CHAPTER 10: STABILITY &TUNING

Save this PDF as:

Size: px
Start display at page:

Transcription

1 When I complete this chapter, I want to be able to do the following. Determine the stability of a process without control Determine the stability of a closed-loop feedback control system Use these approaches to learn how dead time affects stability.

2 Outline of the lesson. Define stability Review determining the roots of the characteristic equation Introduce the Bode stability method Apply to determine some general trends in feedback systems

3 MV ( t) = 1 d CV Kc E( t) E( t') dt' Td I TI 0 dt 20 v1 TC v2 No! Yes! or We influence stability when we implement control. How do we achieve the influence we want?

4 bounded CHAPTER 10: STABILITY &TUNIN First, let s define stability: A system is stable if all bounded inputs to the system result in bounded outputs. Sample Sample Inputs Process Outputs Feed T1 F1 T2 T4 T5 T3 T6 P1 L1 Vapor product F2 Process fluid F3 Steam A1 L. Key Liquid product unbounded unbounded bounded

5 (s) = Y(s)/X(s) Y(s) = [N(s)/D(s)] X(s) Let s review how we determine the stability of a model. With α i the solution to the denominator of the transfer function being zero, D(s) = 0 giving s = α 1, α 2, α i.... Y ( t ) = A 0 A e 1 α t 1 A e 2 α t 2... ( B 0 B t 1 B 2 t 2..) e α t p... [ C 1 cos( ω t ) C 2 sin( ω t )] e α t q... Real, distinct α i Complex α i If all α i are???, Y(t) is stable If any one α i is???, Y(t) is unstable Real, repeated α i Class exercise

6 With α i the solutions to D(s) = 0, which is a polynomial. Y( t) = A 0 A e 1 α t 1 A e 2 α t 2... ( B 0 B t 1 B 2 t 2..) e α t p... [ C 1 cos( ωt) C2 sin( ωt)] e α t q If all real [α i ] are < 0, Y(t) is stable If any one real [α i ] is 0, Y(t) is unstable 2. If all α i are real, Y(t) is overdamped (does not oscillate) If one pair of α i are complex, Y(t) is underdamped

7 Quick review of model for closed-loop feedback system. D(s) d (s) SP(s) E(s) MV(s) C (s) v (s) P (s) - CV m (s) S (s) CV(s) Transfer functions C (s) = controller v (s) = valve P (s) = feedback process S (s) = sensor d (s) = disturbance process Variables CV(s) = controlled variable CV m (s) = measured value of CV(s) D(s) = disturbance E(s) = error MV(s) = manipulated variable SP(s) = set point

8 D(s) d (s) SP(s) - E(s) C (s) MV(s) CV m (s) v (s) P (s) CV(s) S (s) Set point response Disturbance Response CV SP( s) = 1 p p v v c c S CV D( s) = 1 p v d c S The denominator determines the stability of the closed-loop feedback system! We call it the characteristic equation.

9 Direction Solution for the Roots to determine the stability Controller is a P-only controller. Is the system stable? Let s evaluate the roots of the characteristic equation s 3 ( 1 τs) ( 1 5s) 3 p K C K P v 75s = 1 2 c K 15s C S ( ) = K c = 0 F S solvent F A pure A AC

10 0.5 CHAPTER 10: STABILITY &TUNIN Plot of real and imaginary parts of the roots of the characteristic equation - three roots for cubic Imaginary Kc As the controller gain, K C, is increased, some roots approach, then cross the boundary (s=0) between stable and Unstable. Shaded is the unstable region Real Stable Unstable

11 The denominator determines the stability of the closed-loop feedback system! CV SP( s) Set point response = 1 p p v v c c S 3 2 c For the mixer : 125s 75s 15s K = 0 Bode Stability Method Calculating the roots is easy with standard software. However, if the equation has a dead time, the term e -θs appears. Therefore, we need another method. Th method we will use next is the Bode Stability Method.

12 Bode Stability: To understand, let s do a thought experiment F S solvent Loop open F A pure A AC SP

13 Bode Stability: To understand, let s do a thought experiment SP(s) E(s) MV(s) C (s) v (s) P (s) - Loop CV m (s) open S (s) CV(s) F S solvent Loop open F A pure A AC SP

14 Bode Stability: To understand, let s do a thought experiment No forcing!! F S solvent Loop closed F A pure A AC SP

15 Bode Stability: To understand, let s do a thought experiment No forcing!! SP(s) E(s) MV(s) C (s) v (s) P (s) - Loop CV m (s) closed S (s) CV(s) No forcing!! F S solvent Loop closed F A pure A AC SP

16 Bode Stability: To understand, let s do a thought experiment No forcing!! SP(s) E(s) MV(s) C (s) v (s) P (s) - Loop CV m (s) closed S (s) CV(s) No forcing!! F S solvent Loop closed F A pure A AC SP

17 Bode Stability: To understand, let s do a thought experiment SP(s) E(s) MV(s) C (s) v (s) P (s) - Loop CV m (s) closed S (s) CV(s) Under what conditions is the system stable (unstable)? Hint: think about the sine wave as it travels around the loop once.

18 Bode Stability: To understand, let s do a thought experiment SP(s) E(s) MV(s) C (s) v (s) P (s) - Loop CV m (s) closed S (s) CV(s) Under what conditions is the system stable (unstable)? If the sine is larger in amplitude after one cycle; then it will increase each time around the loop. The system will be unstable. Now: at what frequency does the sine most reinforce itself?

19 Bode Stability: To understand, let s do a thought experiment SP(s) E(s) MV(s) C (s) v (s) P (s) - Loop CV m (s) closed S (s) CV(s) Now: at what frequency does the sine most reinforce itself? When the sine has a lag of 180 due to element dynamics, the feedback will reinforce the oscillation (remember the - sign). This is the critical frequency.

20 Bode Stability: To understand, let s do a thought experiment SP(s) E(s) MV(s) C (s) v (s) P (s) - Loop CV m (s) closed S (s) CV(s) Let s put the results together. OL (s) includes all elements in the closed loop. At the critical frequency: OL (ω c j) = -180 The amplitude ratio: OL (ω c j) < 1 for stability OL (ω c j) > 1 for stability See textbook for limitations

21 Bode Stability: Let s do an example: three-tank mixer with 5 minutes dead time added OL (ω c j) = -180 OL (ω c j) < 1 for stability OL = c v p s = K P e θ s ( 1 τs) 3 K c 1 1 T s I K P Process = % A/% open τ = 5 min (each tank) θ = 5 min Controller tuning w/o dead time K T I c = 30% open/% A = 11min From Ciancone correlations

22 Bode Stability: OL (ω c j) = OL (ω c j) < 1 for stability Amplitude Ratio OL (ω c j) = 0.75 Conclusion? Frequency, w (rad/time) -50 Phase Angle (degrees) Critical frequency Frequency, w (rad/time)

23 Bode Stability: OL (ω c j) = OL (ω c j) < 1 for stability Amplitude Ratio OL (ω c j) = 0.75 < 1 Conclusion: stable!! Phase Angle (degrees) Frequency, w (rad/time) The sine will decrease in amplitude each time around the loop. Critical frequency Frequency, w (rad/time)

24 2 S-LOOP plots deviation variables (IAE = ) Controlled Variable Stable, but performance poor, why? Time 60 Manipulated Variable Time

25 2 S-LOOP plots deviation variables (IAE = ) Controlled Variable Stable, but performance poor, why? Manipulated Variable Time Key 60 lesson: Stability is required, but more is 40 required for good performance. 20 PI tuning was for the process without dead time. The process with dead time is more difficult to control. Must make controller less agressive! Time

26 Bode calculations can be done by hand, easier with S_LOOP ************************************************************* * S_LOOP: SINLE LOOP CONTROL SYSTEM ANALYSIS * * BODE PLOT OF OL(s) = p(s)c(s) * * * * Characteristic Equation = 1 OL(s) * ************************************************************* SELECT THE APPROPRIATE MENU ITEM MODIFY... PRESENT VALUES 1) Lowest Frequency ) Highest Frequency ) Create Bode plot and calculate the results at critical frequency 4) Return to main menu Enter the desired selection: ************************************************* Critical frequency and amplitude ratio from Bode plot of OL ************************************************* Caution: 1) cross check with plot because of possible MATLAB error in calculating the phase angle 2) the program finds the first crossing of -180 The critical frequency is between and The amplitude ratio at the critical frequency is Or, write your own program in MATLAB. Amplitude Ratio Phase Angle (degrees) Frequency, w (rad/time) Frequency, w (rad/time)

27 Let s review what we have accomplished so far. We can evaluate the stability of a process without control by evaluating the roots of char. equation We can evaluate the stability of a process under feedback by either - evaluating the roots of char. equation - Bode method (required for process with dead time) These are local tests, caution about non-linearity Stability does not guarantee good performance!!!! Unstable system performance always poor!!!

28 1. What else can we do with this neat technology? Tune controllers F S solvent MV ( t) = 1 d CV Kc E( t) E( t') dt' Td I TI 0 dt F A pure A AC Ziegler-Nichols Tuning We can tune controllers. The basic idea is to keep a reasonable margin from instability limit. This reasonable margin might give good performance.

29 1. What else can we do with this neat technology? Tune controllers Controller Kc TI Td P-only Ku/ PI Ku/2.2 Pu/ PID Ku/1.7 Pu/2.0 Pu/8 ain margin is approximately 2 Integral mode is required for zero s-s offset Derivative has stabilizing effect

30 F S Controlled Variable Manipulated Variable solvent F A pure A S-LOOP plots deviation variables (IAE = ) Time Time AC Ziegler-Nichols tuning enerally, Ziegler- Nichols tuning is not the best initial tuning method. However, these two guys were real pioneers in the field! Its taken 50 years to surpass their guidelines.

31 2. What else can we do with this neat technology? Understand why detuning is required for tough processes. 10 KcKp 1 As dead time increases, we must detune the controller In this plot, (θτ) is constant and θ/ (θτ) is changed. Ziegler-Nichols fraction dead time Ciancone

32 3. What else can we do with this neat technology? Understand need for robustness. After we tune the controller, we change the flow of solvent. What happens? F S solvent F S = 3.0 to 6.9 m3/min F A pure A AC

33 10 0 CHAPTER 10: STABILITY &TUNIN 3. What else can we do with this neat technology? Understand need for robustness. amplitude ratio Must consider the model error when selecting controller 10-5 tuning phase angle frequency (rad/time) Range of critical frequencies. Smallest is most conservative frequency (rad/time)

34 3. What else can we do with this neat technology? Understand need for robustness. Tune for the process response that is slowest, has highest fraction dead time, and largest process gain. This will give least aggressive controller. F S solvent F S = 3.0 to 6.9 m3/min F A pure A AC

35 Match your select of tuning method to tuning goals!

36 CHAPTER 10: TUNIN & STABILITY WORKSHOP 1 The data below is a process reaction curve for a process, plotted in deviation variables. Determine the tuning for a PID controller using the Ziegler-Nichols method. Controlled Variable Time v1 TC Manipulated Variable v Time

37 CHAPTER 10: TUNIN & STABILITY WORKSHOP 2 Answer true or false to each of the following questions and explain each answer. A. A closed-loop system is stable only if the process and the controller are both stable. B. The Bode stability method proves that the closedloop system is stable for only sine inputs. C. OL (s) is the process model, P (s), and sensor, final element, and signal transmission dynamics D. A process would be stable if it had three poles with the following values: -1, -.2, and 0.

38 CHAPTER 10: TUNIN & STABILITY WORKSHOP 3 The PID controller has been tuned for a three-tank mixer. Later, we decide to include another mixing tank in the process. If we do not retune the controller, will the control system be stable with the four-tank mixer? F S solvent F A pure A AC K c = 30 T I = 11 T d = 0.8

39 When I complete this chapter, I want to be able to do the following. Determine the stability of a process without control Determine the stability of a closed-loop feedback control system Use these approaches to learn how dead time affects stability. Lot s of improvement, but we need some more study! Read the textbook Review the notes, especially learning goals and workshop Try out the self-study suggestions Naturally, we ll have an assignment!

40 CHAPTER 10: LEARNIN RESOURCES SITE PC-EDUCATION WEB - Instrumentation Notes - Interactive Learning Module (Chapter 10) - Tutorials (Chapter 10) S_LOOP - You can perform the stability and frequency response calculations uses menu-driven features. Then, you can simulate in the time domain to confirm your conclusions.

41 CHAPTER 10: SUESTIONS FOR SELF-STUDY 1. Determine the stability for the example in textbook Table 9.2 (recommended tuning). Use the nominal process parameters. How much would K C have to be increased until the system became unstable? 2. Determine the Ziegler-Nichols tuning for the three-tank mixer process. Simulate the dynamic response using S_LOOP. 3. Discuss applying the Bode stability method to a process without control.

42 CHAPTER 10: SUESTIONS FOR SELF-STUDY 4. We do not want to operate a closed-loop system too close to the stability limit. Discuss measures of the closeness to the limit and how they could be used in calculating tuning constant values.

CHAPTER 19: Single-Loop IMC Control

When I coplete this chapter, I want to be able to do the following. Recognize that other feedback algoriths are possible Understand the IMC structure and how it provides the essential control features

Feedback Control of Linear SISO systems. Process Dynamics and Control

Feedback Control of Linear SISO systems Process Dynamics and Control 1 Open-Loop Process The study of dynamics was limited to open-loop systems Observe process behavior as a result of specific input signals

Process Control, 3P4 Assignment 5

Process Control, 3P4 Assignment 5 Kevin Dunn, kevin.dunn@mcmaster.ca Due date: 12 March 2014 This assignment is due on Wednesday, 12 March 2014. Late hand-ins are not allowed. Since it is posted mainly

Open Loop Tuning Rules

Open Loop Tuning Rules Based on approximate process models Process Reaction Curve: The process reaction curve is an approximate model of the process, assuming the process behaves as a first order plus

Solutions for Tutorial 4 Modelling of Non-Linear Systems

Solutions for Tutorial 4 Modelling of Non-Linear Systems 4.1 Isothermal CSTR: The chemical reactor shown in textbook igure 3.1 and repeated in the following is considered in this question. The reaction

Control Lab. Thermal Plant. Chriss Grimholt

Control Lab Thermal Plant Chriss Grimholt Process System Engineering Department of Chemical Engineering Norwegian University of Science and Technology October 3, 23 C. Grimholt (NTNU) Thermal Plant October

Index. INDEX_p /15/02 3:08 PM Page 765

INDEX_p.765-770 11/15/02 3:08 PM Page 765 Index N A Adaptive control, 144 Adiabatic reactors, 465 Algorithm, control, 5 All-pass factorization, 257 All-pass, frequency response, 225 Amplitude, 216 Amplitude

Dr Ian R. Manchester Dr Ian R. Manchester AMME 3500 : Review

Week Date Content Notes 1 6 Mar Introduction 2 13 Mar Frequency Domain Modelling 3 20 Mar Transient Performance and the s-plane 4 27 Mar Block Diagrams Assign 1 Due 5 3 Apr Feedback System Characteristics

Analysis and Design of Control Systems in the Time Domain

Chapter 6 Analysis and Design of Control Systems in the Time Domain 6. Concepts of feedback control Given a system, we can classify it as an open loop or a closed loop depends on the usage of the feedback.

Process Solutions. Process Dynamics. The Fundamental Principle of Process Control. APC Techniques Dynamics 2-1. Page 2-1

Process Dynamics The Fundamental Principle of Process Control APC Techniques Dynamics 2-1 Page 2-1 Process Dynamics (1) All Processes are dynamic i.e. they change with time. If a plant were totally static

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS

S_LOOP: SINGLE-LOOP FEEDBACK CONTROL SYSTEM ANALYSIS by Michelle Gretzinger, Daniel Zyngier and Thoma Marlin INTRODUCTION One of the challenge to the engineer learning proce control i relating theoretical

Chapter 2. Classical Control System Design. Dutch Institute of Systems and Control

Chapter 2 Classical Control System Design Overview Ch. 2. 2. Classical control system design Introduction Introduction Steady-state Steady-state errors errors Type Type k k systems systems Integral Integral

Additional Closed-Loop Frequency Response Material (Second edition, Chapter 14)

Appendix J Additional Closed-Loop Frequency Response Material (Second edition, Chapter 4) APPENDIX CONTENTS J. Closed-Loop Behavior J.2 Bode Stability Criterion J.3 Nyquist Stability Criterion J.4 Gain

6.302 Feedback Systems Recitation 16: Compensation Prof. Joel L. Dawson

Bode Obstacle Course is one technique for doing compensation, or designing a feedback system to make the closed-loop behavior what we want it to be. To review: - G c (s) G(s) H(s) you are here! plant For

Appendix A MoReRT Controllers Design Demo Software

Appendix A MoReRT Controllers Design Demo Software The use of the proposed Model-Reference Robust Tuning (MoReRT) design methodology, described in Chap. 4, to tune a two-degree-of-freedom (2DoF) proportional

6.1 Sketch the z-domain root locus and find the critical gain for the following systems K., the closed-loop characteristic equation is K + z 0.

6. Sketch the z-domain root locus and find the critical gain for the following systems K (i) Gz () z 4. (ii) Gz K () ( z+ 9. )( z 9. ) (iii) Gz () Kz ( z. )( z ) (iv) Gz () Kz ( + 9. ) ( z. )( z 8. ) (i)

Sinusoidal Forcing of a First-Order Process. / τ

Frequency Response Analysis Chapter 3 Sinusoidal Forcing of a First-Order Process For a first-order transfer function with gain K and time constant τ, the response to a general sinusoidal input, xt = A

University of Science and Technology, Sudan Department of Chemical Engineering.

ISO 91:28 Certified Volume 3, Issue 6, November 214 Design and Decoupling of Control System for a Continuous Stirred Tank Reactor (CSTR) Georgeous, N.B *1 and Gasmalseed, G.A, Abdalla, B.K (1-2) University

Root Locus. Motivation Sketching Root Locus Examples. School of Mechanical Engineering Purdue University. ME375 Root Locus - 1

Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus - 1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: D 0.09 Position

EE3CL4: Introduction to Linear Control Systems

1 / 17 EE3CL4: Introduction to Linear Control Systems Section 7: McMaster University Winter 2018 2 / 17 Outline 1 4 / 17 Cascade compensation Throughout this lecture we consider the case of H(s) = 1. We

PROCESS CONTROL DESIGN PASI 2005

PROCESS CONTROL DESIGN PASI 25 Pan American Advanced Studies Institute Program on Process Systems Engineering August 16-25, 25, Iguazu Falls Thomas E. Marlin Department of Chemical Engineering And McMaster

CHAPTER 3 : MATHEMATICAL MODELLING PRINCIPLES

CHAPTER 3 : MATHEMATICAL MODELLING PRINCIPLES When I complete this chapter, I want to be able to do the following. Formulate dynamic models based on fundamental balances Solve simple first-order linear

Cascade Control of a Continuous Stirred Tank Reactor (CSTR)

Journal of Applied and Industrial Sciences, 213, 1 (4): 16-23, ISSN: 2328-4595 (PRINT), ISSN: 2328-469 (ONLINE) Research Article Cascade Control of a Continuous Stirred Tank Reactor (CSTR) 16 A. O. Ahmed

Solutions for Tutorial 3 Modelling of Dynamic Systems

Solutions for Tutorial 3 Modelling of Dynamic Systems 3.1 Mixer: Dynamic model of a CSTR is derived in textbook Example 3.1. From the model, we know that the outlet concentration of, C, can be affected

Dynamics and PID control. Process dynamics

Dynamics and PID control Sigurd Skogestad Process dynamics Things take time Step response (response of output y to step in input u): k = Δy( )/ Δu process gain - process time constant (63%) - process time

Fundamental Principles of Process Control

Fundamental Principles of Process Control Motivation for Process Control Safety First: people, environment, equipment The Profit Motive: meeting final product specs minimizing waste production minimizing

ME 304 CONTROL SYSTEMS Spring 2016 MIDTERM EXAMINATION II

ME 30 CONTROL SYSTEMS Spring 06 Course Instructors Dr. Tuna Balkan, Dr. Kıvanç Azgın, Dr. Ali Emre Turgut, Dr. Yiğit Yazıcıoğlu MIDTERM EXAMINATION II May, 06 Time Allowed: 00 minutes Closed Notes and

Notes for ECE-320. Winter by R. Throne

Notes for ECE-3 Winter 4-5 by R. Throne Contents Table of Laplace Transforms 5 Laplace Transform Review 6. Poles and Zeros.................................... 6. Proper and Strictly Proper Transfer Functions...................

Automatic Control 2. Loop shaping. Prof. Alberto Bemporad. University of Trento. Academic year

Automatic Control 2 Loop shaping Prof. Alberto Bemporad University of Trento Academic year 21-211 Prof. Alberto Bemporad (University of Trento) Automatic Control 2 Academic year 21-211 1 / 39 Feedback

Controller Design Based on Transient Response Criteria. Chapter 12 1

Controller Design Based on Transient Response Criteria Chapter 12 1 Desirable Controller Features 0. Stable 1. Quik responding 2. Adequate disturbane rejetion 3. Insensitive to model, measurement errors

Chapter 8. Feedback Controllers. Figure 8.1 Schematic diagram for a stirred-tank blending system.

Feedback Controllers Figure 8.1 Schematic diagram for a stirred-tank blending system. 1 Basic Control Modes Next we consider the three basic control modes starting with the simplest mode, proportional

Control of Electromechanical Systems

Control of Electromechanical Systems November 3, 27 Exercise Consider the feedback control scheme of the motor speed ω in Fig., where the torque actuation includes a time constant τ A =. s and a disturbance

CONTROL MODE SETTINGS. The quality of control obtained from a particular system depends largely on the adj ustments made to the various mode

Instrumentation & Control - Course 136 CONTROL MODE SETTINGS The quality of control obtained from a particular system depends largely on the adj ustments made to the various mode settings. Many control

MAS107 Control Theory Exam Solutions 2008

MAS07 CONTROL THEORY. HOVLAND: EXAM SOLUTION 2008 MAS07 Control Theory Exam Solutions 2008 Geir Hovland, Mechatronics Group, Grimstad, Norway June 30, 2008 C. Repeat question B, but plot the phase curve

Learn2Control Laboratory

Learn2Control Laboratory Version 3.2 Summer Term 2014 1 This Script is for use in the scope of the Process Control lab. It is in no way claimed to be in any scientific way complete or unique. Errors should

Enhanced Single-Loop Control Strategies Chapter 16

Enhanced Single-Loop Control Strategies Chapter 16 1. Cascade control 2. Time-delay compensation 3. Inferential control 4. Selective and override control 5. Nonlinear control 6. Adaptive control 1 Chapter

Chemical Process Dynamics and Control. Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University

Chemical Process Dynamics and Control Aisha Osman Mohamed Ahmed Department of Chemical Engineering Faculty of Engineering, Red Sea University 1 Chapter 4 System Stability 2 Chapter Objectives End of this

Tuning Method of PI Controller with Desired Damping Coefficient for a First-order Lag Plus Deadtime System

PID' Brescia (Italy), March 8-0, 0 FrA. Tuning Method of PI Controller with Desired Damping Coefficient for a First-order Lag Plus Deadtime System Yuji Yamakawa*. Yohei Okada** Takanori Yamazaki***. Shigeru

Competences. The smart choice of Fluid Control Systems

Competences The smart choice of Fluid Control Systems Contents 1. Open-loop and closed-loop control Page 4 1.1. Function and sequence of an open-loop control system Page 4 1.2. Function and sequence of

Lecture 12. Upcoming labs: Final Exam on 12/21/2015 (Monday)10:30-12:30

289 Upcoming labs: Lecture 12 Lab 20: Internal model control (finish up) Lab 22: Force or Torque control experiments [Integrative] (2-3 sessions) Final Exam on 12/21/2015 (Monday)10:30-12:30 Today: Recap

FREQUENCY-RESPONSE DESIGN

ECE45/55: Feedback Control Systems. 9 FREQUENCY-RESPONSE DESIGN 9.: PD and lead compensation networks The frequency-response methods we have seen so far largely tell us about stability and stability margins

A-type elements, 4 7, 18, 31, 168, 198, 202, 219, 220, 222, 225 A-type variables. See Across variable ac current, 172, 251 ac induction motor, 251 Acceleration rotational, 30 translational, 16 Accumulator,

Control of MIMO processes. 1. Introduction. Control of MIMO processes. Control of Multiple-Input, Multiple Output (MIMO) Processes

Control of MIMO processes Control of Multiple-Input, Multiple Output (MIMO) Processes Statistical Process Control Feedforward and ratio control Cascade control Split range and selective control Control

Dynamic Response. Assoc. Prof. Enver Tatlicioglu. Department of Electrical & Electronics Engineering Izmir Institute of Technology.

Dynamic Response Assoc. Prof. Enver Tatlicioglu Department of Electrical & Electronics Engineering Izmir Institute of Technology Chapter 3 Assoc. Prof. Enver Tatlicioglu (EEE@IYTE) EE362 Feedback Control

School of Mechanical Engineering Purdue University. DC Motor Position Control The block diagram for position control of the servo table is given by:

Root Locus Motivation Sketching Root Locus Examples ME375 Root Locus - 1 Servo Table Example DC Motor Position Control The block diagram for position control of the servo table is given by: θ D 0.09 See

(b) A unity feedback system is characterized by the transfer function. Design a suitable compensator to meet the following specifications:

1. (a) The open loop transfer function of a unity feedback control system is given by G(S) = K/S(1+0.1S)(1+S) (i) Determine the value of K so that the resonance peak M r of the system is equal to 1.4.

APPLICATIONS FOR ROBOTICS

Version: 1 CONTROL APPLICATIONS FOR ROBOTICS TEX d: Feb. 17, 214 PREVIEW We show that the transfer function and conditions of stability for linear systems can be studied using Laplace transforms. Table

Introduction to Feedback Control

Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3.. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid -

Professor Fearing EE C128 / ME C134 Problem Set 7 Solution Fall 2010 Jansen Sheng and Wenjie Chen, UC Berkeley

Professor Fearing EE C8 / ME C34 Problem Set 7 Solution Fall Jansen Sheng and Wenjie Chen, UC Berkeley. 35 pts Lag compensation. For open loop plant Gs ss+5s+8 a Find compensator gain Ds k such that the

Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam!

Prüfung Regelungstechnik I (Control Systems I) Prof. Dr. Lino Guzzella 3. 8. 24 Übersetzungshilfe / Translation aid (English) To be returned at the end of the exam! Do not mark up this translation aid

Spring 2006 Process Dynamics, Operations, and Control Lesson 5: Operability of Processes

5.0 context and direction In esson 4, we encountered instability. We think of stability as a mathematical property of our linear system models. Now we will embed this mathematical notion within the practical

FEEDBACK CONTROL SYSTEMS

FEEDBAC CONTROL SYSTEMS. Control System Design. Open and Closed-Loop Control Systems 3. Why Closed-Loop Control? 4. Case Study --- Speed Control of a DC Motor 5. Steady-State Errors in Unity Feedback Control

PID controllers, part I

Faculty of Mechanical and Power Engineering Dr inŝ. JANUSZ LICHOTA CONTROL SYSTEMS PID controllers, part I Wrocław 2007 CONTENTS Controller s classification PID controller what is it? Typical controller

Analysis of SISO Control Loops

Chapter 5 Analysis of SISO Control Loops Topics to be covered For a given controller and plant connected in feedback we ask and answer the following questions: Is the loop stable? What are the sensitivities

CM 3310 Process Control, Spring Lecture 21

CM 331 Process Control, Spring 217 Instructor: Dr. om Co Lecture 21 (Back to Process Control opics ) General Control Configurations and Schemes. a) Basic Single-Input/Single-Output (SISO) Feedback Figure

Time Response of Systems

Chapter 0 Time Response of Systems 0. Some Standard Time Responses Let us try to get some impulse time responses just by inspection: Poles F (s) f(t) s-plane Time response p =0 s p =0,p 2 =0 s 2 t p =

x(t) = x(t h), x(t) 2 R ), where is the time delay, the transfer function for such a e s Figure 1: Simple Time Delay Block Diagram e i! =1 \e i!t =!

1 Time-Delay Systems 1.1 Introduction Recitation Notes: Time Delays and Nyquist Plots Review In control systems a challenging area is operating in the presence of delays. Delays can be attributed to acquiring

INTRODUCTION TO DIGITAL CONTROL

ECE4540/5540: Digital Control Systems INTRODUCTION TO DIGITAL CONTROL.: Introduction In ECE450/ECE550 Feedback Control Systems, welearnedhow to make an analog controller D(s) to control a linear-time-invariant

Lab # 4 Time Response Analysis

Islamic University of Gaza Faculty of Engineering Computer Engineering Dep. Feedback Control Systems Lab Eng. Tareq Abu Aisha Lab # 4 Lab # 4 Time Response Analysis What is the Time Response? It is an

1 (20 pts) Nyquist Exercise

EE C128 / ME134 Problem Set 6 Solution Fall 2011 1 (20 pts) Nyquist Exercise Consider a close loop system with unity feedback. For each G(s), hand sketch the Nyquist diagram, determine Z = P N, algebraically

Stabilizing the dual inverted pendulum

Stabilizing the dual inverted pendulum Taylor W. Barton Massachusetts Institute of Technology, Cambridge, MA 02139 USA (e-mail: tbarton@mit.edu) Abstract: A classical control approach to stabilizing a

AN INTRODUCTION TO THE CONTROL THEORY

Open-Loop controller An Open-Loop (OL) controller is characterized by no direct connection between the output of the system and its input; therefore external disturbance, non-linear dynamics and parameter

Exam. 135 minutes + 15 minutes reading time

Exam January 23, 27 Control Systems I (5-59-L) Prof. Emilio Frazzoli Exam Exam Duration: 35 minutes + 5 minutes reading time Number of Problems: 45 Number of Points: 53 Permitted aids: Important: 4 pages

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =

1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot

Work sheet / Things to know. Chapter 3

MATH 251 Work sheet / Things to know 1. Second order linear differential equation Standard form: Chapter 3 What makes it homogeneous? We will, for the most part, work with equations with constant coefficients

Lecture 12. AO Control Theory

Lecture 12 AO Control Theory Claire Max with many thanks to Don Gavel and Don Wiberg UC Santa Cruz February 18, 2016 Page 1 What are control systems? Control is the process of making a system variable

Raktim Bhattacharya. . AERO 422: Active Controls for Aerospace Vehicles. Basic Feedback Analysis & Design

AERO 422: Active Controls for Aerospace Vehicles Basic Feedback Analysis & Design Raktim Bhattacharya Laboratory For Uncertainty Quantification Aerospace Engineering, Texas A&M University Routh s Stability

ROOT LOCUS. Consider the system. Root locus presents the poles of the closed-loop system when the gain K changes from 0 to. H(s) H ( s) = ( s)

C1 ROOT LOCUS Consider the system R(s) E(s) C(s) + K G(s) - H(s) C(s) R(s) = K G(s) 1 + K G(s) H(s) Root locus presents the poles of the closed-loop system when the gain K changes from 0 to 1+ K G ( s)

Systems Analysis and Control

Systems Analysis and Control Matthew M. Peet Illinois Institute of Technology Lecture : Different Types of Control Overview In this Lecture, you will learn: Limits of Proportional Feedback Performance

Control Systems II. ETH, MAVT, IDSC, Lecture 4 17/03/2017. G. Ducard

Control Systems II ETH, MAVT, IDSC, Lecture 4 17/03/2017 Lecture plan: Control Systems II, IDSC, 2017 SISO Control Design 24.02 Lecture 1 Recalls, Introductory case study 03.03 Lecture 2 Cascaded Control

Simple analytic rules for model reduction and PID controller tuning

Journal of Process Control 3 (2003) 29 309 www.elsevier.com/locate/jprocont Simple analytic rules for model reduction and PID controller tuning Sigurd Sogestad* Department of Chemical Engineering, Norwegian

Lecture Notes on Control Systems/D. Ghose/01 106 1.7 Steady State Error For first order systems we have noticed an overall improvement in performance in terms of rise time and settling time. But there

Vehicle longitudinal speed control

Vehicle longitudinal speed control Prof. R.G. Longoria Department of Mechanical Engineering The University of Texas at Austin February 10, 2015 1 Introduction 2 Control concepts Open vs. Closed Loop Control

a k cos kω 0 t + b k sin kω 0 t (1) k=1

MOAC worksheet Fourier series, Fourier transform, & Sampling Working through the following exercises you will glean a quick overview/review of a few essential ideas that you will need in the moac course.

Lecture 1: Feedback Control Loop

Lecture : Feedback Control Loop Loop Transfer function The standard feedback control system structure is depicted in Figure. This represend(t) n(t) r(t) e(t) u(t) v(t) η(t) y(t) F (s) C(s) P (s) Figure

r + - FINAL June 12, 2012 MAE 143B Linear Control Prof. M. Krstic

MAE 43B Linear Control Prof. M. Krstic FINAL June, One sheet of hand-written notes (two pages). Present your reasoning and calculations clearly. Inconsistent etchings will not be graded. Write answers

Advanced Control of the Waste Water Treatment Unit in White Nile Tannery

International Journal of Engineering, Applied and Management Sciences Paradigms, Vol. 43, Issue Publishing Month: January 27 Advanced Control of the Waste Water Treatment Unit in White Nile Tannery Tahani

Feedback: Still the simplest and best solution

Feedback: Still the simplest and best solution Sigurd Skogestad Department of Chemical Engineering Norwegian Univ. of Science and Tech. (NTNU) Trondheim, Norway skoge@ntnu.no Abstract Most engineers are

CONTROL OF DIGITAL SYSTEMS

AUTOMATIC CONTROL AND SYSTEM THEORY CONTROL OF DIGITAL SYSTEMS Gianluca Palli Dipartimento di Ingegneria dell Energia Elettrica e dell Informazione (DEI) Università di Bologna Email: gianluca.palli@unibo.it

EEE 184: Introduction to feedback systems

EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)

Lecture 6 Classical Control Overview IV. Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore

Lecture 6 Classical Control Overview IV Dr. Radhakant Padhi Asst. Professor Dept. of Aerospace Engineering Indian Institute of Science - Bangalore Lead Lag Compensator Design Dr. Radhakant Padhi Asst.

Tuning of Internal Model Control Proportional Integral Derivative Controller for Optimized Control

Tuning of Internal Model Control Proportional Integral Derivative Controller for Optimized Control Thesis submitted in partial fulfilment of the requirement for the award of Degree of MASTER OF ENGINEERING

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual

Quanser NI-ELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant

Tuning PI controllers in non-linear uncertain closed-loop systems with interval analysis

Tuning PI controllers in non-linear uncertain closed-loop systems with interval analysis J. Alexandre dit Sandretto, A. Chapoutot and O. Mullier U2IS, ENSTA ParisTech SYNCOP April 11, 2015 Closed-loop

Distributed Parameter Systems

Distributed Parameter Systems Introduction All the apparatus dynamic experiments in the laboratory exhibit the effect known as "minimum phase dynamics". Process control loops are often based on simulations

FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY

FATIMA MICHAEL COLLEGE OF ENGINEERING & TECHNOLOGY Senkottai Village, Madurai Sivagangai Main Road, Madurai - 625 020. An ISO 9001:2008 Certified Institution DEPARTMENT OF ELECTRONICS AND COMMUNICATION

Fall 2003 BMI 226 / CS 426 AUTOMATIC SYNTHESIS OF IMPROVED TUNING RULES FOR PID CONTROLLERS

Notes LL-1 AUTOMATIC SYNTHESIS OF IMPROVED TUNING RULES FOR PID CONTROLLERS Notes LL-2 AUTOMATIC SYNTHESIS OF IMPROVED TUNING RULES FOR PID CONTROLLERS The PID controller was patented in 1939 by Albert

Power System Operations and Control Prof. S.N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur. Module 3 Lecture 8

Power System Operations and Control Prof. S.N. Singh Department of Electrical Engineering Indian Institute of Technology, Kanpur Module 3 Lecture 8 Welcome to lecture number 8 of module 3. In the previous

Dynamic circuits: Frequency domain analysis

Electronic Circuits 1 Dynamic circuits: Contents Free oscillation and natural frequency Transfer functions Frequency response Bode plots 1 System behaviour: overview 2 System behaviour : review solution

Poles, Zeros and System Response

Time Response After the engineer obtains a mathematical representation of a subsystem, the subsystem is analyzed for its transient and steady state responses to see if these characteristics yield the desired

Alireza Mousavi Brunel University

Alireza Mousavi Brunel University 1 » Control Process» Control Systems Design & Analysis 2 Open-Loop Control: Is normally a simple switch on and switch off process, for example a light in a room is switched

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur

VALLIAMMAI ENGINEERING COLLEGE SRM Nagar, Kattankulathur 603 203. DEPARTMENT OF ELECTRONICS & COMMUNICATION ENGINEERING SUBJECT QUESTION BANK : EC6405 CONTROL SYSTEM ENGINEERING SEM / YEAR: IV / II year

K c < K u K c = K u K c > K u step 4 Calculate and implement PID parameters using the the Ziegler-Nichols tuning tables: 30

1.5 QUANTITIVE PID TUNING METHODS Tuning PID parameters is not a trivial task in general. Various tuning methods have been proposed for dierent model descriptions and performance criteria. 1.5.1 CONTINUOUS

Analogue Filters Design and Simulation by Carsten Kristiansen Napier University. November 2004

Analogue Filters Design and Simulation by Carsten Kristiansen Napier University November 2004 Title page Author: Carsten Kristiansen. Napier No: 04007712. Assignment title: Analogue Filters Design and

Control Systems Robert Stengel Robotics and Intelligent Systems MAE 345, Princeton University, 2017 Analog vs. digital systems Continuous- and Discretetime Dynamic Models Frequency Response Transfer Functions

D G 2 H + + D 2

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Department of Electrical Engineering and Computer Science 6.302 Feedback Systems Final Exam May 21, 2007 180 minutes Johnson Ice Rink 1. This examination consists

2.010 Fall 2000 Solution of Homework Assignment 8

2.1 Fall 2 Solution of Homework Assignment 8 1. Root Locus Analysis of Hydraulic Servomechanism. The block diagram of the controlled hydraulic servomechanism is shown in Fig. 1 e r e error + i Σ C(s) P(s)