Chapter 2. f)!.. _ If _ (20 X 10-2 m) x (10 x HP Hz) _ 6 ' ( li 'bl ),8 I.. - Up - 3 x 108 mls -. x neg gt e.

Size: px
Start display at page:

Download "Chapter 2. f)!.. _ If _ (20 X 10-2 m) x (10 x HP Hz) _ 6 ' ( li 'bl ),8 I.. - Up - 3 x 108 mls -. x neg gt e."

Transcription

1 CHAPTER 2 23 Chapter 2 Sections 2-1 to 2-4: Tcansmission-Line Model ~blem 2.UA transmission line of length I connects a load to a sinusoidal voltage source with an oscillation frequency f. Assuming the velocity of wave propagation on the line is c, for which of the fohowing situations is it reasonable to ignore the presence of the transmission line in the solution of the circuit: (a) 1=20 em,f= 10kHz, (b) I =50km,f=60Hz, (c) 1=20 em, f = 300 MHz, (d) 1=1 mm,f= 100GHz. Solution: A transmission line is negligible when 1II..~ f)!.. _ If _ (20 X 10-2 m) x (10 x HP Hz) _ 6 ' ( li 'bl ),8 I.. - Up - 3 x 108 mls -. x neg gt e. (b)!... = If = (50 x 103 m) x (60 x 10 Hz) _ 0 01 (00 fin) 'I rdere. r.. Up X I mls I If (20 x 10-2 m) x (300 x 106 Hz) (c) l = up = 3 x 1()8 mls =0.20 (nonnegligible). (d)!.. = If = (l X 10-3 m) x (100 x 109 Hz) _ 0 33 ( r 'bi I.. up 3 x los mls -. nonneg JgI e). Calculate the line parameters RI, V, G'" and C' for a coaxial line with diameter of 0.5 cm and an outer conductor diameter of 1 em, with an insulating material where J1. =Po, Er = 2.25, and 0' = 10-3 S/m. The are made of copper with Pc =JlO and Oc = 5.8 x 107 S/m. The operating is 1GHz. Given Eqs. (2.5) and (2.6) gives a = (0.5/2) em =0.25x 10-2 ill, b = (1.0/2) cm = 0.50x 10-2 m, = ~V1tfJlc 21t O'c (.!+.!) a b x(109 Hz)(4x x 10-7 HIm) (1 1) 5.8 X 107 Sim 0.25 x 10-2 m x 10-2 m Wm.

2 24 CHAPTER 2 From Eq. (2.7), L I = 21t -In Jl (b) a- = 41t x t Him In2= 139nWm. From Eq. (2.8), G' = 21tO' _ 21t X 10-3 Slm In(b/a) - In2 =9.1 ms/m. From Eq. (2.9), C' = 21t = 2~ _ 21t x 225 x (8.854 x F/m). In (b/a) In(b/a) - 1_" = 181 pf/m. Problem 2.3 A I-GHz parallel-plate transmission line consists of 1.5-crn-wide copper strips separated by a O.2-em-thick layer of polystyrene. Appendix B gives Pc = PO =41t X 10-7 (Wm) and O'c= 5.8 X 107 (S/m) for copper, and Er = 2.6 for polystyrene. Use Table 2-1 to determine the line parameters of the transmission line. Assume J.l=Jlo and (j ~ 0 for polystyrene. Solution: R,2Rs = -;- = w 2..j1tfPcO'c = 1.5 x (1tX109X41tXIO-7)1/2 5.8 X 107 = 1.0 (Wm), L-,_Jld_41tX1O-7x2xlO x 10-7 (HI) w 1.5x lo- m, G' = 0 becausea = 0,, ew w X C = - = EoEr- = ~ x 2.6 x 3 = 1.72 x 10- (F/m). d d 1t 2xlO- Problem 2.4 Show that the transmission line model shown in Fig (P2.4) yields the same telegrapher's equations given by Egs. (2.14) and (2.16). Solution: The voltage at the central upper node is the same whether it is calculated from the left port or the right port: v(z+ ~~,t) = v(z,t) -!R'L\z i(z,t) -!L'L\z~i(z,t) = V(z+L\z,t) +!R'L\z i(z+~,t) +1L'~;i(Z+L\z,t).

3 26 CHAPTER 2 Section 2-5: The Lossless Line Problem 2.6 In addition to not dissipating power. a lossless line has two important features: (1) it is dispertionless (p.p is independent of frequency) and (2) its characteristic impedance Zo is purely real. Sometimes, it is not possible to design a transmission line such that RI «: ool' and GI «: «c1, but it is possible to choose the dimensions of the line and its material properties so as to satisfy the condition R' Cl = L' G' (distortionless line). Such a line is called a distortionless line because despite the fact that it is not lossless, it does nonetheless possess the previously mentioned features of the loss line. Show that for a distortionless line, a=r' ~' - D =VR'G, (3 = 00.../DC I, Solution: Using the distortionless condition in Eq. (2.22) gives '{= a+ j~ = J(R' + jml!)(g' + jo:c/) =VL'Clj(~+jOO) (g+jro) = VL'C't I (Z +joo) (~: +jro) = VL'C' (R' L' + joo ) =R'V(CI Ii +jrovl'c'. Hence, f3 = :Jm(y) = OO.../L'C', ro 1 up = J3 = VllC'. Similarly, using the distortion less condition in Eq. (2.29) gives zo= G' R' +jrocl +jrol' = V{I! Ci G'IC' RilL' + +joo jro = V{if Ci. (mnp/m),

4 CHAPTER 2 27 Solution: The product of the expressions for ex and Zo given in Problem 2.6 gives It = azo =40 X 10-3 X 50 =2 (Wm), and taking the ratio of the expression for Zo to that for up = ro/f3 = 1/"; L'CI gives I ZO 50-7 L = - = = 2 x 10 (HIm) = 200 (nhim). up xl With If known, we use the expression for Zo to find CI: The distortionless 1 2 x 10-7 Cl = Z3 = (50'''' =8 x (F/m) = 80 (pf/m). condition given in Problem 2.6 is then used to find G'. G' = KC' L' = 2 X280 x XW- 1~-12 8 X 10-4 (S/m) = 800 (.us/m), and the wavelength is obtained by applying the relation Problem 2.8 Find ex and Zo of a distortionless line whose RI = 4 Wm and GI= 4 X 10-4 S/m. Solution: From the equations given in Problem 2.6. ex = VR'(JI = 14x 4 x 10-4)1/2 =4 x 10-2 (Np/m), Zo=V(J=V(j= {if (iii ( 4xlO-4 4 ) 1/2 =100Q.. Problem 2.9 A transmission line operating at 125 MHz has Zo = a = 0.02 and p = 0.75 rad/m. Find the line parameters RI If, G'. and CI...Solution: Given an arbitrary transmission line, f = 125 MHz, Zo = 40 a, = 0.02 Np/m, and f3 = 0.75 radlm. Since Zo is real and ex:j: O. the line is From Problem 2.6, 13 =rovl'c' and 20 =.jl'/c', therefore, LI = 1320 = _ 0.7~ ~ 40 =38.2 nh/m. ID

5 28 CHAPTER 2 Then, from Zo = vl'ie'. From a = v'r'g' and R'e' = L'G',, L' 38.2 nh/m e = Z2 = 402 = 23.9 pf/m. o and R' = v'rig'y /R' 0' = v'r'g' V(Tf Ci = azo = 0.02 Np/m x 40 Q = 0.8 Wm a.2 (0.02 Np/mf = 0.5 ms/m. G' = - R' = 0. 8 Wm Problem 2.10 Using a slotted line, the voltage on a lossless transmission line was found to have a maximum magnitude of 1.5 V and a minimum magnitude of 0.8 v. Find the magnitude of the load's reflection coefficient. Solution: From the definition of the Standing Wave Ratio given by Eq. (2.59), s= IVlmax 1.5 IVloon = 0.8 = 1.9. Solving for the magnitude of the reflection coefficient in terms of S, as in Example 2-4, In= S-l = 1.9- I = 0.3.., S J.P Polyethylene with Er = 2.25 is used as the insulating material in a Iossless coaxial line with characteristic impedance of 50 Q. The radius of the inner conductor is 1 rom. (a) What is the radius of the outer conductor? (b) What is the phase velocity of the line? Solution: Given a Iossless coaxial line, Zo = 50.0, Er = 2.3, a = 1 rom: (a) From Table 2-2, Zo = (60/ fijln (b/a) which can be rearranged to give b = a/-ov' r/60 = (1 mm)e50v1.3/60 = 3.5 mm.

6 CHAPTER 2 29 (b) Also from Table 2-2, Up = ~ = 3 X 108 mls.je;.j23 = 1.98 X 108 mfs. (problem A 50-Q lossless transmission line is tenninated in a load with impedance ZL = (30- j60) 0. The wavelength is 5 em. Find: (a) the reflection coefficient at the load, (b) the standing-wave ratio on the line, (c) the position of the voltage maximum nearest the load, (d) the position of the current maximum nearest the load Solution: (a) From Eq. (2.49a), (b) From Eq. (2.59), (c) From Eq. (2.56) r= Zr. -Zo. (30- j60) -50 = 0.632e-j71.6. ZL+Zo (30-j60) Irl _ =4.44. S = _ _ era. na. _ x 5 em 1t rad n x 5 em max - 41t t = em em =2.00 em. (d) A current maximum occurs at a voltage minimum, and from Eq. (2.58), lmin = lmax-'}../4 = 2.oocm-5 cm/4 = 0.75 em. CProblem 2W On a 150-Q lossless transmission Jine, the following observations were noted: distance of first voltage minimum from the load = 3 em; distance of first voltage maximum from the load = 9 em; S =3. Find ZL. Solution: Distance between a minimum and an adjacent maximum = A./4. Hence, 9 em - 3 em = 6 em = '}../4,

7 30 CHAPTER 2 or A. = 24 em. Accordingly, the first voltage minimum is at fmin = 3 cm = ~. Application of Eq. (2.57) with n = 0 gives which gives at = -1t/2. Hence, r = 0.5 e- jrr.j2 = - jo.5. Finally, 21t A at - 2 x - x - = -1t A 8 ' S W/=-=-=-=0.5. S+l Problem 2.14 Using a slotted line, the following results were obtained: distance of first minimum from the load = 4 em; distance of second minimum from the load = 14 em, voltage standing-wave ratio = 2.5. If the line is lossless and Zo = 50.0, find the load impedance. Solution: Following Example 2.5: Given a loss less line with Zo = 50 Q, S = 2.5, lmin(o) =4 em, lmin(l) = 14 em. Then A. or lmin(l) -lmin(o) = 2" 11.=2 X (lmin(l) -lmin(o») = 20 em and From this we obtain 211: 211:rad/cycle = 101t rad/m. J3= T = 20 em/cycle at = 2f3lmin(n) - (2n + 1)1t rad = 2 x 101t rad/m x 0.04 m - 1t rad = -0.21t rad = Also, WI = S - I _ I S+] =

and Ee = E ; 0 they are separated by a dielectric material having u = io-s S/m, µ, = µ, 0

and Ee = E ; 0 they are separated by a dielectric material having u = io-s S/m, µ, = µ, 0 602 CHAPTER 11 TRANSMISSION LINES 11.10 Two identical pulses each of magnitude 12 V and width 2 µs are incident at t = 0 on a lossless transmission line of length 400 m terminated with a load. If the two

More information

. -2 (ZL+jZotanf3l) Zo + jzl J31 _ (60+j20)+j50tan(21trad/mx2.5m))

. -2 (ZL+jZotanf3l) Zo + jzl J31 _ (60+j20)+j50tan(21trad/mx2.5m)) CHAPTER 8 277 Section 8-6: Input Impedance Problem 8.17 At an operating frequency of 300 MHz, a loss less 50-0. air-spaced transmission line 2.501 in length is terminated with an impedance 4'. = (60+ j20)

More information

ro 2n x 300 x 106 P = - = ~ _~n = 21t rad/m.

ro 2n x 300 x 106 P = - = ~ _~n = 21t rad/m. 32 CHAPTER 2 Section 2-6: Input Impedance Problem 2.17 At an operating frequency of 300 MHz. a Iossless 50-0 air-spaced transmission line 2.5 m in length is terminated with an impedance ZL = (60+ j20)

More information

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 11. Transmission Lines. Islamic University of Gaza Electrical Engineering Department Dr. EEE 333 Electromagnetic II Chapter 11 Transmission ines Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 1 1 11.1 Introduction Wave propagation in unbounded media is used in

More information

Chapter 1: Introduction: Waves and Phasors

Chapter 1: Introduction: Waves and Phasors Chapter : Introduction: Waves and Phasors Lesson # Chapter Section: Chapter Topics: EM history and how it relates to other fields Highlights: EM in Classical era: 000 BC to 900 Examples of Modern Era Technology

More information

Instructor s Guide Fundamentals of Applied Electromagnetics 2006 Media Edition Fawwaz T. Ulaby

Instructor s Guide Fundamentals of Applied Electromagnetics 2006 Media Edition Fawwaz T. Ulaby Instructor s Guide Fundamentals of Applied Electromagnetics 006 Media Edition Fawwaz T. Ulaby Dear Instructor: This Instructor s Guide is intended for use by the course instructor only. It was developed

More information

ECE 3300 Standing Waves

ECE 3300 Standing Waves Standing Waves ECE3300 Lossless Transmission Lines Lossless Transmission Line: Transmission lines are characterized by: and Zo which are a function of R,L,G,C To minimize loss: Use high conductivity materials

More information

University of Saskatchewan Department of Electrical Engineering

University of Saskatchewan Department of Electrical Engineering University of Saskatchewan Department of Electrical Engineering December 9,2004 EE30 1 Electricity, Magnetism and Fields Final Examination Professor Robert E. Johanson Welcome to the EE301 Final. This

More information

ANTENNAS and MICROWAVES ENGINEERING (650427)

ANTENNAS and MICROWAVES ENGINEERING (650427) Philadelphia University Faculty of Engineering Communication and Electronics Engineering ANTENNAS and MICROWAVES ENGINEERING (65427) Part 2 Dr. Omar R Daoud 1 General Considerations It is a two-port network

More information

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines

TC 412 Microwave Communications. Lecture 6 Transmission lines problems and microstrip lines TC 412 Microwave Communications Lecture 6 Transmission lines problems and microstrip lines RS 1 Review Input impedance for finite length line Quarter wavelength line Half wavelength line Smith chart A

More information

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering

INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad Electronics and Communicaton Engineering INSTITUTE OF AERONAUTICAL ENGINEERING Dundigal, Hyderabad - 00 04 Electronics and Communicaton Engineering Question Bank Course Name : Electromagnetic Theory and Transmission Lines (EMTL) Course Code :

More information

UNIVERSITY OF BOLTON. SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2018

UNIVERSITY OF BOLTON. SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING EXAMINATION SEMESTER /2018 ENG018 SCHOOL OF ENGINEERING, SPORTS and SCIENCES BENG (HONS) ELECTRICAL & ELECTRONICS ENGINEERING MODULE NO: EEE6002 Date: 17 January 2018 Time: 2.00 4.00 INSTRUCTIONS TO CANDIDATES: There are six questions.

More information

Topic 5: Transmission Lines

Topic 5: Transmission Lines Topic 5: Transmission Lines Profs. Javier Ramos & Eduardo Morgado Academic year.13-.14 Concepts in this Chapter Mathematical Propagation Model for a guided transmission line Primary Parameters Secondary

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Our discussion on dynamic electromagnetic field is incomplete. I H E An AC current induces a magnetic field, which is also AC and thus induces an AC electric field. H dl Edl J ds

More information

Electromagnetic Waves

Electromagnetic Waves Electromagnetic Waves Maxwell s equations predict the propagation of electromagnetic energy away from time-varying sources (current and charge) in the form of waves. Consider a linear, homogeneous, isotropic

More information

Lecture Outline 9/27/2017. EE 4347 Applied Electromagnetics. Topic 4a

Lecture Outline 9/27/2017. EE 4347 Applied Electromagnetics. Topic 4a 9/7/17 Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 4a Transmission Lines Transmission These Lines notes may

More information

1.3 Sinusoidal Steady State

1.3 Sinusoidal Steady State 1.3 Sinusoidal Steady State Electromagnetics applications can be divided into two broad classes: Time-domain: Excitation is not sinusoidal (pulsed, broadband, etc.) Ultrawideband communications Pulsed

More information

INTRODUCTION TO TRANSMISSION LINES DR. FARID FARAHMAND FALL 2012

INTRODUCTION TO TRANSMISSION LINES DR. FARID FARAHMAND FALL 2012 INTRODUCTION TO TRANSMISSION LINES DR. FARID FARAHMAND FALL 2012 http://www.empowermentresources.com/stop_cointelpro/electromagnetic_warfare.htm RF Design In RF circuits RF energy has to be transported

More information

Name. Section. Short Answer Questions. 1. (20 Pts) 2. (10 Pts) 3. (5 Pts) 4. (10 Pts) 5. (10 Pts) Regular Questions. 6. (25 Pts) 7.

Name. Section. Short Answer Questions. 1. (20 Pts) 2. (10 Pts) 3. (5 Pts) 4. (10 Pts) 5. (10 Pts) Regular Questions. 6. (25 Pts) 7. Name Section Short Answer Questions 1. (20 Pts) 2. (10 Pts) 3. (5 Pts). (10 Pts) 5. (10 Pts) Regular Questions 6. (25 Pts) 7. (20 Pts) Notes: 1. Please read over all questions before you begin your work.

More information

Kimmo Silvonen, Transmission lines, ver

Kimmo Silvonen, Transmission lines, ver Kimmo Silvonen, Transmission lines, ver. 13.10.2008 1 1 Basic Theory The increasing operating and clock frequencies require transmission line theory to be considered more and more often! 1.1 Some practical

More information

ECE 107: Electromagnetism

ECE 107: Electromagnetism ECE 107: Electromagnetism Set 2: Transmission lines Instructor: Prof. Vitaliy Lomakin Department of Electrical and Computer Engineering University of California, San Diego, CA 92093 1 Outline Transmission

More information

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation

Transmission Lines. Plane wave propagating in air Y unguided wave propagation. Transmission lines / waveguides Y. guided wave propagation Transmission Lines Transmission lines and waveguides may be defined as devices used to guide energy from one point to another (from a source to a load). Transmission lines can consist of a set of conductors,

More information

Chapter 24 Capacitance and Dielectrics

Chapter 24 Capacitance and Dielectrics Chapter 24 Capacitance and Dielectrics 1 Capacitors and Capacitance A capacitor is a device that stores electric potential energy and electric charge. The simplest construction of a capacitor is two parallel

More information

Chapter 24 Capacitance and Dielectrics

Chapter 24 Capacitance and Dielectrics Chapter 24 Capacitance and Dielectrics 1 Capacitors and Capacitance A capacitor is a device that stores electric potential energy and electric charge. The simplest construction of a capacitor is two parallel

More information

Pulses in transmission lines

Pulses in transmission lines Pulses in transmission lines Physics 401, Fall 2018 Eugene V. Colla Definition Distributed parameters network Pulses in transmission line Wave equation and wave propagation Reflections. Resistive load

More information

PHY3128 / PHYM203 (Electronics / Instrumentation) Transmission Lines

PHY3128 / PHYM203 (Electronics / Instrumentation) Transmission Lines Transmission Lines Introduction A transmission line guides energy from one place to another. Optical fibres, waveguides, telephone lines and power cables are all electromagnetic transmission lines. are

More information

COURTESY IARE. Code No: R R09 Set No. 2

COURTESY IARE. Code No: R R09 Set No. 2 Code No: R09220404 R09 Set No. 2 II B.Tech II Semester Examinations,APRIL 2011 ELECTRO MAGNETIC THEORY AND TRANSMISSION LINES Common to Electronics And Telematics, Electronics And Communication Engineering,

More information

A L A BA M A L A W R E V IE W

A L A BA M A L A W R E V IE W A L A BA M A L A W R E V IE W Volume 52 Fall 2000 Number 1 B E F O R E D I S A B I L I T Y C I V I L R I G HT S : C I V I L W A R P E N S I O N S A N D TH E P O L I T I C S O F D I S A B I L I T Y I N

More information

Introduction to RF Design. RF Electronics Spring, 2016 Robert R. Krchnavek Rowan University

Introduction to RF Design. RF Electronics Spring, 2016 Robert R. Krchnavek Rowan University Introduction to RF Design RF Electronics Spring, 2016 Robert R. Krchnavek Rowan University Objectives Understand why RF design is different from lowfrequency design. Develop RF models of passive components.

More information

MODULE-4 RESONANCE CIRCUITS

MODULE-4 RESONANCE CIRCUITS Introduction: MODULE-4 RESONANCE CIRCUITS Resonance is a condition in an RLC circuit in which the capacitive and inductive Reactance s are equal in magnitude, there by resulting in purely resistive impedance.

More information

Conventional Paper-I-2011 PART-A

Conventional Paper-I-2011 PART-A Conventional Paper-I-0 PART-A.a Give five properties of static magnetic field intensity. What are the different methods by which it can be calculated? Write a Maxwell s equation relating this in integral

More information

ECE 546 Lecture 13 Scattering Parameters

ECE 546 Lecture 13 Scattering Parameters ECE 546 Lecture 3 Scattering Parameters Spring 08 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 546 Jose Schutt Aine Transfer Function Representation

More information

P a g e 3 6 of R e p o r t P B 4 / 0 9

P a g e 3 6 of R e p o r t P B 4 / 0 9 P a g e 3 6 of R e p o r t P B 4 / 0 9 p r o t e c t h um a n h e a l t h a n d p r o p e r t y fr om t h e d a n g e rs i n h e r e n t i n m i n i n g o p e r a t i o n s s u c h a s a q u a r r y. J

More information

Lecture Outline. Attenuation Coefficient and Phase Constant Characteristic Impedance, Z 0 Special Cases of Transmission Lines

Lecture Outline. Attenuation Coefficient and Phase Constant Characteristic Impedance, Z 0 Special Cases of Transmission Lines Course Instructor Dr. Raymond C. Rumpf Office: A 337 Phone: (915) 747 6958 E Mail: rcrumpf@utep.edu EE 4347 Applied Electromagnetics Topic 4b Transmission Line Parameters Transmission These Line notes

More information

(12a x +14a y )= 8.5a x 9.9a y A/m

(12a x +14a y )= 8.5a x 9.9a y A/m Chapter 11 Odd-Numbered 11.1. Show that E xs Ae jk 0z+φ is a solution to the vector Helmholtz equation, Sec. 11.1, Eq. (16), for k 0 ω µ 0 ɛ 0 and any φ and A:We take d dz Aejk 0z+φ (jk 0 ) Ae jk 0z+φ

More information

TECHNO INDIA BATANAGAR

TECHNO INDIA BATANAGAR TECHNO INDIA BATANAGAR ( DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING) QUESTION BANK- 2018 1.Vector Calculus Assistant Professor 9432183958.mukherjee@tib.edu.in 1. When the operator operates on

More information

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3332 Electromagnetic II Chapter 9 Maxwell s Equations Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2012 1 Review Electrostatics and Magnetostatics Electrostatic Fields

More information

STUDY OF LOSS EFFECT OF TRANSMISSION LINES AND VALIDITY OF A SPICE MODEL IN ELECTROMAG- NETIC TOPOLOGY

STUDY OF LOSS EFFECT OF TRANSMISSION LINES AND VALIDITY OF A SPICE MODEL IN ELECTROMAG- NETIC TOPOLOGY Progress In Electromagnetics Research, PIER 90, 89 103, 2009 STUDY OF LOSS EFFECT OF TRANSMISSION LINES AND VALIDITY OF A SPICE MODEL IN ELECTROMAG- NETIC TOPOLOGY H. Xie, J. Wang, R. Fan, andy. Liu Department

More information

Circuit Representation of TL s A uniform TL may be modeled by the following circuit representation:

Circuit Representation of TL s A uniform TL may be modeled by the following circuit representation: TRANSMISSION LINE THEORY (TEM Line) A uniform transmission line is defined as the one whose dimensions and electrical properties are identical at all planes transverse to the direction of propaation. Circuit

More information

ELECTROMANETIC PULSE PROPAGATION IN A COAXIAL CABLE

ELECTROMANETIC PULSE PROPAGATION IN A COAXIAL CABLE ELECTROMANETIC PULSE PROPAGATION IN A COAXIAL CABLE The mechanical waves on a stretched string are easily generated and observed but not easily studied in quantitative detail. The propagating waves in

More information

ECE 451 Advanced Microwave Measurements. TL Characterization

ECE 451 Advanced Microwave Measurements. TL Characterization ECE 451 Advanced Microwave Measurements TL Characterization Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jesa@illinois.edu ECE 451 Jose Schutt-Aine 1 Maxwell s Equations

More information

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 7

ECE 6340 Intermediate EM Waves. Fall Prof. David R. Jackson Dept. of ECE. Notes 7 ECE 634 Intermediate EM Waves Fall 16 Prof. David R. Jackson Dept. of ECE Notes 7 1 TEM Transmission Line conductors 4 parameters C capacitance/length [F/m] L inductance/length [H/m] R resistance/length

More information

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT

ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT Chapter 31: ELECTROMAGNETIC OSCILLATIONS AND ALTERNATING CURRENT 1 A charged capacitor and an inductor are connected in series At time t = 0 the current is zero, but the capacitor is charged If T is the

More information

I.~ I ./ TT. Figure P6.1: Loops of Problem 6.1.

I.~ I ./ TT. Figure P6.1: Loops of Problem 6.1. CHAPTER 6 249 Chapter 6 Sections 6-1 to 6-6: Faraday's Law and its Applications Problem 6.1 The switch in the bottom loop of Fig. 6-17 (p6.1) is closed at t = 0 and then opened at a later time tl. What

More information

Contents. Transmission Lines The Smith Chart Vector Network Analyser (VNA) ü structure ü calibration ü operation. Measurements

Contents. Transmission Lines The Smith Chart Vector Network Analyser (VNA) ü structure ü calibration ü operation. Measurements Contents Transmission Lines The Smith Chart Vector Network Analyser (VNA) ü structure ü calibration ü operation Measurements Göran Jönsson, EIT 2015-04-27 Vector Network Analysis 2 Waves on Lines If the

More information

Bridge Measurement 2.1 INTRODUCTION Advantages of Bridge Circuit

Bridge Measurement 2.1 INTRODUCTION Advantages of Bridge Circuit 2 Bridge Measurement 2.1 INTRODUCTION Bridges are often used for the precision measurement of component values, like resistance, inductance, capacitance, etc. The simplest form of a bridge circuit consists

More information

Pulses in transmission lines

Pulses in transmission lines Pulses in transmission lines Physics 401, Fall 013 Eugene V. Colla Definition Distributed parameters networ Pulses in transmission line Wave equation and wave propagation eflections. esistive load Thévenin's

More information

Chapter In Fig , the magnetic flux through the loop increases according to the relation Φ B. =12.0t

Chapter In Fig , the magnetic flux through the loop increases according to the relation Φ B. =12.0t Chapter 30 30.1 In Fig. 30-37, the magnetic lux through the loop increases according to the relation = 6.0t 2 + 7.0t where the lux is in milliwebers and t is in seconds. (a) What is the magnitude o the

More information

Introduction. Concept of shielding

Introduction. Concept of shielding Shielding Introduction Concept of shielding Shielding of a metal shield (theory) For E field SE.. 2log E E i t For H field SE.. 2log H H i t Do they be equal? Shielding of a metal shield (theory) It depends.

More information

Name: Date: Final Exam

Name: Date: Final Exam Name: Date: Final Exam Physics 2306 Fall 2012 FORM A BEFORE YOU BEGIN: 1. Fill in CORRECTLY your ID number in the Scantron, as well as which FORM of the test you have. 2. Write in the course number (2306)

More information

The Basic Capacitor. Dielectric. Conductors

The Basic Capacitor. Dielectric. Conductors Chapter 9 The Basic Capacitor Capacitors are one of the fundamental passive components. In its most basic form, it is composed of two conductive plates separated by an insulating dielectric. The ability

More information

Driven RLC Circuits Challenge Problem Solutions

Driven RLC Circuits Challenge Problem Solutions Driven LC Circuits Challenge Problem Solutions Problem : Using the same circuit as in problem 6, only this time leaving the function generator on and driving below resonance, which in the following pairs

More information

Chap. 1 Fundamental Concepts

Chap. 1 Fundamental Concepts NE 2 Chap. 1 Fundamental Concepts Important Laws in Electromagnetics Coulomb s Law (1785) Gauss s Law (1839) Ampere s Law (1827) Ohm s Law (1827) Kirchhoff s Law (1845) Biot-Savart Law (1820) Faradays

More information

and tel # MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question.

and tel # MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. Exam - Physics 3 F 2016 Practice Final Name Perm # Email and tel # MULTIPLE CHOICE. Choose the one alternative that best completes the statement or answers the question. 1) A wire of mass 5.00 grams and

More information

MCE603: Interfacing and Control of Mechatronic Systems. Chapter 1: Impedance Analysis for Electromechanical Interfacing

MCE603: Interfacing and Control of Mechatronic Systems. Chapter 1: Impedance Analysis for Electromechanical Interfacing MCE63: Interfacing and Control of Mechatronic Systems Chapter 1: Impedance Analysis for Electromechanical Interfacing Part B: Input and Output Impedance Cleveland State University Mechanical Engineering

More information

MAGNETIC FIELDS & UNIFORM PLANE WAVES

MAGNETIC FIELDS & UNIFORM PLANE WAVES MAGNETIC FIELDS & UNIFORM PLANE WAVES Name Section Multiple Choice 1. (8 Pts) 2. (8 Pts) 3. (8 Pts) 4. (8 Pts) 5. (8 Pts) Notes: 1. In the multiple choice questions, each question may have more than one

More information

1300 (W/m 2 ) (V/cm) = 275 (V/m) (A/cm) = (A/m). E = 990 (V/m), H = 2.63 (A/m).

1300 (W/m 2 ) (V/cm) = 275 (V/m) (A/cm) = (A/m). E = 990 (V/m), H = 2.63 (A/m). Homework #4 P8-16 There is a continuing discuss on radiation hazards to human health The following calculations will provide a rough comparison a) The US standard for personal safet in a microwe environment

More information

ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST March 2016, 18:00 19:00. Examiner: Prof. Sean V. Hum

ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST March 2016, 18:00 19:00. Examiner: Prof. Sean V. Hum UNIVERSITY OF TORONTO FACULTY OF APPLIED SCIENCE AND ENGINEERING The Edward S. Rogers Sr. Department of Electrical and Computer Engineering ECE357H1S ELECTROMAGNETIC FIELDS TERM TEST 2 21 March 2016, 18:00

More information

Graduate Diploma in Engineering Circuits and waves

Graduate Diploma in Engineering Circuits and waves 9210-112 Graduate Diploma in Engineering Circuits and waves You should have the following for this examination one answer book non-programmable calculator pen, pencil, ruler No additional data is attached

More information

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop.

Along with C1 the magnetic field is also observed at location C 2 though no current is threading through this loop. Displacement current British physicist James C. Maxwell gave final shape to all phenomenon connecting electricity and magnetism. He noticed an inconsistency in Ampere s Law connecting Electric current

More information

) Rotate L by 120 clockwise to obtain in!! anywhere between load and generator: rotation by 2d in clockwise direction. d=distance from the load to the

) Rotate L by 120 clockwise to obtain in!! anywhere between load and generator: rotation by 2d in clockwise direction. d=distance from the load to the 3.1 Smith Chart Construction: Start with polar representation of. L ; in on lossless lines related by simple phase change ) Idea: polar plot going from L to in involves simple rotation. in jj 1 ) circle

More information

Phys2120 Spring 2017 Practice Exam 1. Chapters Name

Phys2120 Spring 2017 Practice Exam 1. Chapters Name Name 1. Two point charges are 4 cm apart. They are moved to a new separation of 2 cm. By what factor does the resulting mutual force between them change? 2. An uncharged conductor is supported by an insulating

More information

Physics 227 Final Exam December 18, 2007 Prof. Coleman and Prof. Rabe. Useful Information. Your name sticker. with exam code

Physics 227 Final Exam December 18, 2007 Prof. Coleman and Prof. Rabe. Useful Information. Your name sticker. with exam code Your name sticker with exam code Physics 227 Final Exam December 18, 2007 Prof. Coleman and Prof. Rabe SIGNATURE: 1. The exam will last from 4:00 p.m. to 7:00 p.m. Use a #2 pencil to make entries on the

More information

l x B is in the downward direction,

l x B is in the downward direction, CHAPTER 5 205 l x B is in the downward direction, /Frol = IIlIlIIBI, and I = VIR = 12 V/ 4 Q = 3 A. Therefore, IBI = IFrol = 0.123 =410 ( T) IIlIll 3 x 0.1 m. Problem 5.4 The rectangular loop shown in

More information

ECEN720: High-Speed Links Circuits and Systems Spring 2017

ECEN720: High-Speed Links Circuits and Systems Spring 2017 ECEN70: High-Speed Links Circuits and Systems Spring 07 Lecture : Channel Components, Wires, & Transmission Lines Sam Palermo Analog & Mixed-Signal Center Texas A&M University Announcements Lab Lab begins

More information

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE B.ENG (HONS) ELECTRICAL & ELECTRONIC ENGINEERING SEMESTER ONE EXAMINATION 2016/2017

UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE B.ENG (HONS) ELECTRICAL & ELECTRONIC ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 UNIVERSITY OF BOLTON WESTERN INTERNATIONAL COLLEGE FZE B.ENG (HONS) ELECTRICAL & ELECTRONIC ENGINEERING SEMESTER ONE EXAMINATION 2016/2017 ENGINEERING ELECTROMAGNETISM MODULE NO: EEE6002 Date: Tuesday

More information

The Cooper Union Department of Electrical Engineering ECE135 Engineering Electromagnetics Exam II April 12, Z T E = η/ cos θ, Z T M = η cos θ

The Cooper Union Department of Electrical Engineering ECE135 Engineering Electromagnetics Exam II April 12, Z T E = η/ cos θ, Z T M = η cos θ The Cooper Union Department of Electrical Engineering ECE135 Engineering Electromagnetics Exam II April 12, 2012 Time: 2 hours. Closed book, closed notes. Calculator provided. For oblique incidence of

More information

Understanding EMC Basics

Understanding EMC Basics 1of 7 series Webinar #1 of 3, February 27, 2013 EM field theory, and 3 types of EM analysis Webinar Sponsored by: EurIng CEng, FIET, Senior MIEEE, ACGI AR provides EMC solutions with our high power RF/Microwave

More information

DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT SUBJECT- PHYSICS (042) CLASS -XII

DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT SUBJECT- PHYSICS (042) CLASS -XII Chapter 1(Electric charges & Fields) DEHRADUN PUBLIC SCHOOL I TERM ASSIGNMENT 2016-17 SUBJECT- PHYSICS (042) CLASS -XII 1. Why do the electric field lines never cross each other? [2014] 2. If the total

More information

Determining Characteristic Impedance and Velocity of Propagation by Measuring the Distributed Capacitance and Inductance of a Line

Determining Characteristic Impedance and Velocity of Propagation by Measuring the Distributed Capacitance and Inductance of a Line Exercise 2-1 Determining Characteristic Impedance and Velocity EXERCISE OBJECTIVES Upon completion of this exercise, you will know how to measure the distributed capacitance and distributed inductance

More information

A P P E N D I X C Units and Dimensions 795

A P P E N D I X C Units and Dimensions 795 A P P E N D I X C Units and Dimensions In 1960, the International System of Units was given official status at the Eleventh General Conference on Weights and Measures held in Paris. This system of units

More information

PH213 Chapter 24 Solutions

PH213 Chapter 24 Solutions PH213 Chapter 24 Solutions 24.12. IDENTIFY and S ET UP: Use the expression for derived in Example 24.4. Then use Eq. (24.1) to calculate Q. E XECUTE: (a) From Example 24.4, The conductor at higher potential

More information

TC412 Microwave Communications. Lecture 8 Rectangular waveguides and cavity resonator

TC412 Microwave Communications. Lecture 8 Rectangular waveguides and cavity resonator TC412 Microwave Communications Lecture 8 Rectangular waveguides and cavity resonator 1 TM waves in rectangular waveguides Finding E and H components in terms of, WG geometry, and modes. From 2 2 2 xye

More information

Contents. Transmission Lines The Smith Chart Vector Network Analyser (VNA) ü structure ü calibration ü operation. Measurements

Contents. Transmission Lines The Smith Chart Vector Network Analyser (VNA) ü structure ü calibration ü operation. Measurements Contents Transmission Lines The Smith Chart Vector Network Analyser (VNA) ü structure ü calibration ü operation Measurements Göran Jönsson, EIT 2017-05-12 Vector Network Analysis 2 Waves on Lines If the

More information

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr.

EELE 3332 Electromagnetic II Chapter 9. Maxwell s Equations. Islamic University of Gaza Electrical Engineering Department Dr. EELE 3332 Electromagnetic II Chapter 9 Maxwell s Equations Islamic University of Gaza Electrical Engineering Department Dr. Talal Skaik 2013 1 Review Electrostatics and Magnetostatics Electrostatic Fields

More information

Physics 3211: Electromagnetic Theory (Tutorial)

Physics 3211: Electromagnetic Theory (Tutorial) Question 1 a) The capacitor shown in Figure 1 consists of two parallel dielectric layers and a voltage source, V. Derive an equation for capacitance. b) Find the capacitance for the configuration of Figure

More information

Compact Equivalent Circuit Models for the Skin Effect

Compact Equivalent Circuit Models for the Skin Effect Microelectromagnetic Devices Group The University of Texas at Austin Compact Equivalent Circuit Models for the Skin Effect Sangwoo Kim, Beom-Taek Lee, and Dean P. Neikirk Department of Electrical and Computer

More information

Impedance/Reactance Problems

Impedance/Reactance Problems Impedance/Reactance Problems. Consider the circuit below. An AC sinusoidal voltage of amplitude V and frequency ω is applied to the three capacitors, each of the same capacitance C. What is the total reactance

More information

Lecture 36 Date:

Lecture 36 Date: Lecture 36 Date: 5.04.04 Reflection of Plane Wave at Oblique Incidence (Snells Law, Brewster s Angle, Parallel Polarization, Perpendicular Polarization etc.) Introduction to RF/Microwave Introduction One

More information

Contents. Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU.

Contents. Notes based on Fundamentals of Applied Electromagnetics (Ulaby et al) for ECE331, PSU. 1 Contents 2 Transmission lines 3 2.1 Transmission Lines: General Considerations...... 3 2.1.1 Wavelength and transmission lines....... 4 2.1.2 Propagation modes................ 8 2.2 Lumped element model.................

More information

Lecture 2 - Transmission Line Theory

Lecture 2 - Transmission Line Theory Lecture 2 - Transmission Line Theory Microwave Active Circuit Analysis and Design Clive Poole and Izzat Darwazeh Academic Press Inc. Poole-Darwazeh 2015 Lecture 2 - Transmission Line Theory Slide1 of 54

More information

Circuit analysis of magnetic couplings between circular turn and spiral coil

Circuit analysis of magnetic couplings between circular turn and spiral coil Computer Applications in Electrical Engineering Vol. 1 014 Circuit analysis of magnetic couplings between circular turn and spiral coil Mirosław Wciślik, Tomasz Kwaśniewski Kielce University of Technology

More information

Microwave Network Analysis

Microwave Network Analysis Prof. Dr. Mohammad Tariqul Islam titareq@gmail.my tariqul@ukm.edu.my Microwave Network Analysis 1 Text Book D.M. Pozar, Microwave engineering, 3 rd edition, 2005 by John-Wiley & Sons. Fawwaz T. ILABY,

More information

Problem 8.18 For some types of glass, the index of refraction varies with wavelength. A prism made of a material with

Problem 8.18 For some types of glass, the index of refraction varies with wavelength. A prism made of a material with Problem 8.18 For some types of glass, the index of refraction varies with wavelength. A prism made of a material with n = 1.71 4 30 λ 0 (λ 0 in µm), where λ 0 is the wavelength in vacuum, was used to disperse

More information

Transmission Line Basics II - Class 6

Transmission Line Basics II - Class 6 Transmission Line Basics II - Class 6 Prerequisite Reading assignment: CH2 Acknowledgements: Intel Bus Boot Camp: Michael Leddige Agenda 2 The Transmission Line Concept Transmission line equivalent circuits

More information

ECE 451 Transmission Lines & Packaging

ECE 451 Transmission Lines & Packaging Transmission Lines & Packaging Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 Radio Spectrum Bands The use of letters to designate bands has long ago

More information

Engineering Electromagnetics

Engineering Electromagnetics Nathan Ida Engineering Electromagnetics With 821 Illustrations Springer Contents Preface vu Vector Algebra 1 1.1 Introduction 1 1.2 Scalars and Vectors 2 1.3 Products of Vectors 13 1.4 Definition of Fields

More information

Solutions to Problems in Chapter 5

Solutions to Problems in Chapter 5 Appendix E Solutions to Problems in Chapter 5 E. Problem 5. Properties of the two-port network The network is mismatched at both ports (s 0 and s 0). The network is reciprocal (s s ). The network is symmetrical

More information

PHYS 1441 Section 001 Lecture #23 Monday, Dec. 4, 2017

PHYS 1441 Section 001 Lecture #23 Monday, Dec. 4, 2017 PHYS 1441 Section 1 Lecture #3 Monday, Dec. 4, 17 Chapter 3: Inductance Mutual and Self Inductance Energy Stored in Magnetic Field Alternating Current and AC Circuits AC Circuit W/ LRC Chapter 31: Maxwell

More information

Chapter 2 Circuit Elements

Chapter 2 Circuit Elements Chapter Circuit Elements Chapter Circuit Elements.... Introduction.... Circuit Element Construction....3 Resistor....4 Inductor...4.5 Capacitor...6.6 Element Basics...8.6. Element Reciprocals...8.6. Reactance...8.6.3

More information

Energy stored in a capacitor W = \ q V. i q1. Energy density in electric field i. Equivalent capacitance of capacitors in series

Energy stored in a capacitor W = \ q V. i q1. Energy density in electric field i. Equivalent capacitance of capacitors in series The Language of Physics Cwcihor Two conductors of any size or shape carrying equal and opposite charges are called a capacitor. The charge on the capacitor is directly proportional to the potential difference

More information

Transmission Lines, Stacked Insulated Washers Lines, Tesla Coils and the Telegrapher s Equation

Transmission Lines, Stacked Insulated Washers Lines, Tesla Coils and the Telegrapher s Equation Transmission Lines, Stacked Insulated Washers Lines, Tesla oils and the Telegrapher s Equation Kurt Nalty August, 2008 Abstract Tesla coils have more in common with transmission lines than transformers.

More information

ECE 497 JS Lecture -03 Transmission Lines

ECE 497 JS Lecture -03 Transmission Lines ECE 497 JS Lecture -03 Transmission Lines Spring 2004 Jose E. Schutt-Aine Electrical & Computer Engineering University of Illinois jose@emlab.uiuc.edu 1 MAXWELL S EQUATIONS B E = t Faraday s Law of Induction

More information

+.x2yaz V/m and B = y 2 ax + z2a 1. + x2az Wb/m 2. Find the force on the charge at P.

+.x2yaz V/m and B = y 2 ax + z2a 1. + x2az Wb/m 2. Find the force on the charge at P. 396 CHAPTER 8 MAGNETC FORCES, MATERALS, AND DEVCES Section 8.2-Forces Due to Magnetic Fields 8.1 A 4 mc charge has velocity u = l.4ax - 3.2ay - az mis at point P(2, 5, - 3) in the presence of E = 2xyzax

More information

Module 3 : Sequence Components and Fault Analysis

Module 3 : Sequence Components and Fault Analysis Module 3 : Sequence Components and Fault Analysis Lecture 13 : Sequence Modeling (Tutorial) Objectives In this lecture we will solve tutorial problems on fault analysis in sequence domain Per unit values

More information

DESIGN OF ELECTRICAL APPARATUS SOLVED PROBLEMS

DESIGN OF ELECTRICAL APPARATUS SOLVED PROBLEMS DESIGN OF ELECTRICAL APPARATUS SOLVED PROBLEMS 1. A 350 KW, 500V, 450rpm, 6-pole, dc generator is built with an armature diameter of 0.87m and core length of 0.32m. The lap wound armature has 660 conductors.

More information

Review of Basic Electrical and Magnetic Circuit Concepts EE

Review of Basic Electrical and Magnetic Circuit Concepts EE Review of Basic Electrical and Magnetic Circuit Concepts EE 442-642 Sinusoidal Linear Circuits: Instantaneous voltage, current and power, rms values Average (real) power, reactive power, apparent power,

More information

Modeling of Transmission Lines with Multiple Coated Conductors*

Modeling of Transmission Lines with Multiple Coated Conductors* Modeling of Transmission Lines with Multiple Coated Conductors* PlanarCal Konstantin Lomakin konstantin.lomakin@fau.de Institute of Microwaves and Photonics Friedrich-Alexander-Universität Erlangen-Nürnberg

More information

Wave Phenomena Physics 15c. Lecture 8 LC Transmission Line Wave Reflection

Wave Phenomena Physics 15c. Lecture 8 LC Transmission Line Wave Reflection Wave Phenomena Physics 15c Lecture 8 LC Transmission Line Wave Reflection Midterm Exam #1 Midterm #1 has been graded Class average = 80.4 Standard deviation = 14.6 Your exam will be returned in the section

More information

P a g e 5 1 of R e p o r t P B 4 / 0 9

P a g e 5 1 of R e p o r t P B 4 / 0 9 P a g e 5 1 of R e p o r t P B 4 / 0 9 J A R T a l s o c o n c l u d e d t h a t a l t h o u g h t h e i n t e n t o f N e l s o n s r e h a b i l i t a t i o n p l a n i s t o e n h a n c e c o n n e

More information