Astrodynamics (AERO0024)

Size: px
Start display at page:

Download "Astrodynamics (AERO0024)"

Transcription

1 Astrodynamics (AERO0024) 5. Numerical Methods Gaëtan Kerschen Space Structures & Systems Lab (S3L)

2 Why Different Propagators? Analytic propagation: Better understanding of the perturbing forces. Useful for mission planning (fast answer): e.g., lifetime computation. Numerical propagation: The high accuracy required today for satellite orbits can only be achieved by using numerical integration. Incorporation of any arbitrary disturbing acceleration (versatile). 2

3 6. Numerical Methods r 6.1 Orbit prediction 6.2 Numerical integration tn t n Single-step methods: Runge-Kutta 6.4 Multi-step methods 6.5 Integrator and step size selection 6.6 ISS example 6.7 GEO satellites 3

4 STK Propagators 2-body: analytic propagator (constant orbital elements). J2: analytic propagator (secular variations in the orbit elements due to Earth oblateness. HPOP: numerical integration of the equations of motion (periodic and secular effects included). Accurate Versatile Errors accumulation for long intervals Computationally intensive 6.1 Orbit prediction 4

5 Real-Life Example: German Aerospace Agency 6.1 Orbit prediction 5

6 Real-Life Example: German Aerospace Agency 6

7 Further Reading on the Web Site 6.1 Orbit prediction 7

8 Real-Life Example: Envisat ENVpred.html 6.1 Orbit prediction 8

9 Why do the predictions degrade for lower altitudes?

10 Did you Know? NASA began the first complex numerical integrations during the late 1960s and early 1970s Orbit prediction 10

11 What is Numerical Integration? Given r r a r r( t ), r( t ) 3 perturbed n t t t n1 n n Compute r( t ), r( t ) n1 n1 6.2 Numerical integration 11

12 State-Space Formulation r r a r 3 perturbed u f ( u, t) u r r 6-dimensional state vector 6.2 Numerical integration 12

13 How to Perform Numerical Integration? u( t n ) u( ) tn 1 h h f t h f t hf t f t f t R 2 s! 2 s ( s) ( n ) ( n) '( n) ''( n)... ( n) s Taylor series expansion 6.2 Numerical integration 13

14 First-Order Taylor Approximation (Euler) along the tangent u( t t) u( t ) t u( t ) n n n u u t f ( u, t ) n1 n n n Euler step Exact solution x(t)=t Time t (s) 6.2 Numerical integration The stepsize has to be extremely small for accurate predictions, and it is necessary to develop more effective algorithms. 14

15 Numerical Integration Methods m u u t u n1 j n1 j j n1 j j1 j0 State vector m 0 0 Implicit, the solution method becomes iterative in the nonlinear case 0 0, =0 j for j 1, 0 j for j 1 j j Explicit, u n+1 can be deduced directly from the results at the previous time steps Single-step, the system at time t n+1 only depends on the previous state t n Multi-step, the system at time t n+1 depends several previous states t n,t n-1,etc. 6.2 Numerical integration 15

16 Examples: Implicit vs. Explicit Trapezoidal rule (implicit) u n u u 2 n1 un t Euler backward (implicit) u u t u n1 n n1 n1 r r tn t n 1 tn t n 1 Euler forward (explicit) r u u t u 6.2 Numerical integration n 1 n n tn t n 1 16

17 Why Different Methods? A variety of methods has been applied in astrodynamics. Each of these methods has its own advantages and drawbacks: Accuracy: what is the order of the integration scheme? Efficiency: how many function calls? Versatility: can it be applied to a wide range of problems? Complexity: is it easy to implement and use? Step size: automatic step size control? 6.1 Orbit prediction 17

18 Runge-Kutta Family: Single-Step Perhaps the most well-known numerical integrator. Difference with traditional Taylor series integrators: the RK family only requires the first derivative, but several evaluations are needed to move forward one step in time. Different variants: explicit, embedded, etc. 6.3 Single-step methods: Runge-Kutta 18

19 Runge-Kutta Family: Single-Step u( t ) u u( t) f ( u, t) with 0 0 Slopes at various points within the integration step u u tbk k n1 n i i i1 f u, t c t 1 n n 1 s i1 ki f un t aijk j, tn cit, i 2... s j1 6.3 Single-step methods: Runge-Kutta 19

20 Runge-Kutta Family: Single-Step The Runge-Kutta methods are fully described by the coefficients: c 1 c 2 a 21 s i1 c 1 b i 0 1 c s a s1 b 1 a s2 b 2 a s,s-1 b s-1 b s c i i1 j1 a ij Butcher Tableau 6.3 Single-step methods: Runge-Kutta 20

21 RK4 (Explicit) u 2 2 k k k k 6 n1 un t k 1 f u n, t n t t k 2 f un k1, tn 2 2 t t k 3 f un k 2, tn 2 2 k f u k t, t t 4 n 3 n Butcher Tableau 6.3 Single-step methods: Runge-Kutta 21

22 k RK4 (Explicit) 1 u f 2 2 k k k k 6 n1 un t u n, t n t t k 2 f un k1, tn 2 2 t t k 3 f un k 2, tn 2 2 k f u k t, t t 4 n Single-step methods: Runge-Kutta n Estimated slope (weighted average) Slope at the beginning Slope at the midpoint (k 1 is used to determine the value of u Euler) Slope at the midpoint (k 2 is now used) Slope at the end 22

23 RK4 (Explicit) u k 4 k 1 k 3 Estimate at new time k 2 t t t/2 n n t n t 6.3 Single-step methods: Runge-Kutta 23

24 RK4 (Explicit) The local truncation error for a 4 th order RK is O(h 5 ). The accuracy is comparable to that of a 4 th order Taylor series, but the Runge-Kutta method avoids the calculation of higher-order derivatives. Easy to use and implement. The step size is fixed. 6.3 Single-step methods: Runge-Kutta 24

25 RK4 in STK 6.3 Single-step methods: Runge-Kutta 25

26 Embedded Methods They produce an estimate of the local truncation error: adjust the step size to keep local truncation errors within some tolerances. This is done by having two methods in the tableau, one with order p and one with order p+1, with the same set of function evaluations: s ( p) ( p) ( p) n1 n tbi i i1 s ( p 1) ( p 1) ( p 1) n 1 n t b i i i1 u u k 6.3 Single-step methods: Runge-Kutta u u k 26

27 Embedded Methods The two different approximations for the solution at each step are compared: If the two answers are in close agreement, the approximation is accepted. If the two answers do not agree to a specified accuracy, the step size is reduced. If the answers agree to more significant digits than required, the step size is increased. 6.3 Single-step methods: Runge-Kutta 27

28 Ode45 in Matlab / Simulink Runge-Kutta (4,5) pair of Dormand and Prince: Variable step size. Matlab help: This should be the first solver you try 6.3 Single-step methods: Runge-Kutta 28

29 Ode45 in Matlab / Simulink edit ode Single-step methods: Runge-Kutta 29

30 Ode45 in Matlab / Simulink Be very careful with the default parameters! options = odeset('reltol',1e-8,'abstol',1e-8); 6.3 Single-step methods: Runge-Kutta 30

31 RKF 7(8): Default Method in STK Runge-Kutta-Fehlberg integration method of 7th order with 8th order error control for the integration step size. 31

32 6.3 Single-step methods: Runge-Kutta

33 Multi-Step Methods (Predictor-Corrector) They estimate the state over time using previously determined back values of the solution. Unlike RK methods, they only perform one evaluation for each step forward, but they usually have a predictor and a corrector formula. Adams (*) Bashforth - Moulton, Gauss - Jackson. (*) The first with Le Verrier to predict the existence and position of Neptune 6.4 Multi-step methods 33

34 Multi-Step Methods: Principle u( t) f ( u, t) u t u t f u t dt n1 ( n1) ( ) n (, ) tn t unknown u Four function values interpolated by a third-order polynomial Replace it by a polynomial that interpolates the previous values t 6.4 Multi-step methods 34

35 Multi-Step Methods: Initiation u( t ) u u( t) f ( u, t) with 0 0 What is the inherent problem? u 6.4 Multi-step methods t 35

36 Multi-Step Methods: Initiation Because these methods require back values, they are not self-starting. One may for instance use of a single-step method to compute the first four values. 6.4 Multi-step methods 36

37 Integrator Selection Montenbruck and Gill, Satellite orbits, Springer, Integrator and step size selection 37

38 Integrator Selection Multi-step Single step Pros Very fast Pros Plug and play Error control Cons Special starting procedure Fixed time steps Error control Cons Slower 6.5 Integrator and step size selection 38

39 Why is the Step Size So Critical? Theoretical arguments: 1. The accuracy and the stability of the algorithm are directly related to the step size. 2. Nonlinear equations of motion. Data for Landsat 4 and 6 in circular orbits around 800km indicates that a one-minute step size yields about 47m error. A three-minute step size produces about a 900m error! 6.5 Integrator and step size selection 39

40 Why is the Step Size So Critical? More practical arguments: 1. The computation time is directly related to the step size. 2. The particular choice of step size depends on the most rapidly varying component in the disturbing functions (e.g., 50 x 50 gravity field). 6.5 Integrator and step size selection 40

41 Appropriate Step Size The problem of determining an appropriate step size is a challenge in any numerical process. Fixed step size: applications). t T orbit 100 (rule of thumb for standard But an algorithm with variable step size is really helpful. The step size is chosen in such a way that each step contributes uniformly to the total integration error. 6.5 Integrator and step size selection 41

42 Three Examples: XMM / OUFTI-1 / ISS Can you plot the step size vs. true anomaly? 6.5 Integrator and step size selection 42

43 XMM: Report in STK 6.5 Integrator and step size selection 43

44 XMM (e~0.8) Reproduce this graph during the exercise session! Postprocessing in Matlab Step size (s) True anomaly (deg) 6.5 Integrator and step size selection 44

45 90 80 Step size (s) OUFTI-1 (e~0.07) True anomaly (deg) Step size (s) Integrator and step size selection ISS (e~0) True anomaly (deg)

46 Difficult Orbits Automatic time step is especially nice on highly eccentric orbits (Molniya, XMM). These orbits are best computed using variable step sizes to maintain some given level of accuracy: Without this variable step size, we waste a lot of time near apoapsis, when the integration is taking too small a step. Likewise, the integrator may not be using a small enough step size at periapsis, where the satellite is traveling fast. 6.5 Integrator and step size selection 46

47 HPOP Propagator: ISS Example 1. Earth s oblateness only 2. Drag only 3. Sun and moon only 4. SRP only 5. All together. 6.6 ISS example 47

48 Earth s Oblateness Only: Ω 2-body HPOP J2 6.6 ISS example 48

49 Earth s Oblateness Only: i, Ω, a HPOP with central body (2,0 + WGS84_EGM96) (without drag/srp/sun and Moon) 6.6 ISS example 49

50 Drag Only: i, Ω, a HPOP with drag Harris Priester (without oblateness/srp/sun and Moon) 6.6 ISS example 50

51 Drag: Relationship with Eclipses 51

52 Drag: Lifetime (Satellite Tools) 6.6 ISS example 52

53 Sun and Moon Only 6.6 ISS example 53

54 Sun and Moon Only: i, Ω, a HPOP with Sun and Moon (without oblateness/srp/drag) 6.6 ISS example 54

55 SRP Only: i, Ω, a HPOP with SRP (without oblateness/drag/sun and Moon) 6.6 ISS example 55

56 SRP: Relationship with Eclipses 56

57 All Perturbations Together 6.6 ISS example 57

58 Practical Example: GEO Satellites Nice illustration of: 1. Perturbations of the 2-body problem. 2. Secular and periodic contributions. 3. Accuracy required by practical applications. 4. The need for orbit correction and thrust forces. And it is a real-life example (telecommunications, meteorology)! 6.7 GEO satellites 58

59 Three Main Perturbations for GEO Satellites 1. Non-spherical Earth 2. SRP 3. Sun and Moon 6.7 GEO satellites 59

60 Station Keeping of GEO Satellites The effect of the perturbations is to cause the spacecraft to drift away from its nominal station. If the drift was allowed to build up unchecked, the spacecraft could become useless. A station-keeping box is defined by a longitude and a maximum authorized distance for satellite excursions in longitude and latitude. For instance, TC2: -8º ± 0.07º E/W ± 0.05º N/S 6.7 GEO satellites 60

61 East-West and North-South Drift What are the perturbations generating these drifts? N/S drift E/W drift 6.7 GEO satellites 61

62 East-West Drift A GEO satellite drifts in longitude due to the influence of two main perturbations: 1. The elliptic nature of the Earth s equatorial crosssection: J22 (and not from the N/S oblateness J2). 2. v sat ΔV SRP v sat ΔV 6.7 GEO satellites 62

63 East-West Drift due to Equatorial Ellipticity 6.7 GEO satellites 63

64 East-West Drift due to Equatorial Ellipticity 6.7 GEO satellites 64

65 East-West Drift: HPOP (2,0) vs. HPOP (2,2) 6.7 GEO satellites 65

66 East-West Drift: Stable Equilibirum HPOP with 2,2 (without Sun and moon/srp/drag) 66

67 East-West Drift: Stable Equilibirum HPOP with 2,2 (without Sun and moon/srp/drag) 67

68 East-West Drift: Stable Equilibirum HPOP with 2,2 (without Sun and moon/srp/drag) 68

69 North-South Drift The perturbations caused by the Sun and the Moon are predominantly out-of-plane effects causing a change in the inclination and in the right ascension of the orbit ascending node. Similar effects on the orbit to those of the Earth s oblateness (but here with respect to the ecliptic) A GEO satellite therefore drifts in latitude with a fundamental period equal to the orbit period. 69

70 North-South Drift Period? HPOP with Sun and Moon (without oblateness/srp/drag) 70

71 North-South Drift Period? HPOP with Sun and Moon (without oblateness/srp/drag) 71

72 Thrust Forces for Stationkeeping GEO spacecraft require continual stationkeeping to stay within the authorized box using onboard thrusters. 6.7 GEO satellites 72

73 6. Numerical Methods r 6.1 Orbit prediction 6.2 Numerical integration tn t n Single-step methods: Runge-Kutta 6.4 Multi-step methods 6.5 Integrator and step size selection 6.6 ISS example 6.7 GEO satellites 73

74 Astrodynamics (AERO0024) 5. Numerical Methods Gaëtan Kerschen Space Structures & Systems Lab (S3L)

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) L04: Non-Keplerian Motion Gaëtan Kerschen Space Structures & Systems Lab (S3L) Non-Keplerian Motion 4 Dominant Perturbations Analytic Treatment Numerical Methods Concluding Remarks

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 4B. Non-Keplerian Motion Gaëtan Kerschen Space Structures & Systems Lab (S3L) 2. Two-body problem 4.1 Dominant perturbations Orbital elements (a,e,i,ω,ω) are constant Real satellites

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5. Dominant Perturbations Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation Assumption of a two-body system in which the central body acts gravitationally as a point

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5. Dominant Perturbations Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation Assumption of a two-body system in which the central body acts gravitationally as a point

More information

Applied Math for Engineers

Applied Math for Engineers Applied Math for Engineers Ming Zhong Lecture 15 March 28, 2018 Ming Zhong (JHU) AMS Spring 2018 1 / 28 Recap Table of Contents 1 Recap 2 Numerical ODEs: Single Step Methods 3 Multistep Methods 4 Method

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Chapter 2: Runge Kutta and Multistep Methods Gustaf Söderlind Numerical Analysis, Lund University Contents V4.16 1. Runge Kutta methods 2. Embedded RK methods

More information

Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations

Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations Experimental Analysis of Low Earth Orbit Satellites due to Atmospheric Perturbations Aman Saluja #1, Manish Bansal #2, M Raja #3, Mohd Maaz #4 #Aerospace Department, University of Petroleum and Energy

More information

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 18. HW 7 is posted, and will be due in class on 4/25.

Bindel, Fall 2011 Intro to Scientific Computing (CS 3220) Week 12: Monday, Apr 18. HW 7 is posted, and will be due in class on 4/25. Logistics Week 12: Monday, Apr 18 HW 6 is due at 11:59 tonight. HW 7 is posted, and will be due in class on 4/25. The prelim is graded. An analysis and rubric are on CMS. Problem du jour For implicit methods

More information

An Analysis of N-Body Trajectory Propagation. Senior Project. In Partial Fulfillment. of the Requirements for the Degree

An Analysis of N-Body Trajectory Propagation. Senior Project. In Partial Fulfillment. of the Requirements for the Degree An Analysis of N-Body Trajectory Propagation Senior Project In Partial Fulfillment of the Requirements for the Degree Bachelor of Science in Aerospace Engineering by Emerson Frees June, 2011 An Analysis

More information

Review Higher Order methods Multistep methods Summary HIGHER ORDER METHODS. P.V. Johnson. School of Mathematics. Semester

Review Higher Order methods Multistep methods Summary HIGHER ORDER METHODS. P.V. Johnson. School of Mathematics. Semester HIGHER ORDER METHODS School of Mathematics Semester 1 2008 OUTLINE 1 REVIEW 2 HIGHER ORDER METHODS 3 MULTISTEP METHODS 4 SUMMARY OUTLINE 1 REVIEW 2 HIGHER ORDER METHODS 3 MULTISTEP METHODS 4 SUMMARY OUTLINE

More information

Numerical Methods - Initial Value Problems for ODEs

Numerical Methods - Initial Value Problems for ODEs Numerical Methods - Initial Value Problems for ODEs Y. K. Goh Universiti Tunku Abdul Rahman 2013 Y. K. Goh (UTAR) Numerical Methods - Initial Value Problems for ODEs 2013 1 / 43 Outline 1 Initial Value

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 3B. The Orbit in Space and Time Gaëtan Kerschen Space Structures & Systems Lab (S3L) Previous Lecture: The Orbit in Time 3.1 ORBITAL POSITION AS A FUNCTION OF TIME 3.1.1 Kepler

More information

Section 13. Orbit Perturbation. Orbit Perturbation. Atmospheric Drag. Orbit Lifetime

Section 13. Orbit Perturbation. Orbit Perturbation. Atmospheric Drag. Orbit Lifetime Section 13 Orbit Perturbation Orbit Perturbation A satellite s orbit around the Earth is affected by o Asphericity of the Earth s gravitational potential : Most significant o Atmospheric drag : Orbital

More information

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations

ECE257 Numerical Methods and Scientific Computing. Ordinary Differential Equations ECE257 Numerical Methods and Scientific Computing Ordinary Differential Equations Today s s class: Stiffness Multistep Methods Stiff Equations Stiffness occurs in a problem where two or more independent

More information

Solving Ordinary Differential equations

Solving Ordinary Differential equations Solving Ordinary Differential equations Taylor methods can be used to build explicit methods with higher order of convergence than Euler s method. The main difficult of these methods is the computation

More information

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS

ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS ANNEX 1. DEFINITION OF ORBITAL PARAMETERS AND IMPORTANT CONCEPTS OF CELESTIAL MECHANICS A1.1. Kepler s laws Johannes Kepler (1571-1630) discovered the laws of orbital motion, now called Kepler's laws.

More information

Chapter 5 - Part 1. Orbit Perturbations. D.Mortari - AERO-423

Chapter 5 - Part 1. Orbit Perturbations. D.Mortari - AERO-423 Chapter 5 - Part 1 Orbit Perturbations D.Mortari - AERO-43 Orbital Elements Orbit normal i North Orbit plane Equatorial plane ϕ P O ω Ω i Vernal equinox Ascending node D. Mortari - AERO-43 Introduction

More information

MTH 452/552 Homework 3

MTH 452/552 Homework 3 MTH 452/552 Homework 3 Do either 1 or 2. 1. (40 points) [Use of ode113 and ode45] This problem can be solved by a modifying the m-files odesample.m and odesampletest.m available from the author s webpage.

More information

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations

CS 450 Numerical Analysis. Chapter 9: Initial Value Problems for Ordinary Differential Equations Lecture slides based on the textbook Scientific Computing: An Introductory Survey by Michael T. Heath, copyright c 2018 by the Society for Industrial and Applied Mathematics. http://www.siam.org/books/cl80

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 6 Chapter 20 Initial-Value Problems PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

Ordinary differential equations - Initial value problems

Ordinary differential equations - Initial value problems Education has produced a vast population able to read but unable to distinguish what is worth reading. G.M. TREVELYAN Chapter 6 Ordinary differential equations - Initial value problems In this chapter

More information

Lecture V: The game-engine loop & Time Integration

Lecture V: The game-engine loop & Time Integration Lecture V: The game-engine loop & Time Integration The Basic Game-Engine Loop Previous state: " #, %(#) ( #, )(#) Forces -(#) Integrate velocities and positions Resolve Interpenetrations Per-body change

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 3. The Orbit in Space Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation: Space We need means of describing orbits in three-dimensional space. Example: Earth s oblateness

More information

Third Body Perturbation

Third Body Perturbation Third Body Perturbation p. 1/30 Third Body Perturbation Modeling the Space Environment Manuel Ruiz Delgado European Masters in Aeronautics and Space E.T.S.I. Aeronáuticos Universidad Politécnica de Madrid

More information

9.6 Predictor-Corrector Methods

9.6 Predictor-Corrector Methods SEC. 9.6 PREDICTOR-CORRECTOR METHODS 505 Adams-Bashforth-Moulton Method 9.6 Predictor-Corrector Methods The methods of Euler, Heun, Taylor, and Runge-Kutta are called single-step methods because they use

More information

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University

PowerPoints organized by Dr. Michael R. Gustafson II, Duke University Part 6 Chapter 20 Initial-Value Problems PowerPoints organized by Dr. Michael R. Gustafson II, Duke University All images copyright The McGraw-Hill Companies, Inc. Permission required for reproduction

More information

ACCURACY ASSESSMENT OF GEOSTATIONARY-EARTH-ORBIT WITH SIMPLIFIED PERTURBATIONS MODELS

ACCURACY ASSESSMENT OF GEOSTATIONARY-EARTH-ORBIT WITH SIMPLIFIED PERTURBATIONS MODELS ARTIFICIAL SATELLITES, Vol. 51, No. 2 2016 DOI: 10.1515/arsa-2016-0005 ACCURACY ASSESSMENT OF GEOSTATIONARY-EARTH-ORBIT WITH SIMPLIFIED PERTURBATIONS MODELS Lihua Ma, Xiaojun Xu, Feng Pang National Astronomical

More information

Chapter 6 - Ordinary Differential Equations

Chapter 6 - Ordinary Differential Equations Chapter 6 - Ordinary Differential Equations 7.1 Solving Initial-Value Problems In this chapter, we will be interested in the solution of ordinary differential equations. Ordinary differential equations

More information

Lecture IV: Time Discretization

Lecture IV: Time Discretization Lecture IV: Time Discretization Motivation Kinematics: continuous motion in continuous time Computer simulation: Discrete time steps t Discrete Space (mesh particles) Updating Position Force induces acceleration.

More information

Dynamics and Control of Lunisolar Perturbations for. Highly-Eccentric Earth-Orbiting Satellites

Dynamics and Control of Lunisolar Perturbations for. Highly-Eccentric Earth-Orbiting Satellites Dynamics and Control of Lunisolar Perturbations for Highly-Eccentric Earth-Orbiting Satellites by Matthew Bourassa A thesis submitted to the Faculty of Graduate and Postdoctoral Affairs in partial fulfilment

More information

Fourth Order RK-Method

Fourth Order RK-Method Fourth Order RK-Method The most commonly used method is Runge-Kutta fourth order method. The fourth order RK-method is y i+1 = y i + 1 6 (k 1 + 2k 2 + 2k 3 + k 4 ), Ordinary Differential Equations (ODE)

More information

Chapter 5 Exercises. (a) Determine the best possible Lipschitz constant for this function over 2 u <. u (t) = log(u(t)), u(0) = 2.

Chapter 5 Exercises. (a) Determine the best possible Lipschitz constant for this function over 2 u <. u (t) = log(u(t)), u(0) = 2. Chapter 5 Exercises From: Finite Difference Methods for Ordinary and Partial Differential Equations by R. J. LeVeque, SIAM, 2007. http://www.amath.washington.edu/ rjl/fdmbook Exercise 5. (Uniqueness for

More information

AS3010: Introduction to Space Technology

AS3010: Introduction to Space Technology AS3010: Introduction to Space Technology L E C T U R E S 8-9 Part B, Lectures 8-9 23 March, 2017 C O N T E N T S In this lecture, we will look at factors that cause an orbit to change over time orbital

More information

APPENDIX B SUMMARY OF ORBITAL MECHANICS RELEVANT TO REMOTE SENSING

APPENDIX B SUMMARY OF ORBITAL MECHANICS RELEVANT TO REMOTE SENSING APPENDIX B SUMMARY OF ORBITAL MECHANICS RELEVANT TO REMOTE SENSING Orbit selection and sensor characteristics are closely related to the strategy required to achieve the desired results. Different types

More information

COSC 3361 Numerical Analysis I Ordinary Differential Equations (II) - Multistep methods

COSC 3361 Numerical Analysis I Ordinary Differential Equations (II) - Multistep methods COSC 336 Numerical Analysis I Ordinary Differential Equations (II) - Multistep methods Fall 2005 Repetition from the last lecture (I) Initial value problems: dy = f ( t, y) dt y ( a) = y 0 a t b Goal:

More information

Numerical Methods for Differential Equations

Numerical Methods for Differential Equations Numerical Methods for Differential Equations Chapter 2: Runge Kutta and Linear Multistep methods Gustaf Söderlind and Carmen Arévalo Numerical Analysis, Lund University Textbooks: A First Course in the

More information

Numerical solution of ODEs

Numerical solution of ODEs Numerical solution of ODEs Arne Morten Kvarving Department of Mathematical Sciences Norwegian University of Science and Technology November 5 2007 Problem and solution strategy We want to find an approximation

More information

CS520: numerical ODEs (Ch.2)

CS520: numerical ODEs (Ch.2) .. CS520: numerical ODEs (Ch.2) Uri Ascher Department of Computer Science University of British Columbia ascher@cs.ubc.ca people.cs.ubc.ca/ ascher/520.html Uri Ascher (UBC) CPSC 520: ODEs (Ch. 2) Fall

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5B. Orbital Maneuvers Gaëtan Kerschen Space Structures & Systems Lab (S3L) Previous Lecture: Coplanar Maneuvers 5.1 INTRODUCTION 5.1.1 Why? 5.1.2 How? 5.1.3 How much? 5.1.4 When?

More information

Initial value problems for ordinary differential equations

Initial value problems for ordinary differential equations AMSC/CMSC 660 Scientific Computing I Fall 2008 UNIT 5: Numerical Solution of Ordinary Differential Equations Part 1 Dianne P. O Leary c 2008 The Plan Initial value problems (ivps) for ordinary differential

More information

Mathematics for chemical engineers. Numerical solution of ordinary differential equations

Mathematics for chemical engineers. Numerical solution of ordinary differential equations Mathematics for chemical engineers Drahoslava Janovská Numerical solution of ordinary differential equations Initial value problem Winter Semester 2015-2016 Outline 1 Introduction 2 One step methods Euler

More information

2 Numerical Methods for Initial Value Problems

2 Numerical Methods for Initial Value Problems Numerical Analysis of Differential Equations 44 2 Numerical Methods for Initial Value Problems Contents 2.1 Some Simple Methods 2.2 One-Step Methods Definition and Properties 2.3 Runge-Kutta-Methods 2.4

More information

Scientific Computing: An Introductory Survey

Scientific Computing: An Introductory Survey Scientific Computing: An Introductory Survey Chapter 9 Initial Value Problems for Ordinary Differential Equations Prof. Michael T. Heath Department of Computer Science University of Illinois at Urbana-Champaign

More information

Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations

Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations Solving PDEs with PGI CUDA Fortran Part 4: Initial value problems for ordinary differential equations Outline ODEs and initial conditions. Explicit and implicit Euler methods. Runge-Kutta methods. Multistep

More information

Lecture 4: Numerical solution of ordinary differential equations

Lecture 4: Numerical solution of ordinary differential equations Lecture 4: Numerical solution of ordinary differential equations Department of Mathematics, ETH Zürich General explicit one-step method: Consistency; Stability; Convergence. High-order methods: Taylor

More information

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit V Solution of

Scientific Computing with Case Studies SIAM Press, Lecture Notes for Unit V Solution of Scientific Computing with Case Studies SIAM Press, 2009 http://www.cs.umd.edu/users/oleary/sccswebpage Lecture Notes for Unit V Solution of Differential Equations Part 1 Dianne P. O Leary c 2008 1 The

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5B. Orbital Maneuvers Gaëtan Kerschen Space Structures & Systems Lab (S3L) Previous Lecture: Coplanar Maneuvers 5.1 INTRODUCTION 5.1.1 Why? 5.1.2 How? 5.1.3 How much? 5.1.4 When?

More information

NAVIGATION & MISSION DESIGN BRANCH

NAVIGATION & MISSION DESIGN BRANCH c o d e 5 9 5 National Aeronautics and Space Administration Michael Mesarch Michael.A.Mesarch@nasa.gov NAVIGATION & MISSION DESIGN BRANCH www.nasa.gov Outline Orbital Elements Orbital Precession Differential

More information

Fundamentals of Astrodynamics and Applications

Fundamentals of Astrodynamics and Applications Fundamentals of Astrodynamics and Applications Third Edition David A. Vallado with technical contributions by Wayne D. McClain Space Technology Library Published Jointly by Microcosm Press Hawthorne, CA

More information

A Variable-Step Double-Integration Multi-Step Integrator

A Variable-Step Double-Integration Multi-Step Integrator A Variable-Step Double-Integration Multi-Step Integrator Matt Berry Virginia Tech Liam Healy Naval Research Laboratory 1 Overview Background Motivation Derivation Preliminary Results Future Work 2 Background

More information

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9

Lecture Notes to Accompany. Scientific Computing An Introductory Survey. by Michael T. Heath. Chapter 9 Lecture Notes to Accompany Scientific Computing An Introductory Survey Second Edition by Michael T. Heath Chapter 9 Initial Value Problems for Ordinary Differential Equations Copyright c 2001. Reproduction

More information

Creating Satellite Orbits

Creating Satellite Orbits Exercises using Satellite ToolKit (STK) vivarad@ait.ac.th Creating Satellite Orbits 1. What You Will Do Create a low-earth orbit (LEO) satellite Create a medium-earth orbit (MEO) satellite Create a highly

More information

CHAPTER 5: Linear Multistep Methods

CHAPTER 5: Linear Multistep Methods CHAPTER 5: Linear Multistep Methods Multistep: use information from many steps Higher order possible with fewer function evaluations than with RK. Convenient error estimates. Changing stepsize or order

More information

Linear Multistep Methods I: Adams and BDF Methods

Linear Multistep Methods I: Adams and BDF Methods Linear Multistep Methods I: Adams and BDF Methods Varun Shankar January 1, 016 1 Introduction In our review of 5610 material, we have discussed polynomial interpolation and its application to generating

More information

ESMO Mission Analysis

ESMO Mission Analysis Changing the economics of space ESMO Mission Analysis SRR Workshop Alison Gibbings 22 nd 26 th March 2010 Review of the existing baseline Sensitivity analysis Contents At lunar Injection Along the WSB-Moon

More information

8.1 Introduction. Consider the initial value problem (IVP):

8.1 Introduction. Consider the initial value problem (IVP): 8.1 Introduction Consider the initial value problem (IVP): y dy dt = f(t, y), y(t 0)=y 0, t 0 t T. Geometrically: solutions are a one parameter family of curves y = y(t) in(t, y)-plane. Assume solution

More information

Celestial Mechanics and Satellite Orbits

Celestial Mechanics and Satellite Orbits Celestial Mechanics and Satellite Orbits Introduction to Space 2017 Slides: Jaan Praks, Hannu Koskinen, Zainab Saleem Lecture: Jaan Praks Assignment Draw Earth, and a satellite orbiting the Earth. Draw

More information

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 20

2.29 Numerical Fluid Mechanics Fall 2011 Lecture 20 2.29 Numerical Fluid Mechanics Fall 2011 Lecture 20 REVIEW Lecture 19: Finite Volume Methods Review: Basic elements of a FV scheme and steps to step-up a FV scheme One Dimensional examples d x j x j 1/2

More information

MODELLING OF PERTURBATIONS FOR PRECISE ORBIT DETERMINATION

MODELLING OF PERTURBATIONS FOR PRECISE ORBIT DETERMINATION MODELLING OF PERTURBATIONS FOR PRECISE ORBIT DETERMINATION 1 SHEN YU JUN, 2 TAN YAN QUAN, 3 TAN GUOXIAN 1,2,3 Raffles Science Institute, Raffles Institution, 1 Raffles Institution Lane, Singapore E-mail:

More information

Solving Ordinary Differential Equations

Solving Ordinary Differential Equations Solving Ordinary Differential Equations Sanzheng Qiao Department of Computing and Software McMaster University March, 2014 Outline 1 Initial Value Problem Euler s Method Runge-Kutta Methods Multistep Methods

More information

Jim Lambers MAT 772 Fall Semester Lecture 21 Notes

Jim Lambers MAT 772 Fall Semester Lecture 21 Notes Jim Lambers MAT 772 Fall Semester 21-11 Lecture 21 Notes These notes correspond to Sections 12.6, 12.7 and 12.8 in the text. Multistep Methods All of the numerical methods that we have developed for solving

More information

HYPER Industrial Feasibility Study Final Presentation Orbit Selection

HYPER Industrial Feasibility Study Final Presentation Orbit Selection Industrial Feasibility Study Final Presentation Orbit Selection Steve Kemble Astrium Ltd. 6 March 2003 Mission Analysis Lense Thiring effect and orbit requirements Orbital environment Gravity Atmospheric

More information

Optimization of Orbital Transfer of Electrodynamic Tether Satellite by Nonlinear Programming

Optimization of Orbital Transfer of Electrodynamic Tether Satellite by Nonlinear Programming Optimization of Orbital Transfer of Electrodynamic Tether Satellite by Nonlinear Programming IEPC-2015-299 /ISTS-2015-b-299 Presented at Joint Conference of 30th International Symposium on Space Technology

More information

A SEMI-ANALYTICAL ORBIT PROPAGATOR PROGRAM FOR HIGHLY ELLIPTICAL ORBITS

A SEMI-ANALYTICAL ORBIT PROPAGATOR PROGRAM FOR HIGHLY ELLIPTICAL ORBITS A SEMI-ANALYTICAL ORBIT PROPAGATOR PROGRAM FOR HIGHLY ELLIPTICAL ORBITS M. Lara, J. F. San Juan and D. Hautesserres Scientific Computing Group and Centre National d Études Spatiales 6th International Conference

More information

Study of the Fuel Consumption for Station-Keeping Maneuvers for GEO satellites based on the Integral of the Perturbing Forces over Time

Study of the Fuel Consumption for Station-Keeping Maneuvers for GEO satellites based on the Integral of the Perturbing Forces over Time Study of the Fuel Consumption for Station-Keeping Maneuvers for GEO satellites based on the Integral of the Perturbing Forces over Time THAIS CARNEIRO OLIVEIRA 1 ; ANTONIO FERNANDO BERTACHINI DE ALMEIDA

More information

Consistency and Convergence

Consistency and Convergence Jim Lambers MAT 77 Fall Semester 010-11 Lecture 0 Notes These notes correspond to Sections 1.3, 1.4 and 1.5 in the text. Consistency and Convergence We have learned that the numerical solution obtained

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5A. Orbital Maneuvers Gaëtan Kerschen Space Structures & Systems Lab (S3L) GEO drift: period The orbit inclination will increase to a maximum of 15 deg after 27.5 years and return

More information

Space Travel on a Shoestring: CubeSat Beyond LEO

Space Travel on a Shoestring: CubeSat Beyond LEO Space Travel on a Shoestring: CubeSat Beyond LEO Massimiliano Vasile, Willem van der Weg, Marilena Di Carlo Department of Mechanical and Aerospace Engineering University of Strathclyde, Glasgow 5th Interplanetary

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 33 Almost Done! Last

More information

Multistage Methods I: Runge-Kutta Methods

Multistage Methods I: Runge-Kutta Methods Multistage Methods I: Runge-Kutta Methods Varun Shankar January, 0 Introduction Previously, we saw that explicit multistep methods (AB methods) have shrinking stability regions as their orders are increased.

More information

HIGHER ORDER METHODS. There are two principal means to derive higher order methods. b j f(x n j,y n j )

HIGHER ORDER METHODS. There are two principal means to derive higher order methods. b j f(x n j,y n j ) HIGHER ORDER METHODS There are two principal means to derive higher order methods y n+1 = p j=0 a j y n j + h p j= 1 b j f(x n j,y n j ) (a) Method of Undetermined Coefficients (b) Numerical Integration

More information

The family of Runge Kutta methods with two intermediate evaluations is defined by

The family of Runge Kutta methods with two intermediate evaluations is defined by AM 205: lecture 13 Last time: Numerical solution of ordinary differential equations Today: Additional ODE methods, boundary value problems Thursday s lecture will be given by Thomas Fai Assignment 3 will

More information

NUMERICAL SOLUTION OF ODE IVPs. Overview

NUMERICAL SOLUTION OF ODE IVPs. Overview NUMERICAL SOLUTION OF ODE IVPs 1 Quick review of direction fields Overview 2 A reminder about and 3 Important test: Is the ODE initial value problem? 4 Fundamental concepts: Euler s Method 5 Fundamental

More information

You may not use your books, notes; calculators are highly recommended.

You may not use your books, notes; calculators are highly recommended. Math 301 Winter 2013-14 Midterm 1 02/06/2014 Time Limit: 60 Minutes Name (Print): Instructor This exam contains 8 pages (including this cover page) and 6 problems. Check to see if any pages are missing.

More information

Ordinary Differential Equations

Ordinary Differential Equations CHAPTER 8 Ordinary Differential Equations 8.1. Introduction My section 8.1 will cover the material in sections 8.1 and 8.2 in the book. Read the book sections on your own. I don t like the order of things

More information

Fundamentals of Satellite technology

Fundamentals of Satellite technology Fundamentals of Satellite technology Prepared by A.Kaviyarasu Assistant Professor Department of Aerospace Engineering Madras Institute Of Technology Chromepet, Chennai Orbital Plane All of the planets,

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 5A. Orbital Maneuvers Gaëtan Kerschen Space Structures & Systems Lab (S3L) Course Outline THEMATIC UNIT 1: ORBITAL DYNAMICS Lecture 02: The Two-Body Problem Lecture 03: The Orbit

More information

Calculation of Earth s Dynamic Ellipticity from GOCE Orbit Simulation Data

Calculation of Earth s Dynamic Ellipticity from GOCE Orbit Simulation Data Available online at www.sciencedirect.com Procedia Environmental Sciences 1 (1 ) 78 713 11 International Conference on Environmental Science and Engineering (ICESE 11) Calculation of Earth s Dynamic Ellipticity

More information

Two-Point Boundary Value Problem and Optimal Feedback Control based on Differential Algebra

Two-Point Boundary Value Problem and Optimal Feedback Control based on Differential Algebra Two-Point Boundary Value Problem and Optimal Feedback Control based on Differential Algebra Politecnico di Milano Department of Aerospace Engineering Milan, Italy Taylor Methods and Computer Assisted Proofs

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) 10. Interplanetary Trajectories Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation 2 6. Interplanetary Trajectories 6.1 Patched conic method 6.2 Lambert s problem

More information

PHYSICS 1030 Homework #9

PHYSICS 1030 Homework #9 PHYSICS 1030 Homework #9 (Due Dec. 6, 2017) Find the position of the planet Mars at time t D December 6, 2017, 5:00 am EST. You will do this by following the steps shown below. (a) Convert the time t to

More information

Computational Techniques Prof. Dr. Niket Kaisare Department of Chemical Engineering Indian Institute of Technology, Madras

Computational Techniques Prof. Dr. Niket Kaisare Department of Chemical Engineering Indian Institute of Technology, Madras Computational Techniques Prof. Dr. Niket Kaisare Department of Chemical Engineering Indian Institute of Technology, Madras Module No. # 07 Lecture No. # 05 Ordinary Differential Equations (Refer Slide

More information

MATH 350: Introduction to Computational Mathematics

MATH 350: Introduction to Computational Mathematics MATH 350: Introduction to Computational Mathematics Chapter VII: Numerical Differentiation and Solution of Ordinary Differential Equations Greg Fasshauer Department of Applied Mathematics Illinois Institute

More information

Keplerian Elements Tutorial

Keplerian Elements Tutorial Keplerian Elements Tutorial This tutorial is based on the documentation provided with InstantTrack, written by Franklin Antonio, N6NKF. Satellite Orbital Elements are numbers that tell us the orbit of

More information

arxiv: v1 [math.ds] 27 Oct 2018

arxiv: v1 [math.ds] 27 Oct 2018 Celestial Mechanics and Dynamical Astronomy manuscript No. (will be inserted by the editor) Element sets for high-order Poincaré mapping of perturbed Keplerian motion David J. Gondelach Roberto Armellin

More information

multistep methods Last modified: November 28, 2017 Recall that we are interested in the numerical solution of the initial value problem (IVP):

multistep methods Last modified: November 28, 2017 Recall that we are interested in the numerical solution of the initial value problem (IVP): MATH 351 Fall 217 multistep methods http://www.phys.uconn.edu/ rozman/courses/m351_17f/ Last modified: November 28, 217 Recall that we are interested in the numerical solution of the initial value problem

More information

Differential Equations

Differential Equations Differential Equations Definitions Finite Differences Taylor Series based Methods: Euler Method Runge-Kutta Methods Improved Euler, Midpoint methods Runge Kutta (2nd, 4th order) methods Predictor-Corrector

More information

ROCSAT-3 Constellation Mission

ROCSAT-3 Constellation Mission ROCSAT-3 Constellation Mission, An-Ming Wu, Paul Chen National Space Program Office 8F, 9 Prosperity 1st Road, Science Based Industrial Park, Hsin-Chu, Taiwan vicky@nspo.org.tw, amwu@nspo.org.tw, paulchen@nspo.org.tw

More information

RAPID GEOSYNCHRONOUS TRANSFER ORBIT ASCENT PLAN GENERATION. Daniel X. Junker (1) Phone: ,

RAPID GEOSYNCHRONOUS TRANSFER ORBIT ASCENT PLAN GENERATION. Daniel X. Junker (1) Phone: , RAPID GEOSYNCHRONOUS TRANSFER ORBIT ASCENT PLAN GENERATION Daniel X. Junker (1) (1) LSE Space GmbH, Argelsrieder Feld 22, 82234 Wessling, Germany, Phone: +49 160 9111 6696, daniel.junker@lsespace.com Abstract:

More information

Identifying Safe Zones for Planetary Satellite Orbiters

Identifying Safe Zones for Planetary Satellite Orbiters AIAA/AAS Astrodynamics Specialist Conference and Exhibit 16-19 August 2004, Providence, Rhode Island AIAA 2004-4862 Identifying Safe Zones for Planetary Satellite Orbiters M.E. Paskowitz and D.J. Scheeres

More information

ASEN 6008: Interplanetary Mission Design Lab Spring, 2015

ASEN 6008: Interplanetary Mission Design Lab Spring, 2015 ASEN 6008: Interplanetary Mission Design Lab Spring, 2015 Lab 4: Targeting Mars using the B-Plane Name: I d like to give credit to Scott Mitchell who developed this lab exercise. He is the lead Astrodynamicist

More information

Mini project ODE, TANA22

Mini project ODE, TANA22 Mini project ODE, TANA22 Filip Berglund (filbe882) Linh Nguyen (linng299) Amanda Åkesson (amaak531) October 2018 1 1 Introduction Carl David Tohmé Runge (1856 1927) was a German mathematician and a prominent

More information

Astrodynamics (AERO0024)

Astrodynamics (AERO0024) Astrodynamics (AERO0024) L06: Interplanetary Trajectories Gaëtan Kerschen Space Structures & Systems Lab (S3L) Motivation 2 Problem Statement? Hint #1: design the Earth-Mars transfer using known concepts

More information

EUROSTAR 3000 INCLINED ORBIT MISSION : LIFETIME OPTIMISATION IN CASE OF INJECTION WITH A LOW INCLINATION

EUROSTAR 3000 INCLINED ORBIT MISSION : LIFETIME OPTIMISATION IN CASE OF INJECTION WITH A LOW INCLINATION EUROSTAR 3000 INCLINED ORBIT MISSION : LIFETIME OPTIMISATION IN CASE OF INJECTION WITH A LOW INCLINATION Franck Raballand (1), Julie De Lamarzelle (2), François Bonaventure (3), Anne-Hélène Gicquel (4)

More information

Long-Term Evolution of High Earth Orbits: Effects of Direct Solar Radiation Pressure and Comparison of Trajectory Propagators

Long-Term Evolution of High Earth Orbits: Effects of Direct Solar Radiation Pressure and Comparison of Trajectory Propagators Long-Term Evolution of High Earth Orbits: Effects of Direct Solar Radiation Pressure and Comparison of Trajectory Propagators by L. Anselmo and C. Pardini (Luciano.Anselmo@isti.cnr.it & Carmen.Pardini@isti.cnr.it)

More information

Deorbiting Upper-Stages in LEO at EOM using Solar Sails

Deorbiting Upper-Stages in LEO at EOM using Solar Sails Deorbiting Upper-Stages in LEO at EOM using Solar Sails Alexandru IONEL* *Corresponding author INCAS National Institute for Aerospace Research Elie Carafoli, B-dul Iuliu Maniu 220, Bucharest 061126, Romania,

More information

Optimization of Eccentricity during a Two Burn Station Acquisition Sequence of a Geosynchronous Orbit

Optimization of Eccentricity during a Two Burn Station Acquisition Sequence of a Geosynchronous Orbit Optimization of Eccentricity during a Two Burn Station Acquisition Sequence of a Geosynchronous Orbit A project present to The Faculty of the Department of Aerospace Engineering San Jose State University

More information

Speed and Accuracy Tests of the Variable-Step Störmer-Cowell Integrator

Speed and Accuracy Tests of the Variable-Step Störmer-Cowell Integrator Speed and Accuracy Tests of the Variable-Step Störmer-Cowell Integrator Matt Berry Analytical Graphics, Inc. Liam Healy Naval Research Laboratory 1 Overview Background Integrators Orbit Propagation Tests

More information

Chapter 2: Orbits and Launching Methods

Chapter 2: Orbits and Launching Methods 9/20/ Chapter 2: Orbits and Launching Methods Prepared by Dr. Mohammed Taha El Astal EELE 6335 Telecom. System Part I: Satellite Communic ations Winter Content Kepler s First, Second, and Third Law Definitions

More information

Ordinary Differential Equations II

Ordinary Differential Equations II Ordinary Differential Equations II CS 205A: Mathematical Methods for Robotics, Vision, and Graphics Justin Solomon CS 205A: Mathematical Methods Ordinary Differential Equations II 1 / 29 Almost Done! No

More information