 (B)/K 2 (B) coupled channels B [G Santa Barbara 27 p.4

14 Feshbach molecules in cold gases Experiment and theory agree! Average volume of a halo state: V = 4π r 3 /3 = πa 3 Rate equation for spin relaxation: Ṅ(t) = K 2 n(t) N(t) Lifetime of the halo state: τ = V/[K 2 (B)/4 = 4πa 3 (B)/K 2 (B) Lifetime [ms πa 3 (B)/K 2 (B) coupled channels experiment B [G Experiment: S.T. Thompson, E. Hodby, and C.E. Wieman, PRL 94, 241 (25) Theory: TK, E. Tiesinga, and P.S. Julienne, PRL 94, 242 (25) Santa Barbara 27 p.4

15 Efimov states Three-body Hamiltonian in Jacobi coordinates 2 H = 2(3m) 2 R (3m)ω2 ho R2 2 2( 2 3 m) 2 ρ + 1 ( 2 )ω 2 3 m 2ho ρ2 2 2( m 2 ) 2 r + 1 ( m ) V (r) + V (ρ + 12 ) r + V (ρ 12 ) r ω 2 ho r2 3 r=r 23 2 ρ r 31 r 12 1 =H + V 1 + V 2 + V 3 L.D. Faddeev, Soviet Phys. - JETP 12, 114 (1961) E.O. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. B 2, 167 (1967) Santa Barbara 27 p.5

16 Efimov states The ground and first excited states of the helium trimer molecule Scattering length of helium: a = 1.4 nm Effective range: r eff =.7 nm Number of Efimov trimer states as a function of the scattering length: N Efimov 1 π log ( a /r eff) =.8 G.C. Hegerfeldt and M. Stoll, PRA 71, 3366 (25) L.H. Thomas, Phys. Rev. 47, 93 (1935) V. Efimov, Phys. Lett. 33B, 563 (197) Helium case: T.K. Lim, Sister K. Duffy, and W.C. Damer, PRL 38, 341 (1977) Santa Barbara 27 p.5

17 Efimov states The ground and first excited states of the helium trimer molecule Scattering length of helium: a = 1.4 nm Effective range: r eff =.7 nm Number of Efimov trimer states as a function of the scattering length: N Efimov 1 π log ( a /r eff) =.8 G.C. Hegerfeldt and M. Stoll, PRA 71, 3366 (25) Detection of the ground state: W. Schöllkopf and J.P. Toennies, Science 266, 1345 (1994) Measurement of its bond length: R. Brühl, A. Kalinin, O. Kornilov, J.P. Toennies, G.C. Hegerfeldt, and M. Stoll, PRL 95, 632 (25) Santa Barbara 27 p.5

18 Efimov states Santa Barbara 27 p.5

19 Efimov states Efimov plot 1/a= zero-energy resonances dimer K= E n K E n-1 atom-dimer resonance 1/a V. Efimov, Phys. Lett. 33B, 563 (197) Santa Barbara 27 p.5

20 Efimov states zero-energy resonances Reality is often different! E n dimer zero-energy resonance K E n-1 1/a atom-dimer resonance Only ground levels have been experimentally observed which inevitably connect to non-universal physics. dimer K dimer level ground trimer level first excited trimer level L.W. Bruch and K. Sawada, PRL 3, 25 (1973) V. Efimov, Nucl. Phys. A 362, 45 (1981) 1/a Santa Barbara 27 p.5

21 Efimov states Efimov spectrum of 4 He He Schȯ. llkopf & Toennies dimer K [1/a /a [1/a W. Schöllkopf and J.P. Toennies, Science 266, 1345 (1994) Santa Barbara 27 p.5

22 Efimov states The excited 4 He 3 level has not been found! -.2 Schȯ. llkopf & Toennies 4 He? dimer -.4 K [1/a /a [1/a R. Brühl, A. Kalinin, O. Kornilov, J.P. Toennies, G.C. Hegerfeldt, and M. Stoll, PRL 95, 632 (25) Santa Barbara 27 p.5

23 Efimov states The 4 He 3 system is universal! He Schȯ. llkopf & Toennies dimer K [1/a /a [1/a Interpretation of predictions on 4 He 3 : E. Braaten and H.-W. Hammer, PRA 67, 4276 (23) See also triton case: M.L.E. Oliphant, P. Harteck, and E. Rutherford, Proc. Roy. Soc. A 144, 692 (1934) Santa Barbara 27 p.5

24 Efimov states The ground level is never universal throughout! He Schȯ. llkopf & Toennies dimer K [1/a /a [1/a L.W. Bruch and K. Sawada, PRL 3, 25 (1973) V. Efimov, Nucl. Phys. A 362, 45 (1981) Santa Barbara 27 p.5

25 Efimov states Efimov spectrum of 133 Cs at low magnetic fields dimer Cs B> B< K [1/a a(b) [a 5-5 a= a bg K [1/a He /a [1/a Schȯ. llkopf & Toennies dimer B [G /a [1/a Santa Barbara 27 p.5

26 Efimov states The first resonance belongs to a Borromean ground level! Kraemer et al. dimer Cs B> B< K [1/a a(b) [a 5-5 a= a bg K [1/a He /a [1/a Schȯ. llkopf & Toennies dimer B [G /a [1/a T. Kraemer, M. Mark, P. Waldburger, J.G. Danzl, C. Chin, B. Engeser, A.D. Lange, K. Pilch, A. Jaakkola, H.-C. Nägerl, and R. Grimm, Nature 44, 315 (26) Santa Barbara 27 p.5

27 Efimov states Efimov-state story to date Kraemer et al. dimer Cs B> B< K [1/a a(b) [a 5-5 a= a bg K [1/a He /a [1/a Schȯ. llkopf & Toennies dimer B [G /a [1/a RMP colloquium: TK, R. Grimm, P.S. Julienne, H.-C. Nägerl, W. Schöllkopf, and J.P. Toennies Santa Barbara 27 p.5

28 Three-body recombination in 87 Rb Three-body problem in 87 Rb Rate equation for three-body recombination: N(t) = K 3 (B) n 2 (t) N(t) Interferences in K 3 (B) occur due to the distortion of the two-body energy spectrum by the Feshbach resonance. The Efimov spectrum is largely inaccessible due to the narrow magnetic-field range. K 3 [cm 6 /s B B [G Theoretical approach: E.O. Alt, P. Grassberger, and W. Sandhas, Nucl. Phys. B 2, 167 (1967) Calculations for 87 Rb gases: G. Smirne, R.M. Godun, D. Cassettari, V. Boyér, C.J. Foot, T. Volz, N. Syassen, S. Duerr, G. Rempe, M.D. Lee, K. Góral, and TK, PRA 75, 272(R) (27) E -1 d E -2 d B Energy/h [MHz Santa Barbara 27 p.6

29 Three-body recombination in 87 Rb Near-resonant three-body recombination rate constants K 3 [cm 6 /s a(b) [a a bg B-B [G -.1 G. Smirne, R.M. Godun, D. Cassettari, V. Boyér, C.J. Foot, T. Volz, N. Syassen, S. Duerr, G. Rempe, M.D. Lee, K. Góral, and TK, PRA 75, 272(R) (27) Santa Barbara 27 p.6

30 Three-body recombination in 87 Rb Comparison with experiment K 3 [cm 6 /s a(b) [a a bg -1 Oxford Garching B-B [G -.1 G. Smirne, R.M. Godun, D. Cassettari, V. Boyér, C.J. Foot, T. Volz, N. Syassen, S. Duerr, G. Rempe, M.D. Lee, K. Góral, and TK, PRA 75, 272(R) (27) Santa Barbara 27 p.6

31 Three-body recombination in 133 Cs Three-body recombination rate constants in 133 Cs K 3 [m 6 /s nk experiment 2 nk experiment B [G Experiment: T. Kraemer, M. Mark, P. Waldburger, J.G. Danzl, C. Chin, B. Engeser, A.D. Lange, K. Pilch, A. Jaakkola, H.-C. Nägerl, and R. Grimm, Nature 44, 315 (26) a(b) [a B a bg Santa Barbara 27 p.7

32 Three-body recombination in 133 Cs Three-body zero-energy resonance in 133 Cs K 3 [m 6 /s nk theory 1 nk experiment 2 nk experiment a(b) [a B [G B a bg General concept: E. Nielsen and J.H. Macek, PRL 83, 1566 (1999) B.D. Esry, C.H. Greene, and J.P. Burke, PRL 83, 1751 (1999) Quantitative approach: G. Smirne et al., PRA 75, 272(R) (27) Santa Barbara 27 p.7

33 Excited 133 Cs 3 Efimov states Measurement of excited-state resonances of the mirror-spin-channel might be hampered by spin relaxation! K 3 [m 6 /s resonance B< B> highest excited second highest total a(b) [a B [G E -1 d a= a bg E -2 d -1-1 Energy/h [MHz J.L. Roberts, N.R. Claussen, S.L. Cornish, and C.E. Wieman, PRL 85, 728 (2) Santa Barbara 27 p.8

34 Excited 133 Cs 3 Efimov states K 3 [m 6 /s Alternative: Measurement of three-body zero-energy resonances in the vicinity of 8 G resonance highest excited second highest total resonance B [G E -1 d E -2 d Energy/h [MHz M.D. Lee, TK, and P.S. Julienne, e-print cond-mat/72178 Santa Barbara 27 p.8

35 Excited 133 Cs 3 Efimov states K 3 [m 6 /s The loss minimum in the vicinity of 891 G might allow Bose-Einstein condensation of cesium! resonance highest excited second highest total resonance loss minimum B [G E -1 d E -2 d Energy/h [MHz T. Weber, J. Herbig, M. Mark, H.-C. Nägerl, and R. Grimm, Science 299, 232 (23) Santa Barbara 27 p.8

36 Excited 133 Cs 3 Efimov states K 3 [m 6 /s The theory does not account for the full complexity of cesium interactions! resonance highest excited second highest total resonance B [G E -1 d E -2 d Energy/h [MHz a(b) [a B [G M.D. Lee, TK, and P.S. Julienne, e-print cond-mat/72178 B Energy/h [MHz Santa Barbara 27 p.8

37 Excited 133 Cs 3 Efimov states The diatomic target states at negative scattering lengths are not uniform in the magnetic field! K 3 [m 6 /s n= high field low field 1 nk experiment 2 nk experiment n= n= a [a M.D. Lee, TK, and P.S. Julienne, e-print cond-mat/72178 Santa Barbara 27 p.8

38 Production of excited 85 Rb 3 Efimov states Efimov spectrum of 85 Rb Rb dimer K [1/a B= a(b) [a 5-5 a bg a= K [1/a He Schȯ. llkopf & Toennies dimer B [G /a [1/a M. Stoll and TK, PRA 72, (25) K [1/a /a [1/a Kraemer et al. a(b) [a 133 Cs 5-5 a= B> a bg B [G B< /a [1/a dimer Santa Barbara 27 p.9

39 Production of excited 85 Rb 3 Efimov states 85 Rb gases allow easy access to the resonance! Rb E2 resonance dimer K [1/a B= a(b) [a 5-5 a bg a= K [1/a He Schȯ. llkopf & Toennies dimer B [G /a [1/a M. Stoll and TK, PRA 72, (25) K [1/a /a [1/a Kraemer et al. a(b) [a 133 Cs 5-5 a= B> a bg B [G B< /a [1/a dimer Santa Barbara 27 p.9

40 Production of excited 85 Rb 3 Efimov states Association of dimer molecules in an optical lattice site Energy [h - ω ho Rb E b (B) bound atoms B separated atoms B [G v=6 v=5 v=4 v=3 v=2 v=1 v= G. Thalhammer, K. Winkler, F. Lang, S. Schmid, R. Grimm, and J.H. Denschlag, PRL 96, 542 (26) Santa Barbara 27 p.9

41 Production of excited 85 Rb 3 Efimov states Association of trimer molecules in an optical lattice site Energy [h - ω ho Rb E b (B) bound atoms B separated atoms B [G v=6 v=5 v=4 v=3 v=2 v=1 v= Energy/h [khz separated atoms E 4 E 3 B + 3_ 2 hν ho B [G trimer B 85 Rb G. Thalhammer, K. Winkler, F. Lang, S. Schmid, R. Grimm, and J.H. Denschlag, PRL 96, 542 (26) M. Stoll and TK, PRA 72, (25) See also: S. Jonsell, H. Heiselberg, and C.J. Pethick, PRL 89, 2541 (22) Santa Barbara 27 p.9

42 Production of excited 85 Rb 3 Efimov states Efimov trimer molecules in an optical lattice site The magnetic-field dependent binding energies and spatial extents of -trimer molecules are comparable to those of the associated diatomic Feshbach molecules. The lifetimes of Efimov-trimer molecules increase with increasing bond length. Hyperradial Probability Density P(R) [1-3 a -1 ν 6 ho = 1 MHz 4138 khz 483 khz khz ν ho = 3 khz 2411 khz 425 khz khz 6 ν ho = 5 khz 1692 khz 163 khz 33 khz 2 M. Stoll and TK, PRA 72, (25) See also: S. Jonsell, Europhys. Lett. 76, 8 (26) 1 1 Hyperradius R [a Santa Barbara 27 p.9

43 Conclusions Near-resonant diatomic Feshbach molecules are halo states. The halo nature of diatomic Feshbach molecules implies Efimov s effect in the associated three-body problem. Measurements of near resonant three-body recombination in cold gases of 133 Cs to date prove the existence of a Borromean ground state of the Efimov spectrum. Excited-state Efimov zero-energy resonances might be detected in cold gases of 133 Cs at magnetic fields in the vicinity of 8 G. Metastable excited-state Efimov trimers might be produced in cold gases of, e.g., 85 Rb using magnetic-field sweep techniques in analogy to the association of diatomic Feshbach molecules. Santa Barbara 27 p.1

44 Thanks to DPhil students: Thomas Hanna and Hugo Martay Postdocs: Marzena Szymańska, Mark Lee, and Martin Stoll Group leader: Keith Burnett Coupled-channels calculations: Paul Julienne (NIST) Experimental groups at: Oxford, JILA, Innsbruck, and Munich Discussions with: Wieland Schöllkopf, Peter Toennies, and Vitaly Efimov Santa Barbara 27 p.11

Evidence for Efimov Quantum states

Evidence for Efimov Quantum states KITP, UCSB, 27.04.2007 Evidence for Efimov Quantum states in Experiments with Ultracold Cesium Atoms Hanns-Christoph Nägerl bm:bwk University of Innsbruck TMR network Cold Molecules ultracold.atoms Innsbruck

More information

arxiv:cond-mat/ v2 [cond-mat.other] 2 Feb 2006

arxiv:cond-mat/ v2 [cond-mat.other] 2 Feb 2006 Evidence for Efimov quantum states in an ultracold gas of cesium atoms arxiv:cond-mat/0512394v2 [cond-mat.other] 2 Feb 2006 T. Kraemer 1, M. Mark 1, P. Waldburger 1, J. G. Danzl 1, C. Chin 1,2, B. Engeser

More information

Universal van der Waals Physics for Three Ultracold Atoms

Universal van der Waals Physics for Three Ultracold Atoms Universal van der Waals Physics for Three Ultracold Atoms Yujun Wang and Paul S. Julienne Joint Quantum Institute, University of Maryland and NIST, College Park, Maryland, 20742, USA arxiv:1404.0483v1

More information

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover

BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Institut für Experimentalphysik Universität Innsbruck Dresden, 12.10. 2004 BEC of 6 Li 2 molecules: Exploring the BEC-BCS crossover Johannes Hecker Denschlag The lithium team Selim Jochim Markus Bartenstein

More information

Lecture 4. Feshbach resonances Ultracold molecules

Lecture 4. Feshbach resonances Ultracold molecules Lecture 4 Feshbach resonances Ultracold molecules 95 Reminder: scattering length V(r) a tan 0( k) lim k0 k r a: scattering length Single-channel scattering a 96 Multi-channel scattering alkali-metal atom:

More information

Efimov states with strong three-body losses

Efimov states with strong three-body losses epl draft Efimov states with strong three-body losses Félix Werner (a) Laboratoire Kastler Brossel, École Normale Supérieure, Université Pierre et Marie Curie-Paris 6, CNRS, 24 rue Lhomond, 75231 Paris

More information

arxiv: v2 [cond-mat.quant-gas] 1 Sep 2010

arxiv: v2 [cond-mat.quant-gas] 1 Sep 2010 Atom-Dimer Scattering in a Three-Component Fermi Gas arxiv:100.0600v2 [cond-mat.quant-gas] 1 Sep 2010 T. Lompe, 1, 2,, T. B. Ottenstein, 1, 2, F. Serwane, 1, 2, K. Viering, 4 A. N. Wenz, 1, 2 G. Zürn,

More information

BEC and superfluidity in ultracold Fermi gases

BEC and superfluidity in ultracold Fermi gases Collège de France, 11 Apr 2005 BEC and superfluidity in ultracold Fermi gases Rudolf Grimm Center of Quantum Optics Innsbruck University Austrian Academy of Sciences two classes Bosons integer spin Fermions

More information

A study of the BEC-BCS crossover region with Lithium 6

A study of the BEC-BCS crossover region with Lithium 6 A study of the BEC-BCS crossover region with Lithium 6 T.Bourdel, L. Khaykovich, J. Cubizolles, J. Zhang, F. Chevy, M. Teichmann, L. Tarruell, S. Kokkelmans, Christophe Salomon Theory: D. Petrov, G. Shlyapnikov,

More information

Nature of spinor Bose-Einstein condensates in rubidium

Nature of spinor Bose-Einstein condensates in rubidium PHYSICAL REVIEW A, VOLUME 64, 053602 Nature of spinor Bose-Einstein condensates in rubidium Nille N. Klausen Department of Physics and JILA, University of Colorado, Boulder, Colorado 80309-0440 and Niels

More information

1. Cold Collision Basics

1. Cold Collision Basics ICAP Summer School, Seoul, S. Korea, July 18, 2016 1. Cold Collision Basics Paul S. Julienne Joint Quantum Institute NIST and The University of Maryland Thanks to many colleagues in theory and experiment

More information

Efimov Physics and Universality

Efimov Physics and Universality Efimov Physics and Universality Eric Braaten Ohio State University Bonn University support DOE High Energy Physics DOE Basic Energy Sciences Air Force Office of Scientific Research Army Research Office

More information

Lecture 3. Bose-Einstein condensation Ultracold molecules

Lecture 3. Bose-Einstein condensation Ultracold molecules Lecture 3 Bose-Einstein condensation Ultracold molecules 66 Bose-Einstein condensation Bose 1924, Einstein 1925: macroscopic occupation of the lowest energy level db h 2 mk De Broglie wavelength d 1/3

More information

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11

Quantum Quantum Optics Optics VII, VII, Zakopane Zakopane, 11 June 09, 11 Quantum Optics VII, Zakopane, 11 June 09 Strongly interacting Fermi gases Rudolf Grimm Center for Quantum Optics in Innsbruck University of Innsbruck Austrian Academy of Sciences ultracold fermions: species

More information

Calculations of the binding energies of weakly bound He He H, He He H and He H H molecules

Calculations of the binding energies of weakly bound He He H, He He H and He H H molecules J. Phys. B: At. Mol. Opt. Phys. 32 (1999) 4877 4883. Printed in the UK PII: S0953-4075(99)05621-7 Calculations of the binding energies of weakly bound He He H, He He H and He H H molecules Yong Li and

More information

Lectures on Quantum Gases. Chapter 5. Feshbach resonances. Jook Walraven. Van der Waals Zeeman Institute University of Amsterdam

Lectures on Quantum Gases. Chapter 5. Feshbach resonances. Jook Walraven. Van der Waals Zeeman Institute University of Amsterdam Lectures on Quantum Gases Chapter 5 Feshbach resonances Jook Walraven Van der Waals Zeeman Institute University of Amsterdam http://.../walraven.pdf 1 Schrödinger equation thus far: fixed potential What

More information

Cold fermions, Feshbach resonance, and molecular condensates (II)

Cold fermions, Feshbach resonance, and molecular condensates (II) Cold fermions, Feshbach resonance, and molecular condensates (II) D. Jin JILA, NIST and the University of Colorado I. Cold fermions II. III. Feshbach resonance BCS-BEC crossover (Experiments at JILA) $$

More information

Universality in Four-Boson Systems

Universality in Four-Boson Systems Universality in Four-Boson Systems M. R. Hadizadeh INPP, Department of Physics & Astronomy, Ohio University hadizadm@ohio.edu Work done in collaboration with: M.T. Yamashita & L. Tomio (UNESP), A. Delfino

More information

The heteronuclear Efimov scenario in an ultracold Bose-Fermi mixture

The heteronuclear Efimov scenario in an ultracold Bose-Fermi mixture The heteronuclear Efimov scenario in an ultracold Bose-Fermi mixture Juris Ulmanis, Stephan Häfner, Rico Pires, Eva Kuhnle, and Matthias Weidemüller http://physi.uni-heidelberg.de/forschung/qd RUPRECHT-KARLS-

More information

Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations?

Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations? Image: Peter Engels group at WSU Small Trapped s-wave Interacting Fermi Gases: How to Quantify Correlations? Doerte Blume and Kevin M. Daily Dept. of Physics and Astronomy, Washington State University,

More information

A Pure Confinement Induced Trimer in quasi-1d Atomic Waveguides

A Pure Confinement Induced Trimer in quasi-1d Atomic Waveguides A Pure Confinement Induced Trimer in quasi-1d Atomic Waveguides Ludovic Pricoupenko Laboratoire de Physique Théorique de la Matière Condensée Sorbonne Université Paris IHP - 01 February 2018 Outline Context

More information

Weakly bound triatomic He 2 Li and He 2 Na molecules

Weakly bound triatomic He 2 Li and He 2 Na molecules J. Phys. B: At. Mol. Opt. Phys. 31 (1998) L637 L645. Printed in the UK PII: S0953-4075(98)95014-3 LETTER TO THE EDITOR Weakly bound triatomic He 2 Li and He 2 Na molecules Jianmin Yuan and C D Lin Department

More information

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases

Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Non-equilibrium Dynamics in Ultracold Fermionic and Bosonic Gases Michael KöhlK ETH Zürich Z (www.quantumoptics.ethz.ch( www.quantumoptics.ethz.ch) Introduction Why should a condensed matter physicist

More information

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas

Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Bose-Einstein condensation of lithium molecules and studies of a strongly interacting Fermi gas Wolfgang Ketterle Massachusetts Institute of Technology MIT-Harvard Center for Ultracold Atoms 3/4/04 Workshop

More information

ENERGY, SCATTERING LENGTH, AND MASS DEPENDENCE

ENERGY, SCATTERING LENGTH, AND MASS DEPENDENCE ENERGY, SCATTERING LENGTH, AND MASS DEPENDENCE OF ULTRACOLD THREE-BODY COLLISIONS J.P. D Incao and B.D. Esry Department of Physics Kansas State University Why three-body collisions? Three-body processes

More information

Experiments with an Ultracold Three-Component Fermi Gas

Experiments with an Ultracold Three-Component Fermi Gas Experiments with an Ultracold Three-Component Fermi Gas The Pennsylvania State University Ken O Hara Jason Williams Eric Hazlett Ronald Stites John Huckans Overview New Physics with Three Component Fermi

More information

Open Effective Field Theories and Universality

Open Effective Field Theories and Universality Open Effective Field Theories and Universality H.-W. Hammer Institut für Kernphysik, TU Darmstadt and Extreme Matter Institute EMMI 614. WE-Heraeus Seminar, Bad Honnef, April 18-10, 2016 Open Effective

More information

The few-boson problem near unitarity: recent theory and experiments Chris Greene, Purdue University

The few-boson problem near unitarity: recent theory and experiments Chris Greene, Purdue University The few-boson problem near unitarity: recent theory and experiments Chris Greene, Purdue University Revisiting the 3-body parameter for van der Waals two-body interactions The N>3 boson problem near unitarity

More information

Halo World: The story according to Faddeev, Efimov and Fano

Halo World: The story according to Faddeev, Efimov and Fano Halo World: The story according to Faddeev, Efimov and Fano Indranil Mazumdar Dept. of Nuclear & Atomic Physics, Tata Institute of Fundamental Research, Mumbai 400 005 2 nd GCOE Symp. 18 th - 19 th Feb.

More information

Cold Molecules and Controlled Ultracold Chemistry. Jeremy Hutson, Durham University

Cold Molecules and Controlled Ultracold Chemistry. Jeremy Hutson, Durham University Cold Molecules and Controlled Ultracold Chemistry Jeremy Hutson, Durham University QuAMP Swansea, 11 Sept 2013 Experimentally accessible temperatures What is already possible in ultracold chemistry? Take

More information

Pionless EFT for Few-Body Systems

Pionless EFT for Few-Body Systems Pionless EFT for Few-Body Systems Betzalel Bazak Physique Theorique Institut de Physique Nucleaire d Orsay Nuclear Physics from Lattice QCD Insitute for Nuclear Theory April 7, 2016 Seattle Betzalel Bazak

More information

Bose-Bose mixtures in confined dimensions

Bose-Bose mixtures in confined dimensions Bose-Bose mixtures in confined dimensions Francesco Minardi Istituto Nazionale di Ottica-CNR European Laboratory for Nonlinear Spectroscopy 22nd International Conference on Atomic Physics Cairns, July

More information

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 17 Feb 2003

arxiv:cond-mat/ v1 [cond-mat.stat-mech] 17 Feb 2003 Beyond Fermi pseudopotential: a modified GP equation arxiv:cond-mat/030331v1 [cond-mat.stat-mech 17 Feb 003 Haixiang Fu, 1 Yuzhu Wang, 1 and Bo Gao 1, 1 Shanghai Institute of Optics and Fine Mechanics,

More information

arxiv:cond-mat/ v2 20 Jun 2003

arxiv:cond-mat/ v2 20 Jun 2003 A Two-Atom Picture of Coherent Atom-Molecule Quantum Beats arxiv:cond-mat/0304341v2 20 Jun 2003 Bogdan Borca, D. Blume, Chris H. Greene JILA and Department of Physics, University of Colorado, Boulder,

More information

From laser cooling to BEC First experiments of superfluid hydrodynamics

From laser cooling to BEC First experiments of superfluid hydrodynamics From laser cooling to BEC First experiments of superfluid hydrodynamics Alice Sinatra Quantum Fluids course - Complement 1 2013-2014 Plan 1 COOLING AND TRAPPING 2 CONDENSATION 3 NON-LINEAR PHYSICS AND

More information

What do we know about the state of cold fermions in the unitary regime?

What do we know about the state of cold fermions in the unitary regime? What do we know about the state of cold fermions in the unitary regime? Aurel Bulgac,, George F. Bertsch,, Joaquin E. Drut, Piotr Magierski, Yongle Yu University of Washington, Seattle, WA Also in Warsaw

More information

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics

Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics Atom-molecule molecule collisions in spin-polarized polarized alkalis: potential energy surfaces and quantum dynamics Pavel Soldán, Marko T. Cvitaš and Jeremy M. Hutson University of Durham with Jean-Michel

More information

arxiv:cond-mat/ v1 17 Apr 2000

arxiv:cond-mat/ v1 17 Apr 2000 Stable 85 Rb Bose-Einstein Condensates with Widely Tunable Interactions S. L. Cornish, N. R. Claussen, J. L. Roberts, E. A. Cornell and C. E. Wieman JILA, National Institute of Standards and Technology

More information

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices

Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices Quantum Information Processing and Quantum Simulation with Ultracold Alkaline-Earth Atoms in Optical Lattices Alexey Gorshkov California Institute of Technology Mikhail Lukin, Eugene Demler, Cenke Xu -

More information

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet

Introduction to Cold Atoms and Bose-Einstein Condensation. Randy Hulet Introduction to Cold Atoms and Bose-Einstein Condensation Randy Hulet Outline Introduction to methods and concepts of cold atom physics Interactions Feshbach resonances Quantum Gases Quantum regime nλ

More information

Fermi Condensates ULTRACOLD QUANTUM GASES

Fermi Condensates ULTRACOLD QUANTUM GASES Fermi Condensates Markus Greiner, Cindy A. Regal, and Deborah S. Jin JILA, National Institute of Standards and Technology and University of Colorado, and Department of Physics, University of Colorado,

More information

Three-body recombination at vanishing scattering lengths

Three-body recombination at vanishing scattering lengths Three-body recombination at vanishing scattering lengths Lev Khaykovich Physics Department, Bar-Ilan University, 5900 Ramat Gan, Israel INT workshop, UW Seattle 05/15/014 RF association of Efimov trimers

More information

Quantum superpositions and correlations in coupled atomic-molecular BECs

Quantum superpositions and correlations in coupled atomic-molecular BECs Quantum superpositions and correlations in coupled atomic-molecular BECs Karén Kheruntsyan and Peter Drummond Department of Physics, University of Queensland, Brisbane, AUSTRALIA Quantum superpositions

More information

Raman-Induced Oscillation Between an Atomic and Molecular Gas

Raman-Induced Oscillation Between an Atomic and Molecular Gas Raman-Induced Oscillation Between an Atomic and Molecular Gas Dan Heinzen Changhyun Ryu, Emek Yesilada, Xu Du, Shoupu Wan Dept. of Physics, University of Texas at Austin Support: NSF, R.A. Welch Foundation,

More information

Few-body problems in ultracold alkali-earth atoms and superfluid Boson-Fermion mixture

Few-body problems in ultracold alkali-earth atoms and superfluid Boson-Fermion mixture Few-body problems in ultracold alkali-earth atoms and superfluid Boson-Fermion mixture Peng Zhang Department of Physics, Renmin University of China 中国人民大学物理系 (2015-05-06,INT 15-1,Seattle) Outline Orbital

More information

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics

Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics 1 Harvard University Physics 284 Spring 2018 Strongly correlated systems in atomic and condensed matter physics Instructor Eugene Demler Office: Lyman 322 Email: demler@physics.harvard.edu Teaching Fellow

More information

arxiv: v1 [physics.atm-clus] 24 Nov 2014

arxiv: v1 [physics.atm-clus] 24 Nov 2014 Universality in molecular halo clusters P. Stipanović, L. Vranješ Markić,, I. Bešlić,, J. Boronat Faculty of Science, University of Split, HR- Split, Croatia Department of Physics and Astronomy, University

More information

arxiv: v1 [cond-mat.quant-gas] 8 Jan 2019

arxiv: v1 [cond-mat.quant-gas] 8 Jan 2019 A coherent superposition of Feshbach dimers and Efimov trimers. Yaakov Yudkin 1, Roy Elbaz 1, P. Giannakeas 2, Chris H. Greene 3, and Lev Khaykovich 1 1 Department of Physics, QUEST Center and Institute

More information

Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron

Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron Few-Body physics with ultracold K and Rb: Efimov physics and the Bose polaron 1 Dual species quantum gases with tunable interactions mixing vs. phase separation Polarons beyond mean field LHY droplets

More information

Universality in Four-Boson Systems

Universality in Four-Boson Systems Few-Body Syst (201) 5:559 568 DOI 10.1007/s00601-012-06-6 T. Frederico A. Delfino M. R. adizadeh Lauro Tomio M. T. Yamashita Universality in Four-Boson Systems Received: 0 January 2012 / Accepted: 0 May

More information

Effective Field Theory and Ultracold Atoms

Effective Field Theory and Ultracold Atoms Effective Field Theory and Ultracold Atoms Eric Braaten Ohio State University support Department of Energy Air Force Office of Scientific Research Army Research Office 1 Effective Field Theory and Ultracold

More information

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles

Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Cold Metastable Neon Atoms Towards Degenerated Ne*- Ensembles Supported by the DFG Schwerpunktprogramm SPP 1116 and the European Research Training Network Cold Quantum Gases Peter Spoden, Martin Zinner,

More information

Design and realization of exotic quantum phases in atomic gases

Design and realization of exotic quantum phases in atomic gases Design and realization of exotic quantum phases in atomic gases H.P. Büchler and P. Zoller Theoretische Physik, Universität Innsbruck, Austria Institut für Quantenoptik und Quanteninformation der Österreichischen

More information

Perfect screening of the Efimov effect by the dense Fermi sea

Perfect screening of the Efimov effect by the dense Fermi sea INT Workshop, Seatle 15, May, 2014 Perfect screening of the Efimov effect by the dense Fermi sea University of Tokyo & LKB, ENS Shimpei Endo Outline Perfect screening of the Efimov effect by the dense

More information

Modeling cold collisions Atoms Molecules

Modeling cold collisions Atoms Molecules Modeling cold collisions Atoms Molecules E. Tiemann, H. Knöckel, A. Pashov* Institute of Quantum Optics *University Sofia, Bulgaria collisional wave function for E 0 A R=0 hk r B adopted from J. Weiner

More information

Depicted: A big universal molecule with 4 atoms, attached to a 3-body Efimov state. Thanks, to NSF and the AFOSR- MURI!

Depicted: A big universal molecule with 4 atoms, attached to a 3-body Efimov state. Thanks, to NSF and the AFOSR- MURI! N-Body Recombination and the Efimov effect Chris Greene, with Jose D Incao, Nirav Mehta, Seth Rittenhouse (at ICAP) and Javier von Stecher, JILA and Physics, U. of Colorado-Boulder March 2010 overview

More information

Monte Carlo Simulation of Bose Einstein Condensation in Traps

Monte Carlo Simulation of Bose Einstein Condensation in Traps Monte Carlo Simulation of Bose Einstein Condensation in Traps J. L. DuBois, H. R. Glyde Department of Physics and Astronomy, University of Delaware Newark, Delaware 19716, USA 1. INTRODUCTION In this paper

More information

Three-body recombination at vanishing scattering lengths in an ultracold Bose gas Shotan, Z.; Machtey, O.; Kokkelmans, S.J.J.M.F.; Khaykovich, L.

Three-body recombination at vanishing scattering lengths in an ultracold Bose gas Shotan, Z.; Machtey, O.; Kokkelmans, S.J.J.M.F.; Khaykovich, L. Three-body recombination at vanishing scattering lengths in an ultracold Bose gas Shotan, Z.; Machtey, O.; Kokkelmans, S.J.J.M.F.; Khaykovich, L. Published in: Physical Review Letters DOI: 10.1103/PhysRevLett.113.053202

More information

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate

Exploring quantum magnetism in a Chromium Bose-Einstein Condensate CLEO Europe - IQEC Munich May 14th 013 Olivier GORCEIX Exploring quantum magnetism in a Chromium Bose-Einstein Condensate Laboratoire de Physique des Lasers Université Paris 13, SPC Villetaneuse - France

More information

PoS(Confinement8)147. Universality in QCD and Halo Nuclei

PoS(Confinement8)147. Universality in QCD and Halo Nuclei Helmholtz-Institut für Strahlen- und Kernphysik (Theorie) and Bethe Center for Theoretical Physics, University of Bonn, Germany E-mail: hammer@itkp.uni-bonn.de Effective Field Theory (EFT) provides a powerful

More information

The running of couplings and anomalous thermodynamics in Bose gases near resonance

The running of couplings and anomalous thermodynamics in Bose gases near resonance The running of couplings and anomalous thermodynamics in Bose gases near resonance Fei Zhou University of British Columbia, Vancouver At INT, University of Washington, Seattle, May 7, 2014 Supported by:

More information

F. Chevy Seattle May 2011

F. Chevy Seattle May 2011 THERMODYNAMICS OF ULTRACOLD GASES F. Chevy Seattle May 2011 ENS FERMION GROUPS Li S. Nascimbène Li/K N. Navon L. Tarruell K. Magalhaes FC C. Salomon S. Chaudhuri A. Ridinger T. Salez D. Wilkowski U. Eismann

More information

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED

Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Doing Atomic Physics with Electrical Circuits: Strong Coupling Cavity QED Ren-Shou Huang, Alexandre Blais, Andreas Wallraff, David Schuster, Sameer Kumar, Luigi Frunzio, Hannes Majer, Steven Girvin, Robert

More information

FOUR-BODY EFIMOV EFFECT

FOUR-BODY EFIMOV EFFECT FOUR-BODY EFIMOV EFFECT Yvan Castin, Christophe Mora LKB and LPA, Ecole normale supérieure (Paris, France) Ludovic Pricoupenko LPTMC, Université Paris 6 OUTLINE OF THE TALK Cold atoms in short Introduction

More information

6P 3/2 6S 1/2. optical pumping. degenerate Raman transition. ıν=2> ıν=1> ıν=0> ıν=2> ıν=1> ıν=0> Zeeman energy. F=3, m F =3

6P 3/2 6S 1/2. optical pumping. degenerate Raman transition. ıν=2> ıν=1> ıν=0> ıν=2> ıν=1> ıν=0> Zeeman energy. F=3, m F =3 RAMAN SIDEBAND COOLING IN AN OPTICAL LATTICE VLADAN VULETIĆ, ANDREW J. KERMAN, CHENG CHIN, AND STEVEN CHU Department of Physics, Stanford University, Stanford, CA 94306-4060, USA E-mail: vladan2@leland.stanford.edu

More information

arxiv: v1 [cond-mat.quant-gas] 20 Aug 2016

arxiv: v1 [cond-mat.quant-gas] 20 Aug 2016 Dynamic Super Efimov Effect arxiv:608.05799v [cond-mat.quant-gas] 20 Aug 206 Zhe-Yu Shi,, Ran Qi, 2, Hui Zhai,, 3,, and Zhenhua Yu Institute for Advanced Study, Tsinghua University, Beijing, 00084, China

More information

Lecture I: (magnetic) dipolar gases. Lecture II: Rydberg Rydberg interaction. Lecture III : Rydberg ground state interaction

Lecture I: (magnetic) dipolar gases. Lecture II: Rydberg Rydberg interaction. Lecture III : Rydberg ground state interaction Lecture I: (magnetic) dipolar gases Lecture II: Rydberg Rydberg interaction Lecture III : Rydberg ground state interaction Rydberg atoms - Size quan%ty scaling 100S- state of 87 Rb radius n² ~ 1 µm 0.35

More information

Models for Low-Temperature Helium Dimers and Trimers. Department of Chemistry, University of Michigan, Ann Arbor, Michigan,

Models for Low-Temperature Helium Dimers and Trimers. Department of Chemistry, University of Michigan, Ann Arbor, Michigan, Models for Low-Temperature Helium Dimers and Trimers LAWRENCE L. LOHR, S. M. BLINDER Department of Chemistry, University of Michigan, Ann Arbor, Michigan, 48109-1055 Received 10 April 001; revised 19 June

More information

arxiv: v4 [cond-mat.quant-gas] 19 Jun 2012

arxiv: v4 [cond-mat.quant-gas] 19 Jun 2012 Alternative Route to Strong Interaction: Narrow Feshbach Resonance arxiv:1105.467v4 [cond-mat.quant-gas] 19 Jun 01 Tin-Lun Ho, Xiaoling Cui, Weiran Li Department of Physics, The Ohio State University,

More information

Path of Momentum Integral in the Skorniakov-Ter-Martirosian Equation

Path of Momentum Integral in the Skorniakov-Ter-Martirosian Equation Commun. Theor. Phys. 7 (218) 753 758 Vol. 7, No. 6, December 1, 218 Path of Momentum Integral in the Skorniakov-Ter-Martirosian Equation Chao Gao ( 高超 ) 1, and Peng Zhang ( 张芃 ) 2,3,4, 1 Department of

More information

The Structure of the Asymmetric Helium Trimer 3 He 4 He 2 Dario Bressanini*

The Structure of the Asymmetric Helium Trimer 3 He 4 He 2 Dario Bressanini* pubs.acs.org/jpca The Structure of the Asymmetric Helium Trimer 3 He 4 He 2 Dario Bressanini* Dipartimento di Scienza e Alta Tecnologia, Universita dell Insubria, Via Lucini 3, 22100 Como Italy ABSTRACT:

More information

Collapsing Bose-Einstein condensates beyond the Gross-Pitaevskii approximation

Collapsing Bose-Einstein condensates beyond the Gross-Pitaevskii approximation Collapsing Bose-Einstein condensates beyond the Gross-Pitaevskii approximation S. Wüster,* J. J. Hope, and C. M. Savage ARC Centre of Excellence for Quantum-Atom Optics, Department of Physics, Australian

More information

Photoassociation spectroscopy of a spin-1 Bose-Einstein condensate

Photoassociation spectroscopy of a spin-1 Bose-Einstein condensate Photoassociation spectroscopy of a spin-1 Bose-Einstein condensate C. D. Hamley, E. M. Bookjans, G. Behin-Aein, P. Ahmadi, and M. S. Chapman School of Physics, Georgia Institute of Technology, Atlanta,

More information

Marcelo Takeshi Yamashita Instituto de Física Teórica IFT / UNESP

Marcelo Takeshi Yamashita Instituto de Física Teórica IFT / UNESP Marcelo Takeshi Yamashita yamashita@ift.unesp.br Instituto de Física Teórica IFT / UNSP M. R. Hadizadeh IFT MTY IFT A. Delfino UFF T. Frederico ITA F. F. Bellotti ITA D. S. Ventura IFT L. Tomio UFF/IFT

More information

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois

BCS Pairing Dynamics. ShengQuan Zhou. Dec.10, 2006, Physics Department, University of Illinois BCS Pairing Dynamics 1 ShengQuan Zhou Dec.10, 2006, Physics Department, University of Illinois Abstract. Experimental control over inter-atomic interactions by adjusting external parameters is discussed.

More information

Resonances in Chemical Reactions : Theory and Experiment. Toshiyuki Takayanagi Saitama University Department of Chemistry

Resonances in Chemical Reactions : Theory and Experiment. Toshiyuki Takayanagi Saitama University Department of Chemistry Resonances in Chemical Reactions : Theory and Experiment Toshiyuki Takayanagi Saitama University Department of Chemistry What is Chemical Reaction? Collision process between molecules (atoms) containing

More information

YbRb A Candidate for an Ultracold Paramagnetic Molecule

YbRb A Candidate for an Ultracold Paramagnetic Molecule YbRb A Candidate for an Ultracold Paramagnetic Molecule Axel Görlitz Heinrich-Heine-Universität Düsseldorf Santa Barbara, 26 th February 2013 Outline 1. Introduction: The Yb-Rb system 2. Yb + Rb: Interactions

More information

Scaling limit of virtual states of triatomic systems

Scaling limit of virtual states of triatomic systems PHYSICAL REVIEW A 66, 0570 00 Scaling limit of virtual states of triatomic systems M. T. Yamashita, 1 T. Frederico, A. Delfino, 3 and Lauro Tomio 4 1 Laboratório do Acelerador Linear, Instituto de Física,

More information

What are we going to talk about: BEC and Nonlinear Atom Optics

What are we going to talk about: BEC and Nonlinear Atom Optics What are we going to talk about: BEC and Nonlinear Atom Optics Nobel Prize Winners E. A. Cornell 1961JILA and NIST Boulder, Co, USA W. Ketterle C. E. Wieman 19571951MIT, JILA and UC, Cambridge.M Boulder,

More information

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke

BCS-BEC Crossover. Hauptseminar: Physik der kalten Gase Robin Wanke BCS-BEC Crossover Hauptseminar: Physik der kalten Gase Robin Wanke Outline Motivation Cold fermions BCS-Theory Gap equation Feshbach resonance Pairing BEC of molecules BCS-BEC-crossover Conclusion 2 Motivation

More information

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University

Strongly correlated systems in atomic and condensed matter physics. Lecture notes for Physics 284 by Eugene Demler Harvard University Strongly correlated systems in atomic and condensed matter physics Lecture notes for Physics 284 by Eugene Demler Harvard University January 25, 2011 2 Chapter 12 Collective modes in interacting Fermi

More information

Reference for most of this talk:

Reference for most of this talk: Cold fermions Reference for most of this talk: W. Ketterle and M. W. Zwierlein: Making, probing and understanding ultracold Fermi gases. in Ultracold Fermi Gases, Proceedings of the International School

More information

Low-dimensional Bose gases Part 1: BEC and interactions

Low-dimensional Bose gases Part 1: BEC and interactions Low-dimensional Bose gases Part 1: BEC and interactions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Photonic, Atomic and Solid State Quantum Systems Vienna, 2009 Introduction

More information

arxiv: v2 [cond-mat.other] 15 Sep 2008

arxiv: v2 [cond-mat.other] 15 Sep 2008 Binding Energies of 6 Li p-wave Feshbach Molecules J. Fuchs, C. Ticknor, P. Dyke, G. Veeravalli, E. Kuhnle, W. Rowlands, P. Hannaford, and C. J. Vale ARC Centre of Excellence for Quantum Atom Optics, Centre

More information

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101.

5 questions, 3 points each, 15 points total possible. 26 Fe Cu Ni Co Pd Ag Ru 101. Physical Chemistry II Lab CHEM 4644 spring 2017 final exam KEY 5 questions, 3 points each, 15 points total possible h = 6.626 10-34 J s c = 3.00 10 8 m/s 1 GHz = 10 9 s -1. B= h 8π 2 I ν= 1 2 π k μ 6 P

More information

Why ultracold molecules?

Why ultracold molecules? Cold & ultracold molecules new frontiers J. Ye, JILA Michigan Quantum Summer School, Ann Arbor, June 18, 2008 Quantum dipolar gas Precision test QED ee- eehco OH H2O H2CO Quantum measurement Chemical reactions

More information

Ultracold Molecules and Cold Controlled Chemistry. Roman Krems University of British Columbia

Ultracold Molecules and Cold Controlled Chemistry. Roman Krems University of British Columbia Ultracold Molecules and Cold Controlled Chemistry Roman Krems University of British Columbia Sergey Alyabyshev Zhiying Li Timur Tscherbul ultra-cold cold warm hot 10-8 10-7 10-6 10-5 10-4 10-3 10-2 10-1

More information

Exact relations for two-component Fermi gases with contact interactions

Exact relations for two-component Fermi gases with contact interactions QMATH13, Oct. 8-11, 2016 Exact relations for two-component Fermi gases with contact interactions Shina Tan, Georgia Institute of Technology 1 Outline The system Hamiltonian Energy functional The contact

More information

Fluctuations between the BCS and BEC Limits in the System of Ultracold Alkali Atoms

Fluctuations between the BCS and BEC Limits in the System of Ultracold Alkali Atoms Vol. 109 (2006) ACTA PHYSICA POLONICA A No. 4 5 Proceedings of the XI National School Collective Phenomena and Their Competition Kazimierz Dolny, September 25 29, 2005 Fluctuations between the BCS and

More information

Dipolar quantum gases Barcelona, May 2010

Dipolar quantum gases Barcelona, May 2010 Barcelona, May D DQG Quasi-D DQG Institut für Theoretische Physik, Johannes Kepler Universität, Linz, Austria May, Outline D DQG Quasi-D DQG : D polarization polarization : Slabs : weakly/unpolarized dipoles

More information

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011

Quantum Gases. Subhadeep Gupta. UW REU Seminar, 11 July 2011 Quantum Gases Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms, Mixtures, and Molecules Subhadeep Gupta UW REU Seminar, 11 July 2011 Ultracold Atoms High sensitivity (large signal to noise,

More information

Lifetimes of ultralong range Rydberg molecules in a dense Bose Einstein condensate

Lifetimes of ultralong range Rydberg molecules in a dense Bose Einstein condensate Lifetimes of ultralong range Rydberg molecules in a dense Bose Einstein condensate Experiment: Joseph D. Whalen, F. Camargo, R. Ding, T. C. Killian, F. B. Dunning Theory: J. Pérez Ríos, S. Yoshida, J.

More information

Blazed Nanostructure Gratings for Electron and Atom Diffraction

Blazed Nanostructure Gratings for Electron and Atom Diffraction Blazed Nanostructure Gratings for Electron and Atom Diffraction Alexander D. Cronin, Ben McMorran, Mark Robertson-Tessi Department of Physics, University of Arizona, 1118 E th St. Tucson, Arizona 8571

More information

Superfluidity in interacting Fermi gases

Superfluidity in interacting Fermi gases Superfluidity in interacting Fermi gases Quantum many-body system in attractive interaction Molecular condensate BEC Cooper pairs BCS Thomas Bourdel, J. Cubizolles, L. Khaykovich, J. Zhang, S. Kokkelmans,

More information

arxiv:cond-mat/ v1 [cond-mat.other] 27 Mar 2007

arxiv:cond-mat/ v1 [cond-mat.other] 27 Mar 2007 39 K Bose-Einstein condensate with tunable interactions arxiv:cond-mat/0703714v1 [cond-mat.other] 27 Mar 2007 G. Roati, 1 M. Zaccanti, 1 C. D Errico, 1 J. Catani, 1 M. Modugno, 2 A. Simoni, 3 M. Inguscio,

More information

Vortices in Atomic Bose-Einstein Condensates in the large gas parameter region. Abstract

Vortices in Atomic Bose-Einstein Condensates in the large gas parameter region. Abstract Vortices in Atomic Bose-Einstein Condensates in the large gas parameter region J. K. Nilsen 1), J. Mur-Petit 2), M. Guilleumas 2), M. Hjorth-Jensen 1), and A.Polls 2) 1 ) Department of Physics, University

More information

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and

From BEC to BCS. Molecular BECs and Fermionic Condensates of Cooper Pairs. Preseminar Extreme Matter Institute EMMI. and From BEC to BCS Molecular BECs and Fermionic Condensates of Cooper Pairs Preseminar Extreme Matter Institute EMMI Andre Wenz Max-Planck-Institute for Nuclear Physics and Matthias Kronenwett Institute for

More information

Confining ultracold atoms on a ring in reduced dimensions

Confining ultracold atoms on a ring in reduced dimensions Confining ultracold atoms on a ring in reduced dimensions Hélène Perrin Laboratoire de physique des lasers, CNRS-Université Paris Nord Charge and heat dynamics in nano-systems Orsay, October 11, 2011 What

More information

Laser induced manipulation of atom pair interaction

Laser induced manipulation of atom pair interaction Laser induced manipulation of atom pair interaction St. Falke, Chr. Samuelis, H. Knöckel, and E. Tiemann Institute of Quantum Optics, European Research Training Network Cold Molecules SFB 407 Quantum limited

More information

Ultracold molecules - a new frontier for quantum & chemical physics

Ultracold molecules - a new frontier for quantum & chemical physics Ultracold molecules - a new frontier for quantum & chemical physics Debbie Jin Jun Ye JILA, NIST & CU, Boulder University of Virginia April 24, 2015 NIST, NSF, AFOSR, ARO Ultracold atomic matter Precise

More information