Astrodynamics (AERO0024)

Size: px
Start display at page:

Download "Astrodynamics (AERO0024)"

Transcription

1 Astrodynamics (AERO0024) 3B. The Orbit in Space and Time Gaëtan Kerschen Space Structures & Systems Lab (S3L)

2 Previous Lecture: The Orbit in Time 3.1 ORBITAL POSITION AS A FUNCTION OF TIME Kepler s equation Orbit propagation 3.2 TIME SYSTEMS Clocks Universal time Earth s motion Atomic time Coordinated universal time Julian date 2

3 Motivation: Space The discussion in Lecture 2 was confined to the plane of the orbit; i.e., to two dimensions. We need means of describing orbits in three-dimensional space. Example: Earth s oblateness YES! Atmosphere NO! 3

4 3-D Space: OUFTI-1 Example Two-body propagator J2 propagator 4

5 3-D Space: OUFTI-1 Example Two-body propagator HPOP propagator (two-body + drag) 5

6 Complexity of Coordinate Systems: STK 6

7 3. The Orbit in Space and Time? 3.3 Inertial frames 3.4 Coordinate systems ω i α δ a θ e Ω 3.5 Coordinate types 7

8 3. The Orbit in Space and Time? 3.3 Inertial frames ICRS ICRF ω i α δ a θ e Ω 8

9 Importance of Inertial Frames An inertial reference frame is defined as a system that is neither rotating nor accelerating relative to a certain reference point. Suitable inertial frames are required for orbit description (remember that Newton s second law is to be expressed in an inertial frame). An inertial frame is also an appropriate coordinate system for expressing positions and motions of celestial objects ICRS 9

10 Reference System and Reference Frame Distinction between reference system and a reference frame: 1. A reference system is the complete specification of how a celestial coordinate system is to be formed. For instance, it defines the origin and fundamental planes (or axes) of the coordinate system. 2. A reference frame consists of a set of identifiable points on the sky along with their coordinates, which serves as the practical realization of a reference system ICRS 10

11 International Celestial Reference System (ICRS) The ICRS is the reference system of the International Astronomical Union (IAU) for high-precision astronomy. Its origin is located at the barycenter of the solar system. Definition of non-rotating axes: 1. The celestial pole is the Earth s north pole (or the fundamental plane is the Earth's equatorial plane). 2. The reference direction is the vernal equinox (point at which the Sun crosses the equatorial plane moving from south to north). 3. Right-handed system ICRS 11

12 Vernal Equinox? Vallado, Kluwer, The vernal equinox is the intersection of the ecliptic and equator planes, where the sun passes from the southern to the northern hemisphere (First day of spring in the northern hemisphere). Today, the vernal equinox points in the direction of the constellation Pisces, whereas it pointed in the direction of the constellation Ram during Christ s lifetime. Why? 12

13 Need To Specify a Date Remember the complicated motion of the Earth ICRS 13

14 Need To Specify a Date Because the ecliptic and equatorial planes are moving, the coordinate system must have a corresponding date: "the pole/equator and equinox of [some date]". For ICRS, the equator and equinox are considered at the epoch J (January 1, 2000 at 11h58m56s UTC) ICRS 14

15 ICRS in Summary Quasi-equatorial coordinates at the solar system barycenter! [ in the framework of general relativity ] An object is located in the ICRS using right ascension and declination But how to realize ICRS practically? ICRS 15

16 Previous Realizations: B1950 and J2000 B1950 and J2000 were considered the best realized inertial axes until the development of ICRF. They exploit star catalogs (FK4 and FK5, respectively) which provide mean positions and proper motions for classical fundamental stars (optical measurements): FK4 was published in 1963 and contained 1535 stars in various equinoxes from 1950 to FK5 was an update of FK4 in 1988 with new positions for the 1535 stars. STK ICRF 16

17 Fifth Fundamental Catalog (FK5), available on the web site

18 Star Catalogs: Limitations and Improvement 1. The uncertainties in the star positions of the FK5 are about milliarcseconds over most of the sky. 2. A stellar reference frame is time-dependent because stars exhibit detectable motions. 1. Uncertainties of radio source positions are now typically less than one milliarcsecond, and often a factor of ten better. 2. Radio sources are not expected to show measurable intrinsic motion ICRF 18

19 Fifth Fundamental Catalog (FK5), available on the web site

20 ICRF is the Current Realization of ICRS Since 1998, IAU adopted the International Celestial Reference Frame (ICRF) as the standard reference frame: quasi-inertial reference frame with barely no time dependency. It represents an improvement upon the theory behind the J2000 frame, and it is the best realization of an inertial frame constructed to date ICRF 20

21 Very Long Baseline Interferometry STK ICRF 21

22 Further Reading on the Web Site ICRF 22

23

24 Formal Definition of ICRS It is defined by the measured positions of 212 extragalactic sources (mainly quasars). 1. Its origin is located at the barycenter of the solar system through appropriate modeling of VLBI observations in the framework of general relativity. 2. Its pole is in the direction defined by the conventional IAU models for precession (Lieske et al. 1977) and nutation (Seidelmann 1982). 3. Its origin of right ascensions was implicitly defined by fixing the right ascension of the radio source 3C273B to FK5 J2000 value ICRF 24

25 3. The Orbit in Space and Time? 3.4 Coordinate systems ω i α δ a θ e Ω 25

26 Coordinate Systems Now that we have defined an inertial reference frame, other reference frames can be defined according to the needs of the considered application. Coordinate transformations between two reference frames involve rotation and translation. What are the possibilities for a satellite in Earth orbit? 3.4 Coordinate systems 26

27 Geocentric Inertial (ECI) A geocentric-equatorial system is clearly convenient. The geocentric celestial reference frame (GCRF) is the geocentric counterpart of the ICRF and is the standard inertial coordinate system for the Earth. Within AGI products, the term ICRF coordinate system is not restricted to the system whose origin is at the solar system barycenter--- rather, the term describes a coordinate system whose origin is determined from context whose axes are aligned with the axes of the BCRF. 3.4 Coordinate systems 27

28 ICRF in STK 3.4 Coordinate systems 28

29 B1950, J2000 and ICRF in STK 29

30 Geocentric Fixed (ECEF) Origin at the Earth s center. z-axis is parallel to Earth s rotation vector. x-axis passes through the Greenwich meridian. y-axis: right-handed set. For ground tracks and force computation. 3.4 Coordinate systems 30

31 OUFTI-1 in ECEF 3.4 Coordinate systems 31

32 ECEF-ECI Transformation It includes precession, nutation, and rotation effects, as well as pole wander and frame corrections. ECEF e.g., ITRF PM ST N P ECI e.g., FK5 3.4 Coordinate systems 32

33 ECEF-ECI Transformation Vallado, Fundamental of Astrodynamics and Applications, Kluwer,

34 STK Illustration Period of the Earth s precession = years 34

35 ECEF-ECI Transformation Simplified transformation Precession, nutation, polar motion ignored 3.4 Coordinate systems 35

36 Topocentric On the Earth s Surface SEZ or NEZ For satellite tracking 3.4 Coordinate systems 36

37 Yet More Coordinate Systems! Satellite coordinate system For ADCS Perifocal coordinate system Heliocentric coordinate system Natural frame for an orbit (z is zero) For interplanetary missions Non-singular elements For particular orbits 3.4 Coordinate systems 37

38 3. The Orbit in Space and Time? ω i α δ a θ e Ω 3.5 Coordinate types 38

39 39

40 Cartesian and Spherical 1. Cartesian: for computations 2. Spherical: azimuth and elevation (for ground station) right ascension and declination (for astronomers) ˆK Ĵ Î 3.5 Coordinate types 40

41 Cartesian Spherical r XIˆ YJˆ ZKˆ ruˆ r uˆ cos cos Iˆ cos sin Jˆ sin Kˆ r 3.5 Coordinate types 41

42 Orbitron 42

43 Orbitron: Close-Up 3.5 Coordinate types 43

44 Orbital (Keplerian) Elements For interpretation r and v do not directly yield much information about the orbit. We cannot even infer from them what type of conic the orbit represents! Another set of six variables, which is much more descriptive of the orbit, is needed. 3.5 Coordinate types 44

45 6 Orbital (Keplerian) Elements 1. e: shape of the orbit 2. a: size of the orbit 3. i: orients the orbital plane with respect to the ecliptic plane 4. Ω: longitude of the intersection of the orbital and ecliptic planes 5. ω: orients the semi-major axis with respect to the ascending node 6. ν: orients the celestial body in space definition of the ellipse definition of the orbital plane orientation of the ellipse within the orbital plane position of the satellite on the ellipse 3.5 Coordinate types 45

46 Orbital plane orientation of the ellipse position of the satellite Ecliptic plane

47 Orbital Elements From State Vector rv, a,, i e,, 3.5 Coordinate types 47

48 Orbital Elements From State Vector ˆK Ĵ Î 3.5 Coordinate types 48

49 Hints Order: e,a / i,ω,,ω,θ e,a: L2 i: where is h? Ω: use the line of nodes ω: use e θ: use ω 3.5 Coordinate types 49

50 Eccentricity (First Integral of Motion) r r r e v h v r v r e v r v r r / 3.5 Coordinate types 50

51 Semi-Major Axis (Vis-Viva Equation) v ellip 2 1 r a r r, v v a 2 r 2 rv 3.5 Coordinate types 51

52 Inclination (Geometrical Arguments) Normal to the orbit plane h rv h hk. ˆ z Normal to the equatorial plane i ˆ 1h 1 ( ). cos z cos r v K h r v 3.5 Coordinate types 52

53 Longitude Ω (Geometrical Arguments) nkˆ h h Nodal vector Where is n? In the orbital and equatorial planes, and, hence, along the line of nodes If cos nj. ˆ 0 ˆ r v K. Iˆ ni.ˆ cos r v n ˆ r v K r v

54 Argument of Perigee (Geom. Arguments) e vr v r r Its direction corresponds to the apse line If cos ek. ˆ 0 ˆ r v vr v r K. ne. r cos r v ne ˆ r v v r v r K r r v

55 True Anomaly (Geometrical Arguments) cos If rv. 0 vr v r r. re. r cos re vr v r r r Coordinate types 55

56 Remarks If If nj. ˆ 0 ek. ˆ 0 1.ˆ 2 cos ni n 1 ne. 2 cos ne If rv. 0 1 re. 2 cos re 3.5 Coordinate types 56

57 Matlab and STK Examples 57

58 State Vector From Orbital Elements 1. Solve for r r 2 a(1 e ) 1 ecos 2. Solve for v v 2 1 r a 3. Solve for γ h rv cos a 1 e 2 4. Find the unit vector rhat in the direction of r by rotating the unit vector Ihat (direction of first point in Aries) through the Euler angles Ω,I and θ. 3.5 Coordinate types 58

59 State Vector From Orbital Elements 5. Define a vector normal to the orbit plane c rnˆ r(cos Iˆ sin Jˆ) 6. Solve the system v v v v x y z rv. rvsin r v r v r v x x y y z z cv. 0 c v c v c v x x y y z z 3.5 Coordinate types 59

60 Matlab Example 3.5 Coordinate types 60

61 Two-Line Elements (TLE) For monitoring by Norad * * North American Aerospace Defense Command 61

62 STK: Generate and Propagate TLE U

63 Celestrak: Update TLE 63

64 Celestrak: ISS, February 24, Coordinate types 64

65 Celestrak: IRIDIUM 33, February 24,

66 3. The Orbit in Space and Time 3.1 ORBITAL POSITION AS A FUNCTION OF TIME Kepler s equation Orbit propagation 3.2 TIME SYSTEMS Clocks Universal time Earth s motion Atomic time Coordinated universal time Julian date 66

67 3. The Orbit in Space and Time 3.3 INERTIAL FRAMES ICRS ICRF 3.4 COORDINATE SYSTEMS 3.5 COORDINATE TYPES 67

68 Lecture 2 Lecture 3 68

69 Astrodynamics (AERO0024) 3B. The Orbit in Space and Time Gaëtan Kerschen Space Structures & Systems Lab (S3L) 69

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 3. The Orbit in Space Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation: Space We need means of describing orbits in three-dimensional space. Example: Earth s oblateness

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) The Orbit in Space and Time Gaëtan Kerschen Space Structures & Systems Lab (S3L) Newton s laws F = ma F g mm = G r 1 2 uˆ 2 r Relative motion μ r = r 3 r Energy conserv. 2 v μ

More information

Satellite Communications

Satellite Communications Satellite Communications Lecture (3) Chapter 2.1 1 Gravitational Force Newton s 2nd Law: r r F = m a Newton s Law Of Universal Gravitation (assuming point masses or spheres): Putting these together: r

More information

Orbits in Geographic Context. Instantaneous Time Solutions Orbit Fixing in Geographic Frame Classical Orbital Elements

Orbits in Geographic Context. Instantaneous Time Solutions Orbit Fixing in Geographic Frame Classical Orbital Elements Orbits in Geographic Context Instantaneous Time Solutions Orbit Fixing in Geographic Frame Classical Orbital Elements Instantaneous Time Solutions Solution of central force motion, described through two

More information

IAU 2006 NFA GLOSSARY

IAU 2006 NFA GLOSSARY IAU 2006 NFA GLOSSARY Prepared by the IAU Division I Working Group Nomenclature for Fundamental Astronomy'' (latest revision: 20 November 2007) Those definitions corresponding to the IAU 2000 resolutions

More information

Modern Navigation. Thomas Herring

Modern Navigation. Thomas Herring 12.215 Modern Navigation Thomas Herring Review of Monday s Class Spherical Trigonometry Review plane trigonometry Concepts in Spherical Trigonometry Distance measures Azimuths and bearings Basic formulas:

More information

On the definition and use of the ecliptic in modern astronomy

On the definition and use of the ecliptic in modern astronomy On the definition and use of the ecliptic in modern astronomy Nicole Capitaine (1), Michael Soffel (2) (1) : Observatoire de Paris / SYRTE (2) : Lohrmann Observatory, Dresden Technical University Introduction

More information

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 2 Due Tuesday, July 14, in class.

MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 2 Due Tuesday, July 14, in class. MAE 180A: Spacecraft Guidance I, Summer 2009 Homework 2 Due Tuesday, July 14, in class. Guidelines: Please turn in a neat and clean homework that gives all the formulae that you have used as well as details

More information

Fundamentals of Astrodynamics and Applications

Fundamentals of Astrodynamics and Applications Fundamentals of Astrodynamics and Applications Third Edition David A. Vallado with technical contributions by Wayne D. McClain Space Technology Library Published Jointly by Microcosm Press Hawthorne, CA

More information

On Sun-Synchronous Orbits and Associated Constellations

On Sun-Synchronous Orbits and Associated Constellations On Sun-Synchronous Orbits and Associated Constellations Daniele Mortari, Matthew P. Wilkins, and Christian Bruccoleri Department of Aerospace Engineering, Texas A&M University, College Station, TX 77843,

More information

Geometry of Earth Sun System

Geometry of Earth Sun System 12S56 Geometry of Earth Sun System Figure below shows the basic geometry Northern Hemisphere Winter ω equator Earth s Orbit Ecliptic ω ω SUN equator Northern Hemisphere Spring Northern Hemisphere Fall

More information

Coordinate Systems for Astronomy or: How to get your telescope to observe the right object

Coordinate Systems for Astronomy or: How to get your telescope to observe the right object Coordinate Systems for Astronomy or: How to get your telescope to observe the right object Figure 1: Basic definitions for the Earth Definitions - Poles, Equator, Meridians, Parallels The rotation of the

More information

Fundamentals of Satellite technology

Fundamentals of Satellite technology Fundamentals of Satellite technology Prepared by A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai Orbital Plane All of the planets,

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 4B. Non-Keplerian Motion Gaëtan Kerschen Space Structures & Systems Lab (S3L) 2. Two-body problem 4.1 Dominant perturbations Orbital elements (a,e,i,ω,ω) are constant Real satellites

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5. Dominant Perturbations Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation Assumption of a two-body system in which the central body acts gravitationally as a point

More information

Celestial Mechanics III. Time and reference frames Orbital elements Calculation of ephemerides Orbit determination

Celestial Mechanics III. Time and reference frames Orbital elements Calculation of ephemerides Orbit determination Celestial Mechanics III Time and reference frames Orbital elements Calculation of ephemerides Orbit determination Orbital position versus time: The choice of units Gravitational constant: SI units ([m],[kg],[s])

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5. Dominant Perturbations Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation Assumption of a two-body system in which the central body acts gravitationally as a point

More information

ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS

ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS 1 ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS Jan Vondrák, Astronomical Institute Prague P PART 1: Reference systems and frames used in astronomy:! Historical outline,

More information

Orbit Propagatorr and Geomagnetic Field Estimator for NanoSatellite: The ICUBE Mission

Orbit Propagatorr and Geomagnetic Field Estimator for NanoSatellite: The ICUBE Mission Vol:7, No:7, 23 Orbit Propagatorr and Geomagnetic Field Estimator for NanoSatellite: The ICUBE Mission Lv Meibo, Naqvi Najam Abbas, Hina Arshad, and Li YanJun International Science Index, Physical and

More information

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS A1.1. Kepler s laws Johannes Kepler (1571-1630) discovered the laws of orbital motion, now called Kepler's laws.

More information

PHYSICS 1030 Homework #9

PHYSICS 1030 Homework #9 PHYSICS 1030 Homework #9 (Due Dec. 6, 2017) Find the position of the planet Mars at time t D December 6, 2017, 5:00 am EST. You will do this by following the steps shown below. (a) Convert the time t to

More information

PHYSICS 1030 Homework #9

PHYSICS 1030 Homework #9 PHYSICS 1030 Homework #9 (Due Dec. 5, 2018, 6:00 pm) Find the position of the planet Mars at time t D December 5, 2018, 7:50 pm EST. You will do this by following the steps shown below. (a) Convert the

More information

Greetings, All things require introduction and so we begin with ours,

Greetings, All things require introduction and so we begin with ours, -Carina Pereira * & Smit Kamal # *carina.012@hotmail.com #smitkamal@gmail.com Greetings, All things require introduction and so we begin with ours, Most of us are undergraduate college students enrolled

More information

These notes may contain copyrighted material! They are for your own use only during this course.

These notes may contain copyrighted material! They are for your own use only during this course. Licensed for Personal Use Only DO NOT DISTRIBUTE These notes may contain copyrighted material! They are for your own use only during this course. Distributing them in anyway will be considered a breach

More information

Lecture Module 2: Spherical Geometry, Various Axes Systems

Lecture Module 2: Spherical Geometry, Various Axes Systems 1 Lecture Module 2: Spherical Geometry, Various Axes Systems Satellites in space need inertial frame of reference for attitude determination. In a true sense, all bodies in universe are in motion and inertial

More information

Application of the new concepts and definitions (ICRS, CIP and CEO) in fundamental astronomy. P. K. Seidelmann and J. Kovalevsky

Application of the new concepts and definitions (ICRS, CIP and CEO) in fundamental astronomy. P. K. Seidelmann and J. Kovalevsky A&A 392, 341 351 (2002) DOI: 10.1051/0004-6361:20020931 c ESO 2002 Astronomy & Astrophysics Application of the new concepts and definitions (ICRS, CIP and CEO) in fundamental astronomy P. K. Seidelmann

More information

Coordinates on the Sphere

Coordinates on the Sphere Survey Observations Coordinates on the Sphere Any position on the surface of a sphere (such as the Earth or the night sky) can be expressed in terms of the angular coordinates latitude and longitude Latitude

More information

Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations

Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations Aman Saluja #1, Manish Bansal #2, M Raja #3, Mohd Maaz #4 #Aerospace Department, University of Petroleum and Energy

More information

Orbit Definition. Reference Vector. Vernal (March) Equinox Vector. Sun Vector

Orbit Definition. Reference Vector. Vernal (March) Equinox Vector. Sun Vector Simulation: TMG Thermal Analysis User's Guide Orbit Definition TMG can model three types of orbits: Beta Angle, Geostationary and Classical. For Earth, three special classical orbits are already partially

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 4. The Orbit in Time Gaëtan Kerschen Space Structures & Systems Lab (S3L) Previous Lecture: The Orbit in Space 3.1 INERTIAL FRAMES 3.4.1 ICRS 3.4.2 ICRF 3.2 COORDINATE SYSTEMS

More information

Astronomy. The Seasons

Astronomy. The Seasons Astronomy The Seasons The seasons are caused by the inclination of the Earth s axis: when a hemisphere is tipped toward the Sun, the Sun is more directly above it. At the Summer Solstice the tilt is most

More information

The conversion of Universal Time to Greenwich Mean Sidereal Time is rigorously possible and is given by a series development with time defined by

The conversion of Universal Time to Greenwich Mean Sidereal Time is rigorously possible and is given by a series development with time defined by 2.2 Time Systems 23 A = LAST - GAST = LMST -GMST. (2.5) LAST is detennined from astronomical observations to fixed stars and extragalactic radio sources. The mean sidereal time scale is still affected

More information

The Position of the Sun. Berthold K. P. Horn. necessary to know the position of the sun in the sky. This is particularly

The Position of the Sun. Berthold K. P. Horn. necessary to know the position of the sun in the sky. This is particularly MASSACHUSETTS INSTITUTE OF TECHNOLOGY ARTIFICIAL INTELLIGENCE LABORATORY Working Paper No. 162 March 1978 The Position of the Sun Berthold K. P. Horn Abstract. The appearance of a surface depends dramatically

More information

Satellite meteorology

Satellite meteorology GPHS 422 Satellite meteorology GPHS 422 Satellite meteorology Lecture 1 6 July 2012 Course outline 2012 2 Course outline 2012 - continued 10:00 to 12:00 3 Course outline 2012 - continued 4 Some reading

More information

LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME. a. understand the basic concepts needed for any astronomical coordinate system.

LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME. a. understand the basic concepts needed for any astronomical coordinate system. UNIT 2 UNIT 2 LOCATING CELESTIAL OBJECTS: COORDINATES AND TIME Goals After mastery of this unit, you should: a. understand the basic concepts needed for any astronomical coordinate system. b. understand

More information

ACCURACY ASSESSMENT OF GEOSTATIONARY-EARTH-ORBIT WITH SIMPLIFIED PERTURBATIONS MODELS

ACCURACY ASSESSMENT OF GEOSTATIONARY-EARTH-ORBIT WITH SIMPLIFIED PERTURBATIONS MODELS ARTIFICIAL SATELLITES, Vol. 51, No. 2 2016 DOI: 10.1515/arsa-2016-0005 ACCURACY ASSESSMENT OF GEOSTATIONARY-EARTH-ORBIT WITH SIMPLIFIED PERTURBATIONS MODELS Lihua Ma, Xiaojun Xu, Feng Pang National Astronomical

More information

2 Conventional Celestial Reference System and Frame

2 Conventional Celestial Reference System and Frame The celestial reference system is based on a kinematical definition, making the axis directions fixed with respect to the distant matter of the universe. The system is materialized by a celestial reference

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5B. Orbital Maneuvers Gaëtan Kerschen Space Structures & Systems Lab (S3L) Previous Lecture: Coplanar Maneuvers 5.1 INTRODUCTION 5.1.1 Why? 5.1.2 How? 5.1.3 How much? 5.1.4 When?

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 4. The Orbit in Time Gaëtan Kerschen Space Structures & Systems Lab (S3L) Previous Lecture: The Orbit in Space 3.1 INERTIAL FRAMES 3.4.1 ICRS 3.4.2 ICRF 3.2 COORDINATE SYSTEMS

More information

ROCZNIK ASTRONOMICZNY (ASTRONOMICAL ALMANAC) OF THE INSTITUTE OF GEODESY AND CARTOGRAPHY AGAINST THE IAU 2000 RESOLUTIONS

ROCZNIK ASTRONOMICZNY (ASTRONOMICAL ALMANAC) OF THE INSTITUTE OF GEODESY AND CARTOGRAPHY AGAINST THE IAU 2000 RESOLUTIONS ROCZNIK ASTRONOMICZNY (ASTRONOMICAL ALMANAC) OF THE INSTITUTE OF GEODESY AND CARTOGRAPHY AGAINST THE IAU 2000 RESOLUTIONS M. SĘKOWSKI Institute of Geodesy and Cartography ul. Modzelewskiego 27, Warsaw,

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5. Numerical Methods Gaëtan Kerschen Space Structures & Systems Lab (S3L) Why Different Propagators? Analytic propagation: Better understanding of the perturbing forces. Useful

More information

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK UNIT I PART A

MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK UNIT I PART A MAHALAKSHMI ENGINEERING COLLEGE-TRICHY QUESTION BANK SATELLITE COMMUNICATION DEPT./SEM.:ECE/VIII UNIT I PART A 1.What are the different applications of satellite systems? *Largest International System(Intel

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5B. Orbital Maneuvers Gaëtan Kerschen Space Structures & Systems Lab (S3L) Previous Lecture: Coplanar Maneuvers 5.1 INTRODUCTION 5.1.1 Why? 5.1.2 How? 5.1.3 How much? 5.1.4 When?

More information

10/17/2012. Observing the Sky. Lecture 8. Chapter 2 Opener

10/17/2012. Observing the Sky. Lecture 8. Chapter 2 Opener Observing the Sky Lecture 8 Chapter 2 Opener 1 Figure 2.1 Figure 2.2 2 Figure 2.6 Figure 2.4 Annotated 3 The Celestial Sphere The celestial sphere is the vast hollow sphere on which the stars appear fixed.

More information

Lecture 2c: Satellite Orbits

Lecture 2c: Satellite Orbits Lecture 2c: Satellite Orbits Outline 1. Newton s Laws of Mo3on 2. Newton s Law of Universal Gravita3on 3. Kepler s Laws 4. Pu>ng Newton and Kepler s Laws together and applying them to the Earth-satellite

More information

RECOMMENDATION ITU-R S Impact of interference from the Sun into a geostationary-satellite orbit fixed-satellite service link

RECOMMENDATION ITU-R S Impact of interference from the Sun into a geostationary-satellite orbit fixed-satellite service link Rec. ITU-R S.1525-1 1 RECOMMENDATION ITU-R S.1525-1 Impact of interference from the Sun into a geostationary-satellite orbit fixed-satellite service link (Question ITU-R 236/4) (21-22) The ITU Radiocommunication

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 3A. The Orbit in Space and Time Gaëtan Kerschen Space Structures & Systems Lab (S3L) Previous Lecture: The Two-Body Problem 2.1 JUSTIFICATION OF THE 2-BODY MODEL 2.2 GRAVITATIONAL

More information

Orbit Representation

Orbit Representation 7.1 Fundamentals 223 For this purpose, code-pseudorange and carrier observations are made of all visible satellites at all monitor stations. The data are corrected for ionospheric and tropospheric delays,

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 4. The Orbit in Time Gaëtan Kerschen Space Structures & Systems Lab (S3L) Previous Lecture: The Orbit in Space 3.1 INERTIAL FRAMES 3.4.1 ICRS 3.4.2 ICRF 3.2 COORDINATE SYSTEMS

More information

Oberth: Energy vs. Momentum

Oberth: Energy vs. Momentum 1 2 The Oberth Effect 3 Oberth: Energy vs. Momentum 4 The Celestial Sphere From our perspective on Earth the stars appear embedded on a distant 2-dimensional surface the Celestial Sphere. 5 The Celestial

More information

Earth-Centered, Earth-Fixed Coordinate System

Earth-Centered, Earth-Fixed Coordinate System Fundamentals of Global Positioning System Receivers: A Software Approach James Bao-Yen Tsui Copyright 2000 John Wiley & Sons, Inc. Print ISBN 0-471-38154-3 Electronic ISBN 0-471-20054-9 CHAPTER FOUR Earth-Centered,

More information

AS3010: Introduction to Space Technology

AS3010: Introduction to Space Technology AS3010: Introduction to Space Technology L E C T U R E 6 Part B, Lecture 6 17 March, 2017 C O N T E N T S In this lecture, we will look at various existing satellite tracking techniques. Recall that we

More information

Celestial Mechanics and Satellite Orbits

Celestial Mechanics and Satellite Orbits Celestial Mechanics and Satellite Orbits Introduction to Space 2017 Slides: Jaan Praks, Hannu Koskinen, Zainab Saleem Lecture: Jaan Praks Assignment Draw Earth, and a satellite orbiting the Earth. Draw

More information

The sky and the celestial sphere

The sky and the celestial sphere Chapter 1 The sky and the celestial sphere The Sun, and sometimes the Moon are, by and large, the only astronomical objects visible in the day sky. Traditionally, astronomy has been a nocturnal activity.

More information

Rotation matrix from the mean dynamical equator and equinox at J to the ICRS

Rotation matrix from the mean dynamical equator and equinox at J to the ICRS A&A 413, 765 770 (004) DOI: 10.1051/0004-6361:003155 c ESO 003 Astronomy & Astrophysics Rotation matrix from the mean dynamical equator and equinox at J000.0 to the ICRS J. L. Hilton 1 and C. Y. Hohenkerk

More information

Astronomical coordinate systems. ASTR320 Monday January 22, 2018

Astronomical coordinate systems. ASTR320 Monday January 22, 2018 Astronomical coordinate systems ASTR320 Monday January 22, 2018 Special public talk this week: Mike Brown, Pluto Killer Wednesday at 7:30pm in MPHY204 Other news Munnerlyn lab is hiring student engineers

More information

Time, coordinates and how the Sun and Moon move in the sky

Time, coordinates and how the Sun and Moon move in the sky Time, coordinates and how the Sun and Moon move in the sky Using the colors and magnitudes of quasars drawn from the SDSS Catalog Archive Server to distinguish quasars from stars using the light they emit

More information

Third Body Perturbation

Third Body Perturbation Third Body Perturbation p. 1/30 Third Body Perturbation Modeling the Space Environment Manuel Ruiz Delgado European Masters in Aeronautics and Space E.T.S.I. Aeronáuticos Universidad Politécnica de Madrid

More information

Workshop on GNSS Data Application to Low Latitude Ionospheric Research May Fundamentals of Satellite Navigation

Workshop on GNSS Data Application to Low Latitude Ionospheric Research May Fundamentals of Satellite Navigation 2458-6 Workshop on GNSS Data Application to Low Latitude Ionospheric Research 6-17 May 2013 Fundamentals of Satellite Navigation HEGARTY Christopher The MITRE Corporation 202 Burlington Rd. / Rte 62 Bedford

More information

The Measurement of Time

The Measurement of Time CHAPTER TWO The Measurement of Time Solar Time In antiquity the time of day was measured by the direction of a shadow cast in sunlight. This resulted in the development of a wide variety of sophisticated

More information

Principles of Global Positioning Systems Spring 2008

Principles of Global Positioning Systems Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 12.540 Principles of Global Positioning Systems Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 12.540

More information

Dynamics and Control of Lunisolar Perturbations for. Highly-Eccentric Earth-Orbiting Satellites

Dynamics and Control of Lunisolar Perturbations for. Highly-Eccentric Earth-Orbiting Satellites Dynamics and Control of Lunisolar Perturbations for Highly-Eccentric Earth-Orbiting Satellites by Matthew Bourassa A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfilment

More information

Coordinate Systems. Basis for any 3D Coordinate System. 2. Locate the x-y plane (the fundamental plane ) Usual approach to define angles:

Coordinate Systems. Basis for any 3D Coordinate System. 2. Locate the x-y plane (the fundamental plane ) Usual approach to define angles: Coordinate Systems Basis for any 3D Coordinate System Basic steps for the definition of a 3D coordinate system:. Locate the origin. Locate the -y plane (the fundamental plane ) 3. Decide on direction of

More information

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements

AST111, Lecture 1b. Measurements of bodies in the solar system (overview continued) Orbital elements AST111, Lecture 1b Measurements of bodies in the solar system (overview continued) Orbital elements Planetary properties (continued): Measuring Mass The orbital period of a moon about a planet depends

More information

Knowing the Heavens. Goals: Constellations in the Sky

Knowing the Heavens. Goals: Constellations in the Sky Goals: Knowing the Heavens To see how the sky changes during a night and from night to night. To measure the positions of stars in celestial coordinates. To understand the cause of the seasons. Constellations

More information

is a revolution relative to a fixed celestial position. is the instant of transit of mean equinox relative to a fixed meridian position.

is a revolution relative to a fixed celestial position. is the instant of transit of mean equinox relative to a fixed meridian position. PERIODICITY FORMULAS: Sidereal Orbit Tropical Year Eclipse Year Anomalistic Year Sidereal Lunar Orbit Lunar Mean Daily Sidereal Motion Lunar Synodical Period Centenial General Precession Longitude (365.25636042

More information

Keplerian Elements Tutorial

Keplerian Elements Tutorial Keplerian Elements Tutorial This tutorial is based on the documentation provided with InstantTrack, written by Franklin Antonio, N6NKF. Satellite Orbital Elements are numbers that tell us the orbit of

More information

Knowing the Heavens. Goals: Constellations in the Sky

Knowing the Heavens. Goals: Constellations in the Sky Goals: Knowing the Heavens To see how the sky changes during a night and from night to night. To measure the positions of stars in celestial coordinates. To understand the cause of the seasons. Constellations

More information

CELESTIAL COORDINATES

CELESTIAL COORDINATES ASTR 1030 Astronomy Lab 27 Celestial Coordinates CELESTIAL COORDINATES GEOGRAPHIC COORDINATES The Earth's geographic coordinate system is familiar to everyone - the north and south poles are defined by

More information

Introduction to Astronomy

Introduction to Astronomy Introduction to Astronomy AST0111-3 (Astronomía) Semester 2014B Prof. Thomas H. Puzia Theme Our Sky 1. Celestial Sphere 2. Diurnal Movement 3. Annual Movement 4. Lunar Movement 5. The Seasons 6. Eclipses

More information

Creating Satellite Orbits

Creating Satellite Orbits Exercises using Satellite ToolKit (STK) vivarad@ait.ac.th Creating Satellite Orbits 1. What You Will Do Create a low-earth orbit (LEO) satellite Create a medium-earth orbit (MEO) satellite Create a highly

More information

MODELLING OF PERTURBATIONS FOR PRECISE ORBIT DETERMINATION

MODELLING OF PERTURBATIONS FOR PRECISE ORBIT DETERMINATION MODELLING OF PERTURBATIONS FOR PRECISE ORBIT DETERMINATION 1 SHEN YU JUN, 2 TAN YAN QUAN, 3 TAN GUOXIAN 1,2,3 Raffles Science Institute, Raffles Institution, 1 Raffles Institution Lane, Singapore E-mail:

More information

Chapter S1 Lecture. The Cosmic Perspective Seventh Edition. Celestial Timekeeping and Navigation Pearson Education, Inc.

Chapter S1 Lecture. The Cosmic Perspective Seventh Edition. Celestial Timekeeping and Navigation Pearson Education, Inc. Chapter S1 Lecture The Cosmic Perspective Seventh Edition Celestial Timekeeping and Navigation 2014 Pearson Education, Inc. Celestial Timekeeping and Navigation 2014 Pearson Education, Inc. S1.1 Astronomical

More information

AIR FORCE INSTITUTE OF TECHNOLOGY

AIR FORCE INSTITUTE OF TECHNOLOGY Space Based Satellite Tracking and Characterization Utilizing Non-Imaging Passive Sensors THESIS Bradley R. Townsend, Captain, USA AFIT/GA/ENY/08-M06 DEPARTMENT OF THE AIR FORCE AIR UNIVERSITY AIR FORCE

More information

CALCULATION OF POSITION AND VELOCITY OF GLONASS SATELLITE BASED ON ANALYTICAL THEORY OF MOTION

CALCULATION OF POSITION AND VELOCITY OF GLONASS SATELLITE BASED ON ANALYTICAL THEORY OF MOTION ARTIFICIAL SATELLITES, Vol. 50, No. 3 2015 DOI: 10.1515/arsa-2015-0008 CALCULATION OF POSITION AND VELOCITY OF GLONASS SATELLITE BASED ON ANALYTICAL THEORY OF MOTION W. Góral, B. Skorupa AGH University

More information

Dynamics of the Earth

Dynamics of the Earth Time Dynamics of the Earth Historically, a day is a time interval between successive upper transits of a given celestial reference point. upper transit the passage of a body across the celestial meridian

More information

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods?

Chapter S1 Celestial Timekeeping and Navigation. How do we define the day, month, year, and planetary time periods? Chapter S1 Celestial Timekeeping and Navigation S1.1 Astronomical Time Periods Our goals for learning:! How do we define the day, month, year, and planetary time periods?! How do we tell the time of day?!

More information

Coordinate Systems fundamental circle secondary great circle a zero point

Coordinate Systems fundamental circle secondary great circle a zero point Astrometry Coordinate Systems There are different kinds of coordinate systems used in astronomy. The common ones use a coordinate grid projected onto the celestial sphere. These coordinate systems are

More information

The 3D representation of the new transformation from the terrestrial to the celestial system.

The 3D representation of the new transformation from the terrestrial to the celestial system. The 3D representation of the new transformation from the terrestrial to the celestial system. Véronique Dehant, Olivier de Viron Royal Observatory of Belgium Nicole Capitaine Observatoire de Paris, France

More information

Principles of the Global Positioning System Lecture 04"

Principles of the Global Positioning System Lecture 04 12.540 Principles of the Global Positioning System Lecture 04" Prof. Thomas Herring" Room 54-820A; 253-5941" tah@mit.edu" http://geoweb.mit.edu/~tah/12.540 " Review" So far we have looked at measuring

More information

Section 13. Orbit Perturbation. Orbit Perturbation. Atmospheric Drag. Orbit Lifetime

Section 13. Orbit Perturbation. Orbit Perturbation. Atmospheric Drag. Orbit Lifetime Section 13 Orbit Perturbation Orbit Perturbation A satellite s orbit around the Earth is affected by o Asphericity of the Earth s gravitational potential : Most significant o Atmospheric drag : Orbital

More information

SSM/I and SSMIS Stewardship Code Geolocation Algorithm Theoretical Basis

SSM/I and SSMIS Stewardship Code Geolocation Algorithm Theoretical Basis SSM/I and SSMIS Stewardship Code Geolocation Algorithm Theoretical Basis CSU Technical Report Mathew R P Sapiano, Stephen Bilanow, Wesley Berg November 2010 http://rain.atmos.colostate.edu/fcdr/ TABLE

More information

THE INITIAL ORBIT DETERMINATION OF LEO SATELLITES OBSERVED NEAR THE LOCAL ZENITH

THE INITIAL ORBIT DETERMINATION OF LEO SATELLITES OBSERVED NEAR THE LOCAL ZENITH THE INITIAL ORBIT DETERMINATION OF LEO SATELLITES OBSERVED NEAR THE LOCAL ZENITH M.A. Earl (a) (a) Royal Military College of Canada, Kingston ON, earl-m@castor.ca Abstract Our large satellite population

More information

Essential Astrophysics

Essential Astrophysics ASTR 530 Essential Astrophysics Course Notes Paul Hickson The University of British Columbia, Department of Physics and Astronomy January 2015 1 1 Introduction and review Several text books present an

More information

NAVIGATION & MISSION DESIGN BRANCH

NAVIGATION & MISSION DESIGN BRANCH c o d e 5 9 5 National Aeronautics and Space Administration Michael Mesarch Michael.A.Mesarch@nasa.gov NAVIGATION & MISSION DESIGN BRANCH www.nasa.gov Outline Orbital Elements Orbital Precession Differential

More information

Earth Science, 13e Tarbuck & Lutgens

Earth Science, 13e Tarbuck & Lutgens Earth Science, 13e Tarbuck & Lutgens Origins of Modern Astronomy Earth Science, 13e Chapter 21 Stanley C. Hatfield Southwestern Illinois College Early history of astronomy Ancient Greeks Used philosophical

More information

Elements of Geodesy. Shape of the Earth Tides Terrestrial coordinate systems Inertial coordinate systems Earth orientation parameters

Elements of Geodesy. Shape of the Earth Tides Terrestrial coordinate systems Inertial coordinate systems Earth orientation parameters Elements of Geodesy Shape of the Earth Tides Terrestrial coordinate systems Inertial coordinate systems Earth orientation parameters E. Calais Purdue University - EAS Department Civil 3273 ecalais@purdue.edu

More information

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy

Earth Science, 11e. Origin of Modern Astronomy Chapter 21. Early history of astronomy. Early history of astronomy. Early history of astronomy 2006 Pearson Prentice Hall Lecture Outlines PowerPoint Chapter 21 Earth Science 11e Tarbuck/Lutgens This work is protected by United States copyright laws and is provided solely for the use of instructors

More information

Prof. E. Calais Purdue University - EAS Department CIVL 3273

Prof. E. Calais Purdue University - EAS Department CIVL 3273 Prof. E. Calais Purdue University - EAS Department CIVL 3273 ecalais@purdue.edu GPS Geodesy - Spring 2008 Geoid of Western Hemisphere. Image from University of Texas Center for Space Research and NASA.

More information

Topic Guide: The Celestial Sphere. GCSE (9-1) Astronomy. Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0)

Topic Guide: The Celestial Sphere. GCSE (9-1) Astronomy. Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0) Topic Guide: The Celestial Sphere GCSE (9-1) Astronomy Pearson Edexcel Level 1/Level 2 GCSE (9-1) in Astronomy (1AS0) The Celestial Sphere Contents Specification Points 1 The Astronomy 2 Equatorial coordinates

More information

Introduction To Modern Astronomy I: Solar System

Introduction To Modern Astronomy I: Solar System ASTR 111 003 Fall 2007 Lecture 02 Sep. 10, 2007 Introduction To Modern Astronomy I: Solar System Introducing Astronomy (chap. 1-6) Planets and Moons (chap. 7-15) Chap. 16: Our Sun Chap. 28: Search for

More information

An Analysis of N-Body Trajectory Propagation. Senior Project. In Partial Fulfillment. of the Requirements for the Degree

An Analysis of N-Body Trajectory Propagation. Senior Project. In Partial Fulfillment. of the Requirements for the Degree An Analysis of N-Body Trajectory Propagation Senior Project In Partial Fulfillment of the Requirements for the Degree Bachelor of Science in Aerospace Engineering by Emerson Frees June, 2011 An Analysis

More information

Jimmy Dale Hicks Jr. Auburn, Alabama December 8, Keywords: orbit debris, state estimation, kalman filtering

Jimmy Dale Hicks Jr. Auburn, Alabama December 8, Keywords: orbit debris, state estimation, kalman filtering Performance Comparison of an Extended Kalman Filter and an Iterated Extended Kalman Filter for Orbit Determination of Space Debris with Poor Apriori Information and Intermittent Observations by Jimmy Dale

More information

Ossama Abdelkhalik and Daniele Mortari Department of Aerospace Engineering, Texas A&M University,College Station, TX 77843, USA

Ossama Abdelkhalik and Daniele Mortari Department of Aerospace Engineering, Texas A&M University,College Station, TX 77843, USA Two-Way Orbits Ossama Abdelkhalik and Daniele Mortari Department of Aerospace Engineering, Texas A&M University,College Station, TX 77843, USA November 17, 24 Abstract. This paper introduces a new set

More information

PW-Sat two years on orbit.

PW-Sat two years on orbit. 13th of February 2014 is the second anniversary of launch of the first polish student-made satellite PW-Sat. Currently Students' Space Association on Warsaw University of Technology is working on another

More information

NONLINEAR ANALYTICAL EQUATIONS OF RELATIVE MOTION ON J 2 -PERTURBED ECCENTRIC ORBITS

NONLINEAR ANALYTICAL EQUATIONS OF RELATIVE MOTION ON J 2 -PERTURBED ECCENTRIC ORBITS AAS 16-495 NONLINEAR ANALYTICAL EQUATIONS OF RELATIVE MOTION ON J 2 -PERTURBED ECCENTRIC ORBITS Bradley Kuiack and Steve Ulrich Future spacecraft formation flying missions will require accurate autonomous

More information

ASTRONOMICAL COORDINATE SYSTEMS CELESTIAL SPHERE

ASTRONOMICAL COORDINATE SYSTEMS CELESTIAL SPHERE ASTRONOMICAL COORDINATE SYSTEMS CELESTIAL SPHERE To the naked eye, stars appear fixed on the sky with respect to one another. These patterns are often grouped into constellations. Angular measurements

More information

Discovering the Night Sky

Discovering the Night Sky Discovering the Night Sky Guiding Questions 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

More information

Discovering the Night Sky

Discovering the Night Sky Guiding Questions Discovering the Night Sky 1. What role did astronomy play in ancient civilizations? 2. Are the stars that make up a constellation actually close to one another? 3. Are the same stars

More information

2. Descriptive Astronomy ( Astronomy Without a Telescope )

2. Descriptive Astronomy ( Astronomy Without a Telescope ) How do we locate stars in the heavens? 2. Descriptive Astronomy ( Astronomy Without a Telescope ) What stars are visible from a given location? Where is the sun in the sky at any given time? Where are

More information