Numerical evidence for the inconsistent separation of the ITRF-ICRF transformation into precession-nutation, diurnal rotation and polar motion

Size: px
Start display at page:

Download "Numerical evidence for the inconsistent separation of the ITRF-ICRF transformation into precession-nutation, diurnal rotation and polar motion"

Transcription

1 Numerical evidence for the inconsistent separation of the ITRF-ICRF transformation into precession-nutation, diurnal rotation and polar motion Athanasios Dermanis and Dimitrios Tsoulis Aristotle University of Thessaloniki IERS Workshop on Conventions, September 2007, BIM, aris

2 A computation of the celestial pole direction as induced by geodetic observations and its comparison with the Celestial Intermediate ole Athanasios Dermanis and Dimitrios Tsoulis Aristotle University of Thessaloniki IERS Workshop on Conventions, September 2007, BIM, aris

3 A geodesist s point of of view Do not include astronomical / geophysical hypotheses in data analysis for the estimation of parameters which can be determined by geodetic observations in a hypothesis-free way Then data analysis provides theory-independent parameters appropriate for comparison with theoretical results Theory verification / Data validation

4 Comparing geodetic data with precession-nutation theory IAU2000 precession-nutation theory refers to the Celestial Intermediate ole (CI The CI is not observable (its position cannot be determined by observations because it is defined by purely theoretical means in the framework of a particular solution and a particular mathematical representation The real observable is the 3-parameter rotation matrix R from the terrestrial to the celestial reference system From observed R it is possible to determine the direction (and modulus of the instantaneous earth rotation vector and not the direction of the CI

5 Attention!!!!!! Updating a theory-provided rotation matrix R 0 from the left (δr L and the right (δr R using geodetic data, does not provide an update to precession-nutation (δr L and update of LOD and estimates of polar motion (δr R, respectively. ICRF R = δ R R δ R L 0 R ITRF not only an update of precession-nutation not only an update of LOD and an estimate of polar motion

6 Attention!!!!!! Updating a theory-provided rotation matrix R 0 from the left (δr L and the right (δr R using geodetic data, does not provide an update to precession-nutation (δr L and update of LOD and estimates of polar motion (δr R, respectively. ICRF R = δ R R δ R L 0 R ITRF They both contribute to - precession-nutation, -LOD - polar motion ROOF: A simple exercise in matrix algebra

7 Attention!!!!!! Updating a theory-provided rotation matrix R 0 from the left (δr L and the right (δr R using geodetic data, does not provide an update to precession-nutation (δr L and update of LOD and estimates of polar motion (δr R, respectively. ICRF R = δ R R δ R L 0 R ITRF R = δq( δx, δy Q ( X, Y R ( ψ R ( δψ R ( x R ( y

8 Attention!!!!!! Updating a theory-provided rotation matrix R 0 from the left (δr L and the right (δr R using geodetic data, does not provide an update to precession-nutation (δr L and update of LOD and estimates of polar motion (δr R, respectively. ICRF R = δ R R δ R L 0 R ITRF They both contribute to - precession-nutation, -LOD - polar motion

9 Attention!!!!!! Updating a theory-provided rotation matrix R 0 from the left (δr L and the right (δr R using geodetic data, does not provide an update to precession-nutation (δr L and update of LOD and estimates of polar motion (δr R, respectively. ICRF R = δ R R δ R L 0 R ITRF They both contribute to - precession-nutation, -LOD - polar motion Cannot be directly used for verifying precession-nutation theory e.g. small δx, δy in Q = δq(δx,δy Q IERS (IERS Conventions, Ch. 5 do not compare directly IAU200 precession-nutation

10 OUR AROACH THEORY Theory of precession-nutation provides direction of instantaneous rotation axis Removal of selected precession-nutation theoretical components defines the Celestial Intemediate ole (CI OBSERVATION Theory is updated by observational evidence to provide an observed rotation matrix R from terrestrial to celestial reference system mathematical compatibility provides COMARISON an observed Compatible Celestial ole (CC Computation of CC CI differences

11 OUR AROACH THEORY Theory of precession-nutation provides direction of instantaneous rotation axis Removal of selected precession-nutation theoretical components defines the Celestial Intemediate ole (CI OBSERVATION Theory is updated by observational evidence to provide an observed rotation matrix R from terrestrial to celestial reference system mathematical compatibility provides COMARISON an observed Compatible Celestial ole (CC Computation of CC CI differences STO

12 EARTH ROTATION COMONENTS recession-nutation Diurnal Rotation olar motion Q( X, Y R ( s ( θ 3 3 ( s ( x ( y R R3 R2 R1 3 C r 3 ω r T ω r ω 2 T X Y 2 C x y ψ 1 C ψ = s+ θ + s 1 T celestial reference system 1 C, 2 C, 3 C terrestrial reference system 1 T, 2 T, 3 T IERS earth rotation representation: R = δq( δx, δy Q ( X, Y R ( ψ R ( x R ( y Separation by NRO conditions ψ = sxy (, + θ + s ( x, y

13 THE CELESTIAL INTERMEDIATE OLE R ( ψ 3 IERS Representation: Diurnal rotation around the Celestial Intermediate ole (CI CI = Direction provided by theoretical earth rotation after removal of particular frequency terms Q ( X, Y 0 THE COMATIBLE CELESTIAL OLE IERS provided rotation matrix R, as updated by observations, defines an estimate of the complete earth rotation and thus also a corresponding rotation vector estimate r ω by mathematical compatibility. r ω Compatible Celestial ole (CC = direction of the rotation vector mathematically compatible with the IERS provided rotation matrix R COMATIBLE EARTH ROTATION RERESENTATION R ( ψ = R ( s θ + s r ω θ dθ / dt = ω = r ω Diurnal rotation 3 3 takes place around and diurnal rotation angle satisfies: (compatibility in direction and magnitude

14 ω r Mathematical separation of of the the rotation matrix matrix R into into precession-nutation, diurnal diurnal motion motion (LOD (LOD and and polar polar motion motion = rotation vector, with components ω (celestial and ω (terrestrial C T d T [ ωc ] = R R [ ωt ] = dt R T dr dt The mathematically induced Compatible Celestial ole (CC has components celestial terrestrial n C X% 1 = ωc = Y% ω X% Y% n x% 1 = ω = y% ω 1 x% y% T T 2 2 ω = ωω = ωω T T C C T T

15 COMATIBLE EARTH ROTATION RERESENTATION R = Q( XY %, % R ( ψ % R ( x % R ( y % where ψ% = s% ( X %, Y % % θ s% ( x%, y% % θ (% τ = A+ B UT1 = A+ B(UTC % τ % τ = UTC UT1 COMUTATIONS R ( ψ% = Q( XY %, % RR ( y% R ( x% NRO conditions ψ% s% ( X%, Y% s% ( x%, y% % θ = s% ( X%, Y% s% ( x%, y% ψ% % θ θτ ( A τ = UTC % % % % τ = UTC UT1 B

16 Comparison of the CC with the Celestial Intermediate ole (CI recession-nutation components X % X X % X T 1 T 1 T 2 Units = meters on the earth surface (30 m 1 arcsec Two dominant components with periods: T 1 = days T 2 = 13.6 days

17 Comparison of the CC with the Celestial Intermediate ole (CI Y% Y recession-nutation components Y% Y T 1 T 1 T 2 Units = meters on the earth surface (30 m 1 arcsec Two dominant components with periods: T 1 = days T 2 = 13.6 days

18 Comparison of the CC with the Celestial Intermediate ole (CI x% x olar motion components x% x T 1 T 1 T 2 Units = meters on the earth surface (30 m 1 arcsec Two dominant components with periods: T 1 = days T 2 = 14.2 days

19 Comparison of the CC with the Celestial Intermediate ole (CI y% y olar motion components y% y T 1 /2 T 1 T 2 Units = meters on the earth surface (30 m 1 arcsec Two dominant components with periods: T 1 = days T 2 = 14.2 days

20 VALIDATION OF RESULTS ART 1 Computation with 4 different methods from original IERS data: R = R( p p = { XY,, δ X, δy, τ, x, y} 1 NUMERICAL 2 ANALYTICAL p R numerical differentiation R & p numerical differentiation p& ω (, C = ωc RR & ω (, C = ωc pp& ω = ω ( RR, & ω = ω ( pp&, T T T T

21 Separation in components R = [ δqq ] R ( ψ [ R ( x R ( y ] = QD [ ω Q ] = & T [ ω ] QQ D = & T [ ω ] DD = & T ωc = ωq + QωD + QDω ω T = T T T DQωC 3 4 NUMERICAL BY COMONENTS ANALYTICAL BY COMONENTS p QD,, numerical differentiation QD &, &, & ωq, ωd, ω ω, ω C T p numerical differentiation ω = ω ( XYXY,, & Q Q, &, δ X, δy, δx &, δy & ωd = ω D( ψ, ψ& ω = ω ( x, y, x&, y& p& ω C, ω T

22 VALIDATION OF RESULTS ART 2 Stability of numerical differentiation df Determination of derivative fi = ( ti dt from equidistant values: f f( t i = i i 1 t = + t +Δ t i Use of 2k+1 values: f,..., f, f, f,..., f i k i 1 i i+ 1 i+ k Moving polynomial interpolation: ( t = a + at a t ik, 0 1 2k 2k ik, ( tm = fm, m= i k,..., i+ k f = i dik. ( ti dt Various choices of k give essentially identical results!

23 VALIDATION OF OF RESULTS ART ART 3 Effect Effect of of data data noise noise High frequencies in data errors may create large error values in computed derivatives Treatment: Data smoothing by moving averages Simple moving average: f% i = k 1 2k + 1 m= k f i+ m Effect on final results: Somewhat smaller amplitudes for larger k in computed differences between CC & CI parameters. But 2 basic frequencies remain dominant!

24 SECTRA OF DIFFERENCES BETWEEN CC & CI X% X Y% Y % x y% y x

25 CONCLUSIONS Differences between the position of the Compatible Celestial ole (CC and the position of the Celestial Intermediate ole (CI are significant. The respective parameters referring to the celestial (X,Y and the terrestrial reference system (polar motion x, y demonstrate differences which vary in time with two dominant terms: % T T = 13.6 days 1 = days 2 X Y X % T T = 13.6 days 1 = days 2 Y % T 1 = days T 2 = 14.2 days x x % T 1 = days T 2 = 14.2 days y y

26 FUTURE WORK Investigate theoretically the effect of biases & systematic errors in the rotation matrix R, on the CC coordinates XY %, % Investigate theoretically the effect of aliasing on data with diurnal resolution. Higher resolution data available? BEFORE Comparing with CI Instantaneous Celestial ole separation as defined by astronomical theory.

ESTIMATION OF NUTATION TERMS USING GPS

ESTIMATION OF NUTATION TERMS USING GPS ESTIMATION OF NUTATION TERMS USING GPS Markus Rothacher, Gerhard Beutler Astronomical Institute, University of Berne CH-3012 Berne, Switzerland ABSTRACT Satellite space-geodetic measurements have been

More information

Compatibility of the IERS earth rotation representation and its relation to the NRO conditions

Compatibility of the IERS earth rotation representation and its relation to the NRO conditions Journées 005 Systèmes de Référence Spatio-emporels Earth dynamics and reference systems: Five years after the adoption of the IAU 000 Resolutions Warsaw, 9- September 005 Compatibility of the IERS earth

More information

DRAFT OF NOMENCLATURE & TERMINOLOGY FOR IAU WG 1

DRAFT OF NOMENCLATURE & TERMINOLOGY FOR IAU WG 1 s TIO terrestrial intermediate origin DRAFT OF NOMENCLATURE & TERMINOLOGY FOR IAU WG 1 This is not a complete list. Symbols are not, and need not necessarily be unique, eg φ is used for latitude, both

More information

Nutation determination by means of GNSS

Nutation determination by means of GNSS Nutation determination by means of GNSS - Comparison with VLBI Nicole Capitaine, Kunliang Yao SYRTE - Observatoire de Paris, CNRS/UPMC, France Introduction Space geodetic techniques cannot be used for

More information

The VLBI contribution to precession (present and future)

The VLBI contribution to precession (present and future) The VLBI contribution to precession (present and future) N.Capitaine (1) and P. Wallace (2) (1) Observatoire de Paris/Syrte (2) RAL, HMNAO Precession-nutation parameters Classical: equinox-based fixed

More information

COMBINING GPS AND VLBI MEASUREMENTS OF CELESTIAL MOTION OF THE EARTH S SPIN AXIS AND UNIVERSAL TIME. Jan VONDRÁK* and Cyril RON

COMBINING GPS AND VLBI MEASUREMENTS OF CELESTIAL MOTION OF THE EARTH S SPIN AXIS AND UNIVERSAL TIME. Jan VONDRÁK* and Cyril RON Acta Geodyn. Geomater., Vol.2, No.3 (139), 87-94, 2005 COMBINING GPS AND VLBI MEASUREMENTS OF CELESTIAL MOTION OF THE EARTH S SPIN AXIS AND UNIVERSAL TIME Jan VONDRÁK* and Cyril RON Department of Galaxies

More information

Torsten Mayer-Gürr Institute of Geodesy, NAWI Graz Technische Universität Graz

Torsten Mayer-Gürr Institute of Geodesy, NAWI Graz Technische Universität Graz GGOS and Reference Systems errestrial systems and Earth rotation 2015-11-23 orsten Mayer-Gürr Institute of Geodesy, NAWI Graz echnische Universität Graz orsten Mayer-Gürr 1 Celestial systems (Quasi-) inertial

More information

5 Transformation Between the Celestial and Terrestrial Systems

5 Transformation Between the Celestial and Terrestrial Systems No. 32 5 Transformation Between the Celestial and Terrestrial Systems The coordinate transformation to be used to transform from the terrestrial reference system (TRS) to the celestial reference system

More information

THE FREE CORE NUTATION

THE FREE CORE NUTATION THE FREE CORE NUTATION D.D. MCCARTHY U. S. Naval Observatory Washington, DC 20392 USA e-mail: dmc@maia.usno.navy.mil ABSTRACT. The International Earth rotation and Reference system Service (IERS) provides

More information

Principles of Global Positioning Systems Spring 2008

Principles of Global Positioning Systems Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.540 Principles of Global Positioning Systems Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 12.540

More information

Global reference systems and Earth rotation

Global reference systems and Earth rotation current realizations and scientific problems Aleksander Brzeziński 1,2, Tomasz Liwosz 1, Jerzy Rogowski 1, Jan Kryński 3 1 Department of Geodesy and Geodetic Astronomy Warsaw University of Technology 2

More information

ROCZNIK ASTRONOMICZNY (ASTRONOMICAL ALMANAC) OF THE INSTITUTE OF GEODESY AND CARTOGRAPHY AGAINST THE IAU 2000 RESOLUTIONS

ROCZNIK ASTRONOMICZNY (ASTRONOMICAL ALMANAC) OF THE INSTITUTE OF GEODESY AND CARTOGRAPHY AGAINST THE IAU 2000 RESOLUTIONS ROCZNIK ASTRONOMICZNY (ASTRONOMICAL ALMANAC) OF THE INSTITUTE OF GEODESY AND CARTOGRAPHY AGAINST THE IAU 2000 RESOLUTIONS M. SĘKOWSKI Institute of Geodesy and Cartography ul. Modzelewskiego 27, Warsaw,

More information

Earth orientation parameters: excitation by atmosphere, oceans and geomagnetic jerks

Earth orientation parameters: excitation by atmosphere, oceans and geomagnetic jerks Earth orientation parameters: excitation by atmosphere, oceans and geomagnetic jerks Jan Vondrák and Cyril Ron, Astronomical Inst., Czech Academy of Sciences, Prague Contents: Introduction; Description

More information

The 3D representation of the new transformation from the terrestrial to the celestial system.

The 3D representation of the new transformation from the terrestrial to the celestial system. The 3D representation of the new transformation from the terrestrial to the celestial system. Véronique Dehant, Olivier de Viron Royal Observatory of Belgium Nicole Capitaine Observatoire de Paris, France

More information

Principles of the Global Positioning System Lecture 04"

Principles of the Global Positioning System Lecture 04 12.540 Principles of the Global Positioning System Lecture 04" Prof. Thomas Herring" Room 54-820A; 253-5941" tah@mit.edu" http://geoweb.mit.edu/~tah/12.540 " Review" So far we have looked at measuring

More information

Reference system and non-rotating origin: the NRO for the rest of us Olivier de Viron, Véronique Dehant, and Nicole Capitaine

Reference system and non-rotating origin: the NRO for the rest of us Olivier de Viron, Véronique Dehant, and Nicole Capitaine Reference system and non-rotating origin: the NRO for the rest of us Olivier de Viron, Véronique Dehant, and Nicole Capitaine Abstract The concept of Non Rotating Origin has been introduced in the method

More information

ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS

ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS 1 ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS Jan Vondrák, Astronomical Institute Prague P PART 1: Reference systems and frames used in astronomy:! Historical outline,

More information

Connecting terrestrial to celestial reference frames

Connecting terrestrial to celestial reference frames Russian Academy of Sciences Central Astronomical Observatory at Pulkovo IAU XXVIII General Assembly, Joint Discussion 7, Beijing, China, August 28, 2012 Connecting terrestrial to celestial reference frames

More information

Analysis Strategies And Software For Geodetic VLBI

Analysis Strategies And Software For Geodetic VLBI Analysis Strategies And Software For Geodetic VLBI Rüdiger Haas Presentation at the 7th EVN Symposium, Toledo, 2004 Outline: Observing stategies and observables Data analysis strategies Data analysis software

More information

Definition of the Celestial Ephemeris Origin and of UT1 in the International Celestial Reference Frame

Definition of the Celestial Ephemeris Origin and of UT1 in the International Celestial Reference Frame Astron. Astrophys. 355, 398 405 (2000) Definition of the Celestial Ephemeris Origin and of UT1 in the International Celestial Reference Frame N. Capitaine 1, B. Guinot 1, and D.D. McCarthy 2 ASTRONOMY

More information

A comparison of existing and new methods for the analysis of nonlinear variations in coordinate time series

A comparison of existing and new methods for the analysis of nonlinear variations in coordinate time series IUGG 2015 - Prague, June 22 July 3, 2015 A comparison of existing and new methods for the analysis of nonlinear variations in coordinate time series Miltiadis Chatzinikos Athanasios Dermanis Department

More information

IAU 2006 NFA GLOSSARY

IAU 2006 NFA GLOSSARY IAU 2006 NFA GLOSSARY Prepared by the IAU Division I Working Group Nomenclature for Fundamental Astronomy'' (latest revision: 20 November 2007) Those definitions corresponding to the IAU 2000 resolutions

More information

IGS POLAR MOTION MEASUREMENTS

IGS POLAR MOTION MEASUREMENTS STATUS & PROSPECTS FOR IGS POLAR MOTION MEASUREMENTS Why does the IGS care about EOPs? observations, predictions, & IGS product table Recent pole & pole rate accuracies & error sources Rapid & Final products

More information

GOCE High Level Processing Facility. GOCE Standards. Doc. No.: GO-TN-HPF-GS-0111 Issue: 3 Revision: 1 Date: 30 / 04 / 2009

GOCE High Level Processing Facility. GOCE Standards. Doc. No.: GO-TN-HPF-GS-0111 Issue: 3 Revision: 1 Date: 30 / 04 / 2009 1 of 81 GOCE High Level Processing Facility GOCE Standards Doc. No.: 3 Revision: 1 30 / 04 / 2009 Prepared by: The European GOCE Gravity Consortium EGG-C 1 2 of 81 Document Information Sheet Document Name

More information

High precision methods for locating the celestial intermediate pole and origin ABSTRACT

High precision methods for locating the celestial intermediate pole and origin ABSTRACT A&A 45, 855 872 (26) DOI: 1.151/4-6361:25455 c ESO 26 Astronomy & Astrophysics High precision methods for locating the celestial intermediate pole and origin N. Capitaine 1 and P. T. Wallace 2 1 Observatoire

More information

The conversion of Universal Time to Greenwich Mean Sidereal Time is rigorously possible and is given by a series development with time defined by

The conversion of Universal Time to Greenwich Mean Sidereal Time is rigorously possible and is given by a series development with time defined by 2.2 Time Systems 23 A = LAST - GAST = LMST -GMST. (2.5) LAST is detennined from astronomical observations to fixed stars and extragalactic radio sources. The mean sidereal time scale is still affected

More information

DETERMINATION OF THE STATION COORDINATES FOR QUALITY CONTROL OF THE SATELLITE LASER RANGING DATA S.

DETERMINATION OF THE STATION COORDINATES FOR QUALITY CONTROL OF THE SATELLITE LASER RANGING DATA S. DETERMINATION OF THE STATION COORDINATES FOR QUALITY CONTROL OF THE SATELLITE LASER RANGING DATA S. Schillak Space Research Centre of the Polish Academy of Sciences. Astrogeodynamic Observatory, Borowiec

More information

Recent and Anticipated Changes to the International Earth Rotation and Reference Systems Service (IERS) Conventions

Recent and Anticipated Changes to the International Earth Rotation and Reference Systems Service (IERS) Conventions Recent and Anticipated Changes to the International Earth Rotation and Reference Systems Service (IERS) Conventions Brian Luzum, U.S. Naval Observatory BIOGRAPHY Brian Luzum began full-time employment

More information

Prof. E. Calais Purdue University - EAS Department CIVL 3273

Prof. E. Calais Purdue University - EAS Department CIVL 3273 Prof. E. Calais Purdue University - EAS Department CIVL 3273 ecalais@purdue.edu GPS Geodesy - Spring 2008 Geoid of Western Hemisphere. Image from University of Texas Center for Space Research and NASA.

More information

Comparison between high precision precession models for the ecliptic and the equator

Comparison between high precision precession models for the ecliptic and the equator A&A 421, 365 379 (2004) DOI: 10.1051/0004-6361:20035942 c ESO 2004 Astronomy & Astrophysics Comparison between high precision precession models for the ecliptic and the equator N. Capitaine 1,P.T.Wallace

More information

Report of the IAU WORKING GROUP "Nomenclature for Fundamental Astronomy" (NFA)

Report of the IAU WORKING GROUP Nomenclature for Fundamental Astronomy (NFA) Report of the IAU WORKING GROUP "Nomenclature for Fundamental Astronomy" (NFA) Nicole Capitaine, Observatoire de Paris, France Membership Nicole CAPITAINE (Paris Observatory, France), Chair Catherine HOHENKERK

More information

Elements of Geodesy. Shape of the Earth Tides Terrestrial coordinate systems Inertial coordinate systems Earth orientation parameters

Elements of Geodesy. Shape of the Earth Tides Terrestrial coordinate systems Inertial coordinate systems Earth orientation parameters Elements of Geodesy Shape of the Earth Tides Terrestrial coordinate systems Inertial coordinate systems Earth orientation parameters E. Calais Purdue University - EAS Department Civil 3273 ecalais@purdue.edu

More information

High frequency variations of the Earth s instantaneous angular velocity vector

High frequency variations of the Earth s instantaneous angular velocity vector Astron. Astrophys. 317, 61 69 (1997) ASTRONOMY AND ASTROPHYSICS High frequency variations of the Earth s instantaneous angular velocity vector Determination from VLBI data analysis S. Bolotin, C. Bizouard,

More information

On the definition and use of the ecliptic in modern astronomy

On the definition and use of the ecliptic in modern astronomy On the definition and use of the ecliptic in modern astronomy Nicole Capitaine (1), Michael Soffel (2) (1) : Observatoire de Paris / SYRTE (2) : Lohrmann Observatory, Dresden Technical University Introduction

More information

NGA GNSS Division Precise Ephemeris Parameters

NGA GNSS Division Precise Ephemeris Parameters NGA GNSS Division Precise Ephemeris Parameters Precise Ephemeris Units. Earth-centered, Earth-fixed Coordinate system Position Velocity GPS time Trajectory interval Standard Trajectory Optional Trajectory

More information

Principles of the Global Positioning System Lecture 18" Mathematical models in GPS" Mathematical models used in GPS"

Principles of the Global Positioning System Lecture 18 Mathematical models in GPS Mathematical models used in GPS 12.540 Principles of the Global Positioning System Lecture 18" Prof. Thomas Herring" Room 54-820A; 253-5941" tah@mit.edu" http://geoweb.mit.edu/~tah/12.540 " Mathematical models in GPS" Review assignment

More information

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top

Physics 106a, Caltech 4 December, Lecture 18: Examples on Rigid Body Dynamics. Rotating rectangle. Heavy symmetric top Physics 106a, Caltech 4 December, 2018 Lecture 18: Examples on Rigid Body Dynamics I go through a number of examples illustrating the methods of solving rigid body dynamics. In most cases, the problem

More information

1 General Definitions and Numerical Standards

1 General Definitions and Numerical Standards This chapter provides general definitions for some topics and the values of numerical standards that are used in the document. Those are based on the most recent reports of the appropriate working groups

More information

Common Realization of Terrestrial and Celestial Reference Frame

Common Realization of Terrestrial and Celestial Reference Frame Common Realization of Terrestrial and Celestial Reference Frame M. Seitz, R. Heinkelmann, P. Steigenberger, T. Artz Abstract The realization of the International Celestial Reference System (ICRS) and the

More information

Classical Mechanics III (8.09) Fall 2014 Assignment 3

Classical Mechanics III (8.09) Fall 2014 Assignment 3 Classical Mechanics III (8.09) Fall 2014 Assignment 3 Massachusetts Institute of Technology Physics Department Due September 29, 2014 September 22, 2014 6:00pm Announcements This week we continue our discussion

More information

Estimation of Geodetic and Geodynamical Parameters with VieVS

Estimation of Geodetic and Geodynamical Parameters with VieVS Estimation of Geodetic and Geodynamical Parameters with VieVS, IVS 2010 General Meeting Proceedings, p.202 206 http://ivscc.gsfc.nasa.gov/publications/gm2010/spicakova.pdf Estimation of Geodetic and Geodynamical

More information

Past, present and possible updates to the IERS Conventions. J. Ray, NGS G. Petit, BIPM

Past, present and possible updates to the IERS Conventions. J. Ray, NGS G. Petit, BIPM Past, present and possible updates to the IERS Conventions J. Ray, NGS G. Petit, BIPM IERS Conventions update: electronic access http://tai.bipm.org/iers/convupdt/listupdt.html Introduction Add a set of

More information

Application of the new concepts and definitions (ICRS, CIP and CEO) in fundamental astronomy. P. K. Seidelmann and J. Kovalevsky

Application of the new concepts and definitions (ICRS, CIP and CEO) in fundamental astronomy. P. K. Seidelmann and J. Kovalevsky A&A 392, 341 351 (2002) DOI: 10.1051/0004-6361:20020931 c ESO 2002 Astronomy & Astrophysics Application of the new concepts and definitions (ICRS, CIP and CEO) in fundamental astronomy P. K. Seidelmann

More information

REPORT OF THE IAU DIVISION 1 WORKING GROUP ON NOMENCLATURE FOR FUNDAMENTAL ASTRONOMY (NFA)

REPORT OF THE IAU DIVISION 1 WORKING GROUP ON NOMENCLATURE FOR FUNDAMENTAL ASTRONOMY (NFA) REPORT OF THE IAU DIVISION 1 WORKING GROUP ON NOMENCLATURE FOR FUNDAMENTAL ASTRONOMY (NFA) N. CAPITAINE, Observatoire de Paris, France and C. HOHENKERK, HMNAO, UK; A.H. ANDREI, Observatorio Nacional, Brazil;

More information

GGOS INFORMATION MODELS: ANALYSIS OF INTERRELATIONS BETWEEN OBSERVATION TECHNIQUES AND THE EARTH GRAVITY FIELD

GGOS INFORMATION MODELS: ANALYSIS OF INTERRELATIONS BETWEEN OBSERVATION TECHNIQUES AND THE EARTH GRAVITY FIELD GGOS INFORMATION MODELS: ANALYSIS OF INTERRELATIONS BETWEEN OBSERVATION TECHNIQUES AND THE EARTH GRAVITY FIELD Wojciech Pachelski 1) Małgorzata Paśnicka-Pawłowska 2) Karolina Szafranek 3) Agnieszka Zwirowicz

More information

Analysis of the Accuracy of Prediction of the Celestial Pole Motion

Analysis of the Accuracy of Prediction of the Celestial Pole Motion ISSN 163-7729, Astronomy Reports, 21, Vol. 54, No. 11, pp. 153 161. c Pleiades Publishing, Ltd., 21. Original Russian Text c Z.M. Malkin, 21, published in Astronomicheskiĭ Zhurnal, 21, Vol. 87, No. 11,

More information

Astronomy 6570 Physics of the Planets. Precession: Free and Forced

Astronomy 6570 Physics of the Planets. Precession: Free and Forced Astronomy 6570 Physics of the Planets Precession: Free and Forced Planetary Precession We have seen above how information concerning the distribution of density within a planet (in particular, the polar

More information

Space-Time Reference Systems

Space-Time Reference Systems Space-Time Reference Systems Bearbeitet von Michael Soffel, Ralf Langhans 1. Auflage 2012. Buch. xiv, 314 S. Hardcover ISBN 978 3 642 30225 1 Format (B x L): 15,5 x 23,5 cm Gewicht: 654 g Weitere Fachgebiete

More information

Recent Advances in High Resolution Rotation Sensing

Recent Advances in High Resolution Rotation Sensing Recent Advances in High Resolution Rotation Sensing U. Schreiber 1,2, A. Gebauer 1, R. Hurst 2, J.-P. Wells 2 1 Forschungseinrichtung Satellitengeodäsie, Technische Universität München, Germany 2 Department

More information

Geometry of Earth Sun System

Geometry of Earth Sun System 12S56 Geometry of Earth Sun System Figure below shows the basic geometry Northern Hemisphere Winter ω equator Earth s Orbit Ecliptic ω ω SUN equator Northern Hemisphere Spring Northern Hemisphere Fall

More information

Version 5 June 2009 TABLE OF CONTENT. Introduction

Version 5 June 2009 TABLE OF CONTENT. Introduction The combined Earth Orientation solution C04 Christian Bizouard and Daniel Gambis IERS Earth Orientation Product Centre Observatoire de Paris, SYRTE, 61 av. de l Observatoire, Paris, France Version 5 June

More information

Publ. Astron. Obs. Belgrade No. 91 (2012), REALIZATION OF ETRF2000 AS A NEW TERRESTRIAL REFERENCE FRAME IN REPUBLIC OF SERBIA

Publ. Astron. Obs. Belgrade No. 91 (2012), REALIZATION OF ETRF2000 AS A NEW TERRESTRIAL REFERENCE FRAME IN REPUBLIC OF SERBIA Publ. Astron. Obs. Belgrade No. 91 (2012), 199-206 Contributed paper REALIZATION OF ETRF2000 AS A NEW TERRESTRIAL REFERENCE FRAME IN REPUBLIC OF SERBIA D. BLAGOJEVIĆ and V. VASILIĆ Faculty of Civil Engineering,

More information

Workshop on GNSS Data Application to Low Latitude Ionospheric Research May Fundamentals of Satellite Navigation

Workshop on GNSS Data Application to Low Latitude Ionospheric Research May Fundamentals of Satellite Navigation 2458-6 Workshop on GNSS Data Application to Low Latitude Ionospheric Research 6-17 May 2013 Fundamentals of Satellite Navigation HEGARTY Christopher The MITRE Corporation 202 Burlington Rd. / Rte 62 Bedford

More information

Originally published as:

Originally published as: Originally published as: Seitz M., Steigenberger P., Artz T. (2xx) Consistent adjustment of combined terrestrial and celestial reference frames, Earth on the Edge: Science for a Sustainable Planet, IAG

More information

Challenges and perspectives for CRF and TRF determination

Challenges and perspectives for CRF and TRF determination Challenges and perspectives for CRF and TRF determination J. Böhm, Z. Malkin, S. Lambert, C. Ma with contributions by H. Spicakova, L. Plank, and H. Schuh Consistency TRF EOP CRF ITRF2008 from VLBI/GNSS/SLR/DORIS

More information

The final publication is available at Springer. DOI: / _6

The final publication is available at Springer. DOI: / _6 Originally published as: Seitz, F., H. Schuh: Earth Rotation. In: Sciences of Geodesy I: Advances and Future Directions, Xu, G. (Ed.), 185 227, Springer, Heidelberg, ISBN 978 3 642 11744, 21. The final

More information

IVS Working Group 2 for Product Specification and Observing Programs

IVS Working Group 2 for Product Specification and Observing Programs IVS Working Group 2 for Product Specification and Observing Programs Final Report (13 th of February 2002) Harald Schuh (hschuh@luna.tuwien.ac.at) *) Patrick Charlot (charlot@observ.u-bordeaux.fr) Hayo

More information

Radio Interferometry and VLBI. Aletha de Witt AVN Training 2016

Radio Interferometry and VLBI. Aletha de Witt AVN Training 2016 Radio Interferometry and VLBI Aletha de Witt AVN Training 2016 Radio Interferometry Single element radio telescopes have limited spatial resolution θ = 1.22 λ/d ~ λ/d Resolution of the GBT 100m telescope

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 3. The Orbit in Space Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation: Space We need means of describing orbits in three-dimensional space. Example: Earth s oblateness

More information

Problem 1. Mathematics of rotations

Problem 1. Mathematics of rotations Problem 1. Mathematics of rotations (a) Show by algebraic means (i.e. no pictures) that the relationship between ω and is: φ, ψ, θ Feel free to use computer algebra. ω X = φ sin θ sin ψ + θ cos ψ (1) ω

More information

Evaluation of the accuracy of the IAU 2006/2000 precession-nutation

Evaluation of the accuracy of the IAU 2006/2000 precession-nutation Evaluation of the accuracy of the IAU 2006/2000 precession-nutation Nicole Capitaine (1), Sébastien Lambert (1), Kunliang Yao (1), Jia-cheng Liu (1)(2) (1) SYRTE, Observatoire de Paris, France (2) Nanjing

More information

Haruhiko Ogasawara. This note is to supplement Ogasawara (2011), and gives errata for Ogasawara (2009). E () E E ()

Haruhiko Ogasawara. This note is to supplement Ogasawara (2011), and gives errata for Ogasawara (2009). E () E E () Economic eview (Otaru University of ommerce, Vol.61, No.4, 15-140, March, 2011. Supplement to the paper symptotic expansions in multi-group analysis of moment structures with an application to linearized

More information

Very Long Baseline Interferometry for Geodesy and Astrometry

Very Long Baseline Interferometry for Geodesy and Astrometry VieVS User-Workshop 2017 Very Long Baseline Interferometry for Geodesy and Astrometry Johannes Böhm VLBI How does it work? VLBI a flowchart SINEX skd vex2 drudge drudge snp/prc snp/prc NGS Mark4 Mark4

More information

1 Controller Optimization according to the Modulus Optimum

1 Controller Optimization according to the Modulus Optimum Controller Optimization according to the Modulus Optimum w G K (s) F 0 (s) x The goal of applying a control loop usually is to get the control value x equal to the reference value w. x(t) w(t) X(s) W (s)

More information

GOCE High Level Processing Facility. GOCE Standards. Doc. No.: GO-TN-HPF-GS-0111 Issue: 4 Revision: 0 Date: 14 / 05 / 2014

GOCE High Level Processing Facility. GOCE Standards. Doc. No.: GO-TN-HPF-GS-0111 Issue: 4 Revision: 0 Date: 14 / 05 / 2014 15.2014 1 of 81 GOCE High Level Processing Facility GOCE Standards Doc. No.: 4 Revision: 0 14 / 05 / 2014 Prepared by: The European GOCE Gravity Consortium EGG-C 1 15.2014 2 of 81 Document Information

More information

Mutual comparison of the combinations of the Earth orientation parameters obtained by different techniques

Mutual comparison of the combinations of the Earth orientation parameters obtained by different techniques Mutual comparison of the combinations of the Earth orientation parameters obtained by different techniques C. Ron, J. Vondrák Astronomical Institute, Boční II 141, 141 31 Praha 4, Czech Republic Abstract.

More information

Fundamental Station Wettzell - geodetic observatory -

Fundamental Station Wettzell - geodetic observatory - Fundamental Station Wettzell - geodetic observatory - Wolfgang Schlüter Bundesamt für Kartographie und Geodäsie, Fundamental Station Wettzell Germany Radiometer Workshop, Wettzell, 10.10.06 Evolvement

More information

FUNDAMENTAL ASTRONOMY

FUNDAMENTAL ASTRONOMY FUNDAMENTAL ASTRONOMY Magda Stavinschi Astronomical Institute of the Romanian Academy No indication of the distance to the objects The astrometric information is generally NOT the direction from which

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 3B. The Orbit in Space and Time Gaëtan Kerschen Space Structures & Systems Lab (S3L) Previous Lecture: The Orbit in Time 3.1 ORBITAL POSITION AS A FUNCTION OF TIME 3.1.1 Kepler

More information

The effect of an unknown data bias in least-squares adjustment: some concerns for the estimation of geodetic parameters

The effect of an unknown data bias in least-squares adjustment: some concerns for the estimation of geodetic parameters The effect of an unknown data bias in least-squares adjustment: some concerns for the estimation of geodetic parameters C. Kotsakis Department of Geodesy and Surveying, Aristotle University of Thessaloniki

More information

The celestial reference system and its role in the epoch of global geodetic technologies

The celestial reference system and its role in the epoch of global geodetic technologies Reports on Geodesy, vol. 92, no. 1, 2012 The celestial reference system and its role in the epoch of global geodetic technologies Jerzy B. Rogowski 1, Aleksander Brzeziński 1,2 1 Warsaw University of Technology,

More information

Astrometric Interferometry. P. Charlot Laboratoire d Astrophysique de Bordeaux

Astrometric Interferometry. P. Charlot Laboratoire d Astrophysique de Bordeaux Astrometric Interferometry P. Charlot Laboratoire d Astrophysique de Bordeaux Outline VLBI observables for astrometry VLBI modeling Reference frames and surveys (ICRF, VCS) Organisation for data acquisition

More information

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form 2. Oscillation So far, we have used differential equations to describe functions that grow or decay over time. The next most common behavior for a function is to oscillate, meaning that it increases and

More information

DIFFERENTIAL GEOMETRY. LECTURES 9-10,

DIFFERENTIAL GEOMETRY. LECTURES 9-10, DIFFERENTIAL GEOMETRY. LECTURES 9-10, 23-26.06.08 Let us rovide some more details to the definintion of the de Rham differential. Let V, W be two vector bundles and assume we want to define an oerator

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Review of Monday s Class Spherical Trigonometry Review plane trigonometry Concepts in Spherical Trigonometry Distance measures Azimuths and bearings Basic formulas:

More information

27. Euler s Equations

27. Euler s Equations 27 Euler s Equations Michael Fowler Introduction We ve just seen that by specifying the rotational direction and the angular phase of a rotating body using Euler s angles, we can write the Lagrangian in

More information

4-4 Role of VLBI Technology in the Space-Time Standards

4-4 Role of VLBI Technology in the Space-Time Standards 4-4 Role of VLBI Technology in the Space-Time Standards In the VLBI observations, signals from Quasars which are realizing the current Celestial Reference Frame are directly used, and therefore all of

More information

Estimation of polar motion, polar motion rates, and GNSS orbits in the IGS

Estimation of polar motion, polar motion rates, and GNSS orbits in the IGS Estimation of polar motion, polar motion rates, and GNSS orbits in the IGS G. Beutler, M. Meindl, S. Lutz, R. Dach, S. Scaramuzza, A. Sušnik, D. Arnold, A. Jäggi IGS Analysis Center Workshop Plenary #03

More information

ATMOSPHERIC AND OCEANIC EXCITATION OF EARTH ROTATION

ATMOSPHERIC AND OCEANIC EXCITATION OF EARTH ROTATION ATMOSPHERIC AND OCEANIC EXCITATION OF EARTH ROTATION S. BÖHM, T. NILSSON, M. SCHINDELEGGER, H. SCHUH Institute of Geodesy and Geophysics, Advanced Geodesy Vienna University of Technology Gußhausstraße

More information

Time Systems. Ludwig Combrinck. Hartebeesthoek Radio Astronomy Observatory. AVN training 9 March 2017

Time Systems. Ludwig Combrinck. Hartebeesthoek Radio Astronomy Observatory. AVN training 9 March 2017 Time Systems Ludwig Combrinck Hartebeesthoek Radio Astronomy Observatory ludwig@hartrao.ac.za AVN training 9 March 2017 What is time? AVN Training March 2017 2 The Critique of Pure Reason, by Immanuel

More information

CHAPTER 10: STABILITY &TUNING

CHAPTER 10: STABILITY &TUNING When I complete this chapter, I want to be able to do the following. Determine the stability of a process without control Determine the stability of a closed-loop feedback control system Use these approaches

More information

Introduction to geodetic VLBI

Introduction to geodetic VLBI Introduction to geodetic VLBI David Mayer Andreas Hellerschmied Johannes Böhm Harald Schuh and Johannes Böhm, Very Long Baseline Interferometry for Geodesy and Astrometry, in Guochang Xu (editor): Sciences

More information

3.6 ITRS Combination Centres

3.6 ITRS Combination Centres 3 Reports of IERS components 3.6.1 Deutsches Geodätisches Forschungsinstitut (DGFI) In 2010, the focus of the ITRS Combination Centre at DGFI was on the finalization of the ITRS realization DTRF2008, internal

More information

RECOMMENDATION ITU-R S Impact of interference from the Sun into a geostationary-satellite orbit fixed-satellite service link

RECOMMENDATION ITU-R S Impact of interference from the Sun into a geostationary-satellite orbit fixed-satellite service link Rec. ITU-R S.1525-1 1 RECOMMENDATION ITU-R S.1525-1 Impact of interference from the Sun into a geostationary-satellite orbit fixed-satellite service link (Question ITU-R 236/4) (21-22) The ITU Radiocommunication

More information

REPORT OF THE INTERNATIONAL ASTRONOMICAL UNION DIVISION I WORKING GROUP ON PRECESSION AND THE ECLIPTIC

REPORT OF THE INTERNATIONAL ASTRONOMICAL UNION DIVISION I WORKING GROUP ON PRECESSION AND THE ECLIPTIC Celestial Mechanics and Dynamical Astronomy (2006) 94:351 367 DOI 10.1007/s10569-006-0001-2 Springer 2006 REPORT OF THE INTERNATIONAL ASTRONOMICAL UNION DIVISION I WORKING GROUP ON PRECESSION AND THE ECLIPTIC

More information

1. COMMENTS ON TERMINOLOGY: IDEAL AND CONVENTIONAL REFERENCE SYSTEMS AND FRAMES

1. COMMENTS ON TERMINOLOGY: IDEAL AND CONVENTIONAL REFERENCE SYSTEMS AND FRAMES COMMENTS ON CONVENTIONAL TERRESTRIAL AND QUASI-INERTIAL REFERENCE SYSTEMS Jean Kovalevsky Ivan I. Mueller Centre d 1 Etudes et de Recherches Department of Geodetic Science Geodynamiques et Astronomiques

More information

DIVISION I WORKING GROUP on NOMENCLATURE FOR FUNDAMENTAL ASTRONOMY (NFA)

DIVISION I WORKING GROUP on NOMENCLATURE FOR FUNDAMENTAL ASTRONOMY (NFA) Transactions IAU, Volume XXVIB Proc. XXVIth IAU General Assembly, August 2006 K.A. van der Hucht, ed. c 2007 International Astronomical Union DOI: 00.0000/X000000000000000X DIVISION I WORKING GROUP on

More information

CHAPTER 5 TRANSFORMATION BETWEEN THE CELESTIAL AND

CHAPTER 5 TRANSFORMATION BETWEEN THE CELESTIAL AND CHAPTER 5 TRANSFORMATION BETWEEN THE CELESTIAL AND TERRESTRIAL SYSTEMS The coordinate transformation to be used from the TRS to the CRS at the date t of the Observation can be written as: [CRS] = PN(t).R(t)-W(t)

More information

Call for space geodetic solutions corrected for non-tidal atmospheric loading (NT-ATML) at the observation level

Call for space geodetic solutions corrected for non-tidal atmospheric loading (NT-ATML) at the observation level Call for space geodetic solutions corrected for non-tidal atmospheric loading (NT-ATML) at the observation level Xavier Collilieux, Tonie van Dam, Zuheir Altamimi Outline: Context Why correcting for non-tidal

More information

RELATIVISTIC ASPECTS IN ASTRONOMICAL STANDARDS AND THE IERS CONVENTIONS

RELATIVISTIC ASPECTS IN ASTRONOMICAL STANDARDS AND THE IERS CONVENTIONS RELATIVISTIC ASPECTS IN ASTRONOMICAL STANDARDS AND THE IERS CONVENTIONS G. PETIT Bureau International des Poids et Mesures 92312 Sèvres France e-mail: gpetit@bipm.org ABSTRACT. In the last years, the definition

More information

Celestial Reference Systems:

Celestial Reference Systems: Celestial Reference Systems: Stability and Alignment G. Bourda Laboratoire d Astrophysique de Bordeaux (LAB) Observatoire Aquitain des Sciences de l Univers (OASU) Université Bordeaux 1 Floirac FRANCE

More information

Geodätische Woche The global radiational S1 tide - current Earth rotation research at TU Wien. September 17, 2015

Geodätische Woche The global radiational S1 tide - current Earth rotation research at TU Wien. September 17, 2015 Geodätische Woche 2015 A. Girdiuk, M. Schindelegger, J. Böhm / TU Wien / Geodätische Woche 2015 1/14 - current Earth rotation research at TU Wien A. Girdiuk, M. Schindelegger, J. Böhm TU Wien, Geodesy

More information

Empiric Models of the Earth s Free Core Nutation

Empiric Models of the Earth s Free Core Nutation ISSN 38-946, Solar System Research, 27, Vol. 41, No. 6, pp. 492 497. Pleiades Publishing, Inc., 27. Original Russian Text Z.M. Malkin, 27, published in Astronomicheskii Vestnik, 27, Vol. 41, No. 6, pp.

More information

Very Long Baseline Interferometry for Geodesy and Astrometry

Very Long Baseline Interferometry for Geodesy and Astrometry Very Long Baseline Interferometry for Geodesy and Astrometry Johannes Böhm Harald Schuh and Johannes Böhm, Very Long Baseline Interferometry for Geodesy and Astrometry, in Guochang Xu (editor): Sciences

More information

A model of alignment interaction for oriented particles with phase transition

A model of alignment interaction for oriented particles with phase transition A model of alignment interaction for oriented particles with phase transition Amic Frouvelle ACMAC Joint work with Jian-Guo Liu (Duke University, USA) and Pierre Degond (Institut de Mathématiques de Toulouse,

More information

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 10 (Second moments of an arc) A.J.Hobson

JUST THE MATHS UNIT NUMBER INTEGRATION APPLICATIONS 10 (Second moments of an arc) A.J.Hobson JUST THE MATHS UNIT NUMBER 13.1 INTEGRATION APPLICATIONS 1 (Second moments of an arc) by A.J.Hobson 13.1.1 Introduction 13.1. The second moment of an arc about the y-axis 13.1.3 The second moment of an

More information

Celestial Mechanics III. Time and reference frames Orbital elements Calculation of ephemerides Orbit determination

Celestial Mechanics III. Time and reference frames Orbital elements Calculation of ephemerides Orbit determination Celestial Mechanics III Time and reference frames Orbital elements Calculation of ephemerides Orbit determination Orbital position versus time: The choice of units Gravitational constant: SI units ([m],[kg],[s])

More information

GRACE. Gravity Recovery and Climate Experiment. JPL Level-2 Processing Standards Document. For Level-2 Product Release 05.1

GRACE. Gravity Recovery and Climate Experiment. JPL Level-2 Processing Standards Document. For Level-2 Product Release 05.1 GRACE Gravity Recovery and Climate Experiment JPL Level-2 Processing Standards Document For Level-2 Product Release 05.1 Michael M. Watkins and Dah-Ning Yuan Jet Propulsion Laboratory California Institute

More information

ECEN 326 Electronic Circuits

ECEN 326 Electronic Circuits ECEN 326 Electronic Circuits Frequency Response Dr. Aydın İlker Karşılayan Texas A&M University Department of Electrical and Computer Engineering High-Frequency Model BJT & MOS B or G r x C f C or D r

More information

This document consists of 14 printed pages.

This document consists of 14 printed pages. Cambridge International Examinations Cambridge International Advanced Level FURTHER MATHEMATICS 9231/23 Paper 2 MARK SCHEME Maximum Mark: 100 Published This mark scheme is published as an aid to teachers

More information