Introduction to geodetic VLBI

Size: px
Start display at page:

Download "Introduction to geodetic VLBI"

Transcription

1 Introduction to geodetic VLBI David Mayer Andreas Hellerschmied Johannes Böhm Harald Schuh and Johannes Böhm, Very Long Baseline Interferometry for Geodesy and Astrometry, in Guochang Xu (editor): Sciences of Geodesy II, Innovations and Future Developments, Springer Verlag, ISBN , doi: / , pp , 2013.

2 What is Geodesy Geodesy is the science of accurately measuring and understanding the Earth's geometric shape, orientation in space, and gravity field. Why use VLBI for geodesy? It is the only technique which is able to position the earth in space (estimate all 5 EOP) Intercontinental baselines (tectonic motion) Provides scale factor for the TRF Provides very accurate source position (CRF)

3 Difference astronomic and geodetic VLBI Astronomic VLBI interested in imaging sources etc. Geodetic VLBI interested in parameters of the Earth Sources are used as static reference points in the sky Stable, point-like and radio loud quasars are used Observations to these sources are used to estimate geodetic parameters, such as station coordinates, etc.

4 1.1 Geometric principle One VLBI observation A normal VLBI session consists of a globally distributed network

5 1.2 Data acquisition VLBI observation plans (schedules) define which sources are observed by which stations at which time Scheduling for Geodesy Typically 24h sessions with globally distributed station network observed in S- and X-Band simultaneously Packages SKED (Vandenberg 1999) or VieVS (Sun et al. 2014) All observations to one source at a time form a scan Different integration and slewing times need to be considered It is important to have as many observations as possible

6 1.2 Data acquisition Various optimisation criteria sky coverage, covariance matrix,... sky coverage important for tropospheric delays Why cover the sky with observations? Decorrelation of troposphere, clock and height of station by courtesy of Jing Sun

7 1.3 Correlation Observed data from a session is sent to a correlator Typical 24h session generates 1.5 TB data per station Either sent via post service or the internet Data correlation is computation intensive Nowadays usually done with software on computer clusters Results of correlation and post processing are the observables group delays τ

8 1.4 Data analysis

9 1.4 Data analysis In our excersise we will start with NGS files

10 2. Theoretical delays Before calculating the observed computed (o c) value, various models need to be applied IERS Conventions (Petit and Luzum 2010) IVS Conventions, e.g. thermal deformation

11 2.1 Station coordinates At first, coordinates (at a certain epoch, e.g. J2000.0) and velocities are taken from a specific realization of the ITRS, e.g. VTRF2008 or ITRF2008 tide free

12 2.1 Station coordinates Periodic corrections to get closer to true coordinates solid Earth tides ocean tide loading (ocean) pole tide loading tidal atmosphere loading (S1 and S2)

13 2.1 Station coordinates Aperiodic corrections atmosphere loading Radial displacement at August 1, 2008, 00 UT mm by courtesy of Dudy Wijaya

14 2.1 Station coordinates Aperiodic corrections atmosphere loading ocean non-tidal loading hydrology loading

15 2.1 Station coordinates

16 2.2 Earth orientation From the International Terrestrial Reference System (ITRS) to the Geocentric Celestial Reference System (GCRS) at the epoch of the observation t Q motion of celestial intermediate pole (CIP) in CRF R rotation of the Earth around the CIP W polar motion of CIP w.r.t. TRF

17 2.2 Earth orientation by courtesy of Sigrid Böhm

18 2.2 Earth orientation Celestial pole offsets, UT1 UTC, polar motion need to be observed Daily values provided by the IERS to be used as a priori information Models for diurnal and sub-diurnal ocean tides Libration (forced polar motion)

19 2.3 General relativistic model for the VLBI time delay Consensus model by Eubanks (1991) defined in IERS Conventions by courtesy of Lucia Plank

20 2.4 Troposphere delay modelling Tropospheric delays Signal path is bent (G S) Lower propagation speed along the signal path S

21 2.4 Troposphere delay modelling More troposphere along the ray path = larger effect elevation dependence Zenith delay times mapping function to determine a priori slant delays and to estimate residual zenith delays Partials for clocks (= 1) and heights (= sin e) are exactly known; mapping function is not perfectly known

22 2.4 Troposphere delay modelling Separation into hydrostatic and wet part Continued fraction form for mapping functions e.g., Vienna Mapping Functions, Global Mapping Functions

23 2.4 Troposphere delay modelling Tropospheric gradients Raytracing

24 2.5 Antenna deformation Snow and ice loading Gravitational deformation Thermal deformation

25 2.6 Axis offsets.. are not absorbed by clock estimates when axes do not intersect VLBI reference point Nothnagel, 2009

26 2.7 Source structure Source structure effects SI 1 SI 4

27 3 Least-squares adjustment in VLBI Classical Gauß-Markov model Kalman Filter (Herring et al. 1990) Collocation (Titov and Schuh 2000) minimize the squared sum of weighted residuals

28 3 Least-squares adjustment in VLBI Observations equations (real and pseudo observations = constraints) Weight matrix

29 3 Least-squares adjustment in VLBI Auxiliary parameters: clocks (quadratic functions plus piecewise linear offsets; reference clock), zenith wet delays and gradients Clock breaks Piecewise linear offsets at e.g. integer hours.. allows combination with other space geodetic techniques at normal equation level

30 3 Least-squares adjustment in VLBI Many other geodetic/astrometric parameters to be estimated E.g., Earth orientation parameters can be estimated daily or with higher time resolution

31 3 Least-squares adjustment in VLBI Global VLBI solutions from a (large) number of single solutions E.g., for station and source coordinates Often, auxiliary parameters are removed (= implicitly estimated)

32 3 Least-squares adjustment in VLBI Global VLBI solutions

33 3 Least-squares adjustment in VLBI Conditions to prevent N matrix from being singular free networks need a datum rank deficiency is six (scale is defined by observations) NNR/NNT usually applied Episodic changes need to be considered (instrumental changes, Earthquakes)

34 4 Results from Geodetic VLBI and the IVS Status 2010 of IVS main products (Schlüter and Behrend 2007)

Very Long Baseline Interferometry for Geodesy and Astrometry

Very Long Baseline Interferometry for Geodesy and Astrometry Very Long Baseline Interferometry for Geodesy and Astrometry Johannes Böhm Harald Schuh and Johannes Böhm, Very Long Baseline Interferometry for Geodesy and Astrometry, in Guochang Xu (editor): Sciences

More information

Very Long Baseline Interferometry for Geodesy and Astrometry

Very Long Baseline Interferometry for Geodesy and Astrometry VieVS User-Workshop 2017 Very Long Baseline Interferometry for Geodesy and Astrometry Johannes Böhm VLBI How does it work? VLBI a flowchart SINEX skd vex2 drudge drudge snp/prc snp/prc NGS Mark4 Mark4

More information

Introduction to geodetic VLBI and VieVS software

Introduction to geodetic VLBI and VieVS software Introduction to geodetic VLBI and VieVS software Hana Krásná and colleagues April 15, 2014 Hartebeesthoek Radio Astronomy Observatory, South Africa Introduction to geodetic VLBI Introduction to VieVS Our

More information

Challenges and perspectives for CRF and TRF determination

Challenges and perspectives for CRF and TRF determination Challenges and perspectives for CRF and TRF determination J. Böhm, Z. Malkin, S. Lambert, C. Ma with contributions by H. Spicakova, L. Plank, and H. Schuh Consistency TRF EOP CRF ITRF2008 from VLBI/GNSS/SLR/DORIS

More information

Impact of A Priori Gradients on VLBI-Derived Terrestrial Reference Frames

Impact of A Priori Gradients on VLBI-Derived Terrestrial Reference Frames Impact of A Priori Gradients on VLBI-Derived Terrestrial Reference Frames J. Böhm, H. Spicakova, L. Urquhart, P. Steigenberger, H. Schuh Abstract We compare the influence of two different a priori gradient

More information

Impact of A Priori Gradients on VLBI-Derived Terrestrial Reference Frames

Impact of A Priori Gradients on VLBI-Derived Terrestrial Reference Frames Impact of A Priori Gradients on VLBI-Derived Terrestrial Reference Frames J. Böhm, H. Spicakova, L. Urquhart, P. Steigenberger, H. Schuh Abstract We compare the influence of two different a priori gradient

More information

Analysis Strategies And Software For Geodetic VLBI

Analysis Strategies And Software For Geodetic VLBI Analysis Strategies And Software For Geodetic VLBI Rüdiger Haas Presentation at the 7th EVN Symposium, Toledo, 2004 Outline: Observing stategies and observables Data analysis strategies Data analysis software

More information

Estimation of Geodetic and Geodynamical Parameters with VieVS

Estimation of Geodetic and Geodynamical Parameters with VieVS Estimation of Geodetic and Geodynamical Parameters with VieVS, IVS 2010 General Meeting Proceedings, p.202 206 http://ivscc.gsfc.nasa.gov/publications/gm2010/spicakova.pdf Estimation of Geodetic and Geodynamical

More information

Global reference systems and Earth rotation

Global reference systems and Earth rotation current realizations and scientific problems Aleksander Brzeziński 1,2, Tomasz Liwosz 1, Jerzy Rogowski 1, Jan Kryński 3 1 Department of Geodesy and Geodetic Astronomy Warsaw University of Technology 2

More information

Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data

Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data Johannes Böhm, Arthur Niell, Paul Tregoning, and Harald Schuh Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data Geophysical Research Letters Vol. 33,

More information

Publ. Astron. Obs. Belgrade No. 91 (2012), REALIZATION OF ETRF2000 AS A NEW TERRESTRIAL REFERENCE FRAME IN REPUBLIC OF SERBIA

Publ. Astron. Obs. Belgrade No. 91 (2012), REALIZATION OF ETRF2000 AS A NEW TERRESTRIAL REFERENCE FRAME IN REPUBLIC OF SERBIA Publ. Astron. Obs. Belgrade No. 91 (2012), 199-206 Contributed paper REALIZATION OF ETRF2000 AS A NEW TERRESTRIAL REFERENCE FRAME IN REPUBLIC OF SERBIA D. BLAGOJEVIĆ and V. VASILIĆ Faculty of Civil Engineering,

More information

The Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data

The Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data The Global Mapping Function (GMF): A new empirical mapping function based on numerical weather model data J. Boehm, A. Niell, P. Tregoning, H. Schuh Troposphere mapping functions are used in the analyses

More information

Atmospheric Effects in Space Geodesy

Atmospheric Effects in Space Geodesy Atmospheric Effects in Space Geodesy Johannes Böhm 18 November 2011 @ UNESP, Presidente Prudente, Brazil The atmosphere.. is not only causing troubles in space geodesy.. but it opens up a wide field of

More information

Twin Telescopes at Onsala and Wettzell and their contribution to the VGOS System

Twin Telescopes at Onsala and Wettzell and their contribution to the VGOS System Twin Telescopes at Onsala and Wettzell and their contribution to the VGOS System C. Schönberger, P. Gnilsen, J. Böhm, R. Haas Abstract During the last years the International VLBI Service for Geodesy and

More information

Principles of the Global Positioning System Lecture 18" Mathematical models in GPS" Mathematical models used in GPS"

Principles of the Global Positioning System Lecture 18 Mathematical models in GPS Mathematical models used in GPS 12.540 Principles of the Global Positioning System Lecture 18" Prof. Thomas Herring" Room 54-820A; 253-5941" tah@mit.edu" http://geoweb.mit.edu/~tah/12.540 " Mathematical models in GPS" Review assignment

More information

Call for space geodetic solutions corrected for non-tidal atmospheric loading (NT-ATML) at the observation level

Call for space geodetic solutions corrected for non-tidal atmospheric loading (NT-ATML) at the observation level Call for space geodetic solutions corrected for non-tidal atmospheric loading (NT-ATML) at the observation level Xavier Collilieux, Tonie van Dam, Zuheir Altamimi Outline: Context Why correcting for non-tidal

More information

Very Long Baseline Interferometry for Geodesy and Astrometry. Harald Schuh and Johannes Böhm. Contents

Very Long Baseline Interferometry for Geodesy and Astrometry. Harald Schuh and Johannes Böhm. Contents Very Long Baseline Interferometry for Geodesy and Astrometry Harald Schuh and Johannes Böhm Contents 1 Introduction 1.1 Geometric principle 1.2 History and technological developments 1.3 Data acquisition

More information

Status and future plans for the VieVS scheduling package

Status and future plans for the VieVS scheduling package 2th EVGA Meeting March 29-31, 211 Bonn, GERMANY Session 1 Status and future plans for the VieVS scheduling package Jing Sun, Andrea Pany, Tobias Nilsson, Johannes Boehm, Harald Schuh What s the purpose

More information

GINS: a new tool for VLBI Geodesy and Astrometry

GINS: a new tool for VLBI Geodesy and Astrometry GINS: a new tool for VLBI Geodesy and Astrometry G. Bourda, P. Charlot, R. Biancale 2 () Observatoire Aquitain des Sciences de l Univers - Université Bordeaux I Laboratoire d Astrophysique de Bordeaux

More information

Challenges and Perspectives for TRF and CRF Determination

Challenges and Perspectives for TRF and CRF Determination , IVS 2012 General Meeting Proceedings, p.309 313 http://ivscc.gsfc.nasa.gov/publications/gm2012/boehm.pdf Johannes Böhm 1, Zinovy Malkin 2, Sebastien Lambert 3, Chopo Ma 4 1) Vienna University of Technology

More information

State-of-the-art physical models for calculating atmospheric pressure loading effects

State-of-the-art physical models for calculating atmospheric pressure loading effects State-of-the-art physical models for calculating atmospheric pressure loading effects Dudy D. Wijaya, Böhm J., Schindelegger M., Karbon M., Schuh H. Institute of Geodesy and Geophysics, TU Vienna Geodätische

More information

Simulations of VLBI observations with the Onsala Twin Telescope

Simulations of VLBI observations with the Onsala Twin Telescope Simulations of VLBI observations with the Onsala Twin Telescope Master of Science Thesis CAROLINE SCHÖNBERGER Department of Earth and Space Sciences Division of Space Geodesy and Geodynamics CHALMERS UNIVERSITY

More information

Nutation determination by means of GNSS

Nutation determination by means of GNSS Nutation determination by means of GNSS - Comparison with VLBI Nicole Capitaine, Kunliang Yao SYRTE - Observatoire de Paris, CNRS/UPMC, France Introduction Space geodetic techniques cannot be used for

More information

The Second Realization of the International Celestial Reference Frame

The Second Realization of the International Celestial Reference Frame ICRF2 Highlights Work done by IERS/IVS and IAU Working Groups A truly international team Constructed using 30 Years of Very Long Baseline Interferometry data 4 times more observations than ICRF1 Improved

More information

Originally published as:

Originally published as: Originally published as: Seitz M., Steigenberger P., Artz T. (2xx) Consistent adjustment of combined terrestrial and celestial reference frames, Earth on the Edge: Science for a Sustainable Planet, IAG

More information

Past, present and possible updates to the IERS Conventions. J. Ray, NGS G. Petit, BIPM

Past, present and possible updates to the IERS Conventions. J. Ray, NGS G. Petit, BIPM Past, present and possible updates to the IERS Conventions J. Ray, NGS G. Petit, BIPM IERS Conventions update: electronic access http://tai.bipm.org/iers/convupdt/listupdt.html Introduction Add a set of

More information

Recent and Anticipated Changes to the International Earth Rotation and Reference Systems Service (IERS) Conventions

Recent and Anticipated Changes to the International Earth Rotation and Reference Systems Service (IERS) Conventions Recent and Anticipated Changes to the International Earth Rotation and Reference Systems Service (IERS) Conventions Brian Luzum, U.S. Naval Observatory BIOGRAPHY Brian Luzum began full-time employment

More information

IVS Working Group 2 for Product Specification and Observing Programs

IVS Working Group 2 for Product Specification and Observing Programs IVS Working Group 2 for Product Specification and Observing Programs Final Report (13 th of February 2002) Harald Schuh (hschuh@luna.tuwien.ac.at) *) Patrick Charlot (charlot@observ.u-bordeaux.fr) Hayo

More information

Introduction to Least Squares Adjustment for geodetic VLBI

Introduction to Least Squares Adjustment for geodetic VLBI Introduction to Least Squares Adjustment for geodetic VLBI Matthias Schartner a, David Mayer a a TU Wien, Department of Geodesy and Geoinformation Least Squares Adjustment why? observation is τ (baseline)

More information

Sub-Daily Parameter Estimation in VLBI Data Analysis

Sub-Daily Parameter Estimation in VLBI Data Analysis Dissertation Sub-Daily Parameter Estimation in VLBI Data Analysis Supervisors o.univ.-prof. Dipl.-Ing. Dr.techn. Harald Schuh Priv.-Doz. Dr.-Ing. Axel Nothnagel Examiners Prof. Dr. Hansjörg Kutterer Dr.

More information

Torsten Mayer-Gürr Institute of Geodesy, NAWI Graz Technische Universität Graz

Torsten Mayer-Gürr Institute of Geodesy, NAWI Graz Technische Universität Graz GGOS and Reference Systems Introduction 2015-10-12 Torsten Mayer-Gürr Institute of Geodesy, NAWI Graz Technische Universität Graz Torsten Mayer-Gürr 1 Course and exam Lecture Monday 14:00 16:00, A111 (ST01044)

More information

Common Realization of Terrestrial and Celestial Reference Frame

Common Realization of Terrestrial and Celestial Reference Frame Common Realization of Terrestrial and Celestial Reference Frame M. Seitz, R. Heinkelmann, P. Steigenberger, T. Artz Abstract The realization of the International Celestial Reference System (ICRS) and the

More information

IAU 2006 NFA GLOSSARY

IAU 2006 NFA GLOSSARY IAU 2006 NFA GLOSSARY Prepared by the IAU Division I Working Group Nomenclature for Fundamental Astronomy'' (latest revision: 20 November 2007) Those definitions corresponding to the IAU 2000 resolutions

More information

Astrometric Interferometry. P. Charlot Laboratoire d Astrophysique de Bordeaux

Astrometric Interferometry. P. Charlot Laboratoire d Astrophysique de Bordeaux Astrometric Interferometry P. Charlot Laboratoire d Astrophysique de Bordeaux Outline VLBI observables for astrometry VLBI modeling Reference frames and surveys (ICRF, VCS) Organisation for data acquisition

More information

A priori gradients in the analysis of GPS and VLBI observations

A priori gradients in the analysis of GPS and VLBI observations A priori gradients in the analysis of GPS and VLBI observations Peter Steigenberger GeoForschungsZentrum Potsdam Volker Tesmer Deutsche Geodätisches Forschungsinstitut, München Johannes Boehm Institute

More information

The International Terrestrial Reference System and ETRS89: Part I : General concepts

The International Terrestrial Reference System and ETRS89: Part I : General concepts The International Terrestrial Reference System and ETRS89: Part I : General concepts Zuheir ALTAMIMI Laboratoire de Recherche en Géodésie Institut national de l information géographique et forestière (IGN),

More information

VLBI: A Fascinating Technique for Geodesy and Astrometry

VLBI: A Fascinating Technique for Geodesy and Astrometry VLBI: A Fascinating Technique for Geodesy and Astrometry Annual Conference Satellite methods and position determination in modern surveying and navigation Wroclaw, June 2-3, 2011 Harald Schuh VLBI, Wroclaw,

More information

New satellite mission for improving the Terrestrial Reference Frame: means and impacts

New satellite mission for improving the Terrestrial Reference Frame: means and impacts Fourth Swarm science meeting and geodetic missions workshop ESA, 20-24 March 2017, Banff, Alberta, Canada New satellite mission for improving the Terrestrial Reference Frame: means and impacts Richard

More information

Effect of post-seismic deformation on earth orientation parameter estimates from VLBI observations: a case study at Gilcreek, Alaska

Effect of post-seismic deformation on earth orientation parameter estimates from VLBI observations: a case study at Gilcreek, Alaska J Geod (2005) DOI 10.1007/s00190-005-0459-9 ORIGINAL ARTICLE O. Titov P. Tregoning Effect of post-seismic deformation on earth orientation parameter estimates from VLBI observations: a case study at Gilcreek,

More information

European Sessions and Datum Definitions

European Sessions and Datum Definitions , IVS 2012 General Meeting Proceedings, p.271 275 http://ivscc.gsfc.nasa.gov/publications/gm2012/tornatore.pdf Vincenza Tornatore 1, Hana Krásná (neé Spicakova) 2, Damiano Triglione 1 1) Politecnico di

More information

GGOS Bureau for Standards and Conventions

GGOS Bureau for Standards and Conventions GGOS D. Angermann (1), T. Gruber (2), J. Bouman (1), M. Gerstl (1), R. Heinkelmann (1), U. Hugentobler (2), L. Sánchez (1), P. Steigenberger (2) (1) Deutsches Geodätisches Forschungsinstitut (DGFI), München

More information

ATMOSPHERIC AND OCEANIC EXCITATION OF EARTH ROTATION

ATMOSPHERIC AND OCEANIC EXCITATION OF EARTH ROTATION ATMOSPHERIC AND OCEANIC EXCITATION OF EARTH ROTATION S. BÖHM, T. NILSSON, M. SCHINDELEGGER, H. SCHUH Institute of Geodesy and Geophysics, Advanced Geodesy Vienna University of Technology Gußhausstraße

More information

Analysis of the Accuracy of GMF, NMF, and VMF1 Mapping Functions with GPT 50 a Priori Zenith Constraint in Tropospheric Delay Modelling

Analysis of the Accuracy of GMF, NMF, and VMF1 Mapping Functions with GPT 50 a Priori Zenith Constraint in Tropospheric Delay Modelling Analysis of the Accuracy of GMF, NMF, and VMF1 Mapping Functions with GPT 50 a Priori Zenith Constraint in Tropospheric Delay Modelling Brian Makabayi 1 Addisu Hunegnaw 2 1 Assistant Lecturer, Department

More information

A. Barbu, J. Laurent-Varin, F. Perosanz, F. Mercier and J. Marty. AVENUE project. June, 20

A. Barbu, J. Laurent-Varin, F. Perosanz, F. Mercier and J. Marty. AVENUE project. June, 20 Efficient QR Sequential Least Square algorithm for high frequency GNSS Precise Point Positioning A. Barbu, J. Laurent-Varin, F. Perosanz, F. Mercier and J. Marty AVENUE project June, 20 A. Barbu, J. Laurent-Varin,

More information

Journal of Geodynamics

Journal of Geodynamics Journal of Geodynamics 61 (2012) 68 80 Contents lists available at SciVerse ScienceDirect Journal of Geodynamics journal homepage: http://www.elsevier.com/locate/jog Review VLBI: A fascinating technique

More information

Geodetic and astrometric Very Long Baseline Interferometry (VLBI) - the IVS and its future perspectives

Geodetic and astrometric Very Long Baseline Interferometry (VLBI) - the IVS and its future perspectives Geodetic and astrometric Very Long Baseline Interferometry (VLBI) - the IVS and its future perspectives EGU and IVS Training School on VLBI for Geodesy and Astrometry Aalto University, Espoo, Finland 2

More information

Fundamental Station Wettzell - geodetic observatory -

Fundamental Station Wettzell - geodetic observatory - Fundamental Station Wettzell - geodetic observatory - Wolfgang Schlüter Bundesamt für Kartographie und Geodäsie, Fundamental Station Wettzell Germany Radiometer Workshop, Wettzell, 10.10.06 Evolvement

More information

CONT08 - First Results and High-Frequency Earth Rotation

CONT08 - First Results and High-Frequency Earth Rotation . EVGA-Meeting 29 (Bordeaux) CONT8 - First Results and High-Frequency Earth Rotation 1 Thomas Artz Sarah Böckmann Axel Nothnagel Institut of Geodesy and Geoinformation University of Bonn March 24, 29 CONT8

More information

3.6 ITRS Combination Centres

3.6 ITRS Combination Centres 3 Reports of IERS components 3.6.1 Deutsches Geodätisches Forschungsinstitut (DGFI) In 2010, the focus of the ITRS Combination Centre at DGFI was on the finalization of the ITRS realization DTRF2008, internal

More information

Ultra-Rapid UT1 Experiment Using e-vlbi Technique. Shinobu KURIHARA and Kensuke KOKADO

Ultra-Rapid UT1 Experiment Using e-vlbi Technique. Shinobu KURIHARA and Kensuke KOKADO 35 Ultra-Rapid UT1 Experiment Using e-vlbi Technique Shinobu KURIHARA and Kensuke KOKADO Abstract Very Long Baseline Interferometry (VLBI) is a space geodetic technique by which Earth orientation parameters

More information

VLBI: A Fascinating Technique for Geodesy and Astrometry. Vening Meinesz Medal Lecture by Harald Schuh

VLBI: A Fascinating Technique for Geodesy and Astrometry. Vening Meinesz Medal Lecture by Harald Schuh VLBI: A Fascinating Technique for Geodesy and Astrometry Vening Meinesz Medal Lecture by Harald Schuh F. A. Vening Meinesz (1887-1966) conducted several global gravity surveys On the basis of his observational

More information

On the estimation of a celestial reference frame in the presence of source structure

On the estimation of a celestial reference frame in the presence of source structure doi:10.1093/mnras/stv2080 On the estimation of a celestial reference frame in the presence of source structure L. Plank, 1 S. S. Shabala, 1 J. N. McCallum, 1 H. Krásná, 2 B. Petrachenko, 3 E. Rastorgueva-Foi

More information

Connecting terrestrial to celestial reference frames

Connecting terrestrial to celestial reference frames Russian Academy of Sciences Central Astronomical Observatory at Pulkovo IAU XXVIII General Assembly, Joint Discussion 7, Beijing, China, August 28, 2012 Connecting terrestrial to celestial reference frames

More information

Using non-tidal atmospheric loading model in space geodetic data processing: Preliminary results of the IERS analysis campaign

Using non-tidal atmospheric loading model in space geodetic data processing: Preliminary results of the IERS analysis campaign Using non-tidal atmospheric loading model in space geodetic data processing: Preliminary results of the IERS analysis campaign Xavier Collilieux (1), Zuheir Altamimi (1), Laurent Métivier (1), Tonie van

More information

Consistent realization of Celestial and Terrestrial Reference Frames

Consistent realization of Celestial and Terrestrial Reference Frames Journal of Geodesy manuscript - accepted version (minor errata corrected) The official publication is available at Springer via https://doi.org/10.1007/s00190-018-1130-6 Consistent realization of Celestial

More information

Using quasar physics to. improve the VLBI reference frame

Using quasar physics to. improve the VLBI reference frame Using quasar physics to improve the VLBI reference frame Stas Shabala University of Tasmania with: Lucia Plank, Jamie McCallum, Rob Schaap (UTAS) Johannes Böhm, Hana Krásná (TU Wien) Jing Sun (Shanghai

More information

Proceedings of the 22nd European VLBI Group for Geodesy and Astrometry Working Meeting May 2015 Ponta Delgada, Azores

Proceedings of the 22nd European VLBI Group for Geodesy and Astrometry Working Meeting May 2015 Ponta Delgada, Azores Proceedings of the 22nd European VLBI Group for Geodesy and Astrometry Working Meeting 18-21 May 2015 Ponta Delgada, Azores edited by R. Haas and F. Colomer ISBN: 978-989-20-6191-7 Proceedings of the 22nd

More information

The celestial reference system and its role in the epoch of global geodetic technologies

The celestial reference system and its role in the epoch of global geodetic technologies Reports on Geodesy, vol. 92, no. 1, 2012 The celestial reference system and its role in the epoch of global geodetic technologies Jerzy B. Rogowski 1, Aleksander Brzeziński 1,2 1 Warsaw University of Technology,

More information

VLBI: A Fascinating Technique for Geodesy and Astrometry

VLBI: A Fascinating Technique for Geodesy and Astrometry VLBI: A Fascinating Technique for Geodesy and Astrometry H. Schuh a, D. Behrend b a Institute of Geodesy and Geophysics, University of Technology, Vienna, Austria b NVI, Inc./NASA Goddard Space Flight

More information

The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry. DRAFT: July 14, 2009

The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry. DRAFT: July 14, 2009 The Second Realization of the International Celestial Reference Frame by Very Long Baseline Interferometry Presented on behalf of the IERS / IVS Working Group Chair: C. Ma (CM) and Members: F. Arias (FA),

More information

Lecture 2 Measurement Systems. GEOS 655 Tectonic Geodesy

Lecture 2 Measurement Systems. GEOS 655 Tectonic Geodesy Lecture 2 Measurement Systems GEOS 655 Tectonic Geodesy VLBI and SLR VLBI Very Long Baseline Interferometry SLR Satellite Laser Ranging Very Long Baseline Interferometry VLBI Geometric Delay δg S Baseline

More information

On the accuracy assessment of celestial reference frame realizations

On the accuracy assessment of celestial reference frame realizations J Geod (2008) 82:325 329 DOI 10.1007/s00190-007-0181-x ORIGINAL ARTICLE On the accuracy assessment of celestial reference frame realizations Z. Malkin Received: 4 March 2007 / Accepted: 19 July 2007 /

More information

Report about the scientific and teaching activities within Galactic VLBI Hana Krásná

Report about the scientific and teaching activities within Galactic VLBI Hana Krásná International Workshop, Advanced Geodesy, May 22-24, 2017, Hohe Wand, Austria Report about the scientific and teaching activities within Galactic VLBI 2015-2017 Hana Krásná Outline FWF Hertha-Firnberg-Projekt

More information

Towards a Rigorous Combination of Space Geodetic Techniques

Towards a Rigorous Combination of Space Geodetic Techniques Towards a Rigorous Combination of Space Geodetic Techniques Markus Rothacher Forschungseinrichtung Satellitengeodäsie, TU Munich, Germany Abstract: The with all its different components and products, ranging

More information

Very long baseline interferometry: accuracy limits and relativistic tests

Very long baseline interferometry: accuracy limits and relativistic tests Relativity in Fundamental Astronomy Proceedings IAU Symposium No. 261, 2009 S. A. Klioner, P. K. Seidelman & M. H. Soffel, eds. c International Astronomical Union 2010 doi:10.1017/s1743921309990524 Very

More information

Analysis of the Accuracy of Prediction of the Celestial Pole Motion

Analysis of the Accuracy of Prediction of the Celestial Pole Motion ISSN 163-7729, Astronomy Reports, 21, Vol. 54, No. 11, pp. 153 161. c Pleiades Publishing, Ltd., 21. Original Russian Text c Z.M. Malkin, 21, published in Astronomicheskiĭ Zhurnal, 21, Vol. 87, No. 11,

More information

Radio Interferometry and VLBI. Aletha de Witt AVN Training 2016

Radio Interferometry and VLBI. Aletha de Witt AVN Training 2016 Radio Interferometry and VLBI Aletha de Witt AVN Training 2016 Radio Interferometry Single element radio telescopes have limited spatial resolution θ = 1.22 λ/d ~ λ/d Resolution of the GBT 100m telescope

More information

3.3 Analysis Coordinator

3.3 Analysis Coordinator 1. Introduction 2. Analysis of ITRF2014 post-seismic parameterization In this report we outline the activities of the Analysis Coordinator during 2015. The main activities were analysis of the ITRF2014

More information

Current status of the ITRS realization

Current status of the ITRS realization Current status of the ITRS realization Input data Principles for datum definition Combination strategies (3 CCs) Some notes on ITRF2005 Next ITRF solution (?) Zuheir Altamimi ITRS PC ITRF Input Data Up

More information

ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS

ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS 1 ASTRONOMICAL REFERENCE SYSTEMS AND FRAMES, ASTROMETRIC TECHNIQUES AND CATALOGS Jan Vondrák, Astronomical Institute Prague P PART 1: Reference systems and frames used in astronomy:! Historical outline,

More information

The International Terrestrial Reference Frame. What is a Terrestrial Reference Frame?

The International Terrestrial Reference Frame. What is a Terrestrial Reference Frame? The International Terrestrial Reference Frame As early as the 15th century, Swedes noticed that rocks in their harbors were slowly rising out of the sea [Ekman, 1991]. These local observations were not

More information

NGA GNSS Division Precise Ephemeris Parameters

NGA GNSS Division Precise Ephemeris Parameters NGA GNSS Division Precise Ephemeris Parameters Precise Ephemeris Units. Earth-centered, Earth-fixed Coordinate system Position Velocity GPS time Trajectory interval Standard Trajectory Optional Trajectory

More information

ESTIMATION OF NUTATION TERMS USING GPS

ESTIMATION OF NUTATION TERMS USING GPS ESTIMATION OF NUTATION TERMS USING GPS Markus Rothacher, Gerhard Beutler Astronomical Institute, University of Berne CH-3012 Berne, Switzerland ABSTRACT Satellite space-geodetic measurements have been

More information

Earthquake distribution is not random: very narrow deforming zones (= plate boundaries) versus large areas with no earthquakes (= rigid plate

Earthquake distribution is not random: very narrow deforming zones (= plate boundaries) versus large areas with no earthquakes (= rigid plate Earthquake distribution is not random: very narrow deforming zones (= plate boundaries) versus large areas with no earthquakes (= rigid plate interiors) Tectonic plates and their boundaries today -- continents

More information

The International Terrestrial Reference System and ETRS89: Part II : ITRS & ETRS89 relationship

The International Terrestrial Reference System and ETRS89: Part II : ITRS & ETRS89 relationship The International Terrestrial Reference System and ETRS89: Part II : ITRS & ETRS89 relationship Zuheir ALTAMIMI Laboratoire de Recherche en Géodésie Institut national de l information géographique et forestière

More information

Phobos flyby observed with EVN and global VLBI Giuseppe Cimò

Phobos flyby observed with EVN and global VLBI Giuseppe Cimò Phobos flyby observed with EVN and global VLBI Giuseppe Cimò D. Duev, S. V. Pogrebenko, G. Molera Calvés, T. M. Bocanegra Bahamón, L. I. Gurvits for the PRIDE collaboration Why VLBI observations of Spacecraft?

More information

Surface Mass Loads from GRACE, GPS, and Earth Rotation

Surface Mass Loads from GRACE, GPS, and Earth Rotation Surface Mass Loads from GRACE,, and Earth Rotation R. Gross *, G. Blewitt, H.-P. Plag, P. Clarke, D. Lavallée, T. van Dam *Jet Propulsion Laboratory, California Institute of Technology, Pasadena, USA Nevada

More information

ESTIMATING THE RESIDUAL TROPOSPHERIC DELAY FOR AIRBORNE DIFFERENTIAL GPS POSITIONING (A SUMMARY)

ESTIMATING THE RESIDUAL TROPOSPHERIC DELAY FOR AIRBORNE DIFFERENTIAL GPS POSITIONING (A SUMMARY) ESTIMATING THE RESIDUAL TROPOSPHERIC DELAY FOR AIRBORNE DIFFERENTIAL GPS POSITIONING (A SUMMARY) J. Paul Collins and Richard B. Langley Geodetic Research Laboratory Department of Geodesy and Geomatics

More information

Time Systems. Ludwig Combrinck. Hartebeesthoek Radio Astronomy Observatory. AVN training 9 March 2017

Time Systems. Ludwig Combrinck. Hartebeesthoek Radio Astronomy Observatory. AVN training 9 March 2017 Time Systems Ludwig Combrinck Hartebeesthoek Radio Astronomy Observatory ludwig@hartrao.ac.za AVN training 9 March 2017 What is time? AVN Training March 2017 2 The Critique of Pure Reason, by Immanuel

More information

Assessment of the orbits from the 1st IGS reprocessing campaign

Assessment of the orbits from the 1st IGS reprocessing campaign Assessment of the orbits from the 1st IGS reprocessing campaign results from combined reprocessed IGS GPS orbits and EOPs assessment of IG1 orbit repeatability items to consider for next reprocessing Jake

More information

IGS Reprocessing. and First Quality Assessment

IGS Reprocessing. and First Quality Assessment IGS Reprocessing Summary of Orbit/Clock Combination and First Quality Assessment Gerd Gendt, GeoForschungsZentrum Potsdam Jake Griffiths, NOAA/National Geodetic Survey Thomas Nischan, GeoForschungsZentrum

More information

RELATIVISTIC ASPECTS IN ASTRONOMICAL STANDARDS AND THE IERS CONVENTIONS

RELATIVISTIC ASPECTS IN ASTRONOMICAL STANDARDS AND THE IERS CONVENTIONS RELATIVISTIC ASPECTS IN ASTRONOMICAL STANDARDS AND THE IERS CONVENTIONS G. PETIT Bureau International des Poids et Mesures 92312 Sèvres France e-mail: gpetit@bipm.org ABSTRACT. In the last years, the definition

More information

Week 02. Assist. Prof. Dr. Himmet KARAMAN

Week 02. Assist. Prof. Dr. Himmet KARAMAN Week 02 Assist. Prof. Dr. Himmet KARAMAN Contents Satellite Orbits Ephemerides GPS Review Accuracy & Usage Limitation Reference Systems GPS Services GPS Segments Satellite Positioning 2 Satellite Orbits

More information

Co-location of VLBI with other techniques in space: a simulation study

Co-location of VLBI with other techniques in space: a simulation study Co-location of VLBI with other techniques in space: a simulation study B. Männel, M. Rothacher ETH Zürich, Geodesy and Geodynamics Lab 7 th IGS General Meeting, Madrid 212 1 Reference frame and local ties

More information

GGOS The Global Geodetic Observing System of the International Association of Geodesy

GGOS The Global Geodetic Observing System of the International Association of Geodesy GGOS The Global Geodetic Observing System of the International Association of Geodesy Presented at the FIG Working Week 2017, May 29 - June 2, 2017 in Helsinki, Finland Hansjörg Kutterer BKG, Germany Content

More information

Summary of the 2012 Global Geophysical Fluid Center Workshop

Summary of the 2012 Global Geophysical Fluid Center Workshop Summary of the 2012 Global Geophysical Fluid Center Workshop T. van Dam (Uni. Lux), J. Ray (NGS/NOAA), X. Collilieux (IGN) Introduction Review the history of the GGFC Discuss the 2012 Workshop Review recommendations

More information

Reference system and non-rotating origin: the NRO for the rest of us Olivier de Viron, Véronique Dehant, and Nicole Capitaine

Reference system and non-rotating origin: the NRO for the rest of us Olivier de Viron, Véronique Dehant, and Nicole Capitaine Reference system and non-rotating origin: the NRO for the rest of us Olivier de Viron, Véronique Dehant, and Nicole Capitaine Abstract The concept of Non Rotating Origin has been introduced in the method

More information

Beate Klinger, Torsten Mayer-Gürr, Saniya Behzadpour, Matthias Ellmer, Andreas Kvas and Norbert Zehentner

Beate Klinger, Torsten Mayer-Gürr, Saniya Behzadpour, Matthias Ellmer, Andreas Kvas and Norbert Zehentner , Torsten Mayer-Gürr, Saniya Behzadpour, Matthias Ellmer, Andreas Kvas and Norbert Zehentner Institute of Geodesy NAWI Graz, Graz University of Technology Outline ITSG-Grace2016 Processing details Unconstrained

More information

Time Systems. Roelf Botha. Hartebeesthoek Radio Astronomy Observatory Site, SARAO. AVN training 8 March 2018

Time Systems. Roelf Botha. Hartebeesthoek Radio Astronomy Observatory Site, SARAO. AVN training 8 March 2018 Time Systems Roelf Botha (adapted from Ludwig Combrinck) Hartebeesthoek Radio Astronomy Observatory Site, SARAO roelf@hartrao.ac.za AVN training 8 March 2018 What is time? The Critique of Pure Reason,

More information

Determination of Current Velocity Field (Rate) of North Anatolian Fault in Izmit-Sapanca Segment

Determination of Current Velocity Field (Rate) of North Anatolian Fault in Izmit-Sapanca Segment Determination of Current Velocity Field (Rate) of North Anatolian Fault in Izmit-Sapanca Segment Cetin MEKIK, Bulent TURGUT, Haluk OZENER, Turkish Republic INTRODUCTION Turkey is geologically the part

More information

E. Calais Purdue University - EAS Department Civil 3273

E. Calais Purdue University - EAS Department Civil 3273 E. Calais urdue University - EAS Department Civil 3273 ecalais@purdue.edu Need for a Reference Frame 1. ositions and velocities from geodetic measurements: Are not direct observations, but estimated quantities

More information

The Global Geodetic Observing System (GGOS) of the International Association of Geodesy, IAG

The Global Geodetic Observing System (GGOS) of the International Association of Geodesy, IAG The Global Geodetic Observing System (GGOS) of the International Association of Geodesy, IAG Hans-Peter Plag (1), Markus Rothacher (2), Richard Gross (3), Srinivas Bettadpur (4) (1) Nevada Bureau of Mines

More information

History of VLBI the IVS, and the next generation of VLBI. H. Schuh, L. Plank

History of VLBI the IVS, and the next generation of VLBI. H. Schuh, L. Plank History of VLBI the IVS, and the next generation of VLBI H. Schuh, L. Plank Evolution of VLBI 60ies: First realization in Canada (Broten et al.,1967) and in the U.S.A. (Bare et al., 1967, Shapiro, 1968)

More information

TIME SERIES ANALYSIS OF VLBI ASTROMETRIC SOURCE POSITIONS AT 24-GHZ

TIME SERIES ANALYSIS OF VLBI ASTROMETRIC SOURCE POSITIONS AT 24-GHZ TIME SERIES ANALYSIS OF VLBI ASTROMETRIC SOURCE POSITIONS AT 24-GHZ D.A. BOBOLTZ 1, A.L. FEY 1 & The K-Q VLBI Survey Collaboration 1 U.S. Naval Observatory 3450 Massachusetts Ave., NW, Washington, DC,

More information

Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays

Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith total delays Click Here for Full Article GEOPHYSICAL RESEARCH LETTERS, VOL. 33, L23303, doi:10.1029/2006gl027706, 2006 Impact of a priori zenith hydrostatic delay errors on GPS estimates of station heights and zenith

More information

PRECISE ORBIT DETERMINATION OF GPS SATELLITES FOR REAL TIME APPLICATIONS

PRECISE ORBIT DETERMINATION OF GPS SATELLITES FOR REAL TIME APPLICATIONS J. Astron. Space Sci. 18(2), 129 136 (2001) GPS,,,, PRECISE ORBIT DETERMINATION OF GPS SATELLITES FOR REAL TIME APPLICATIONS Hyung-Chul Lim, Pil-Ho Park, Jong-Uk Park, Jung-Ho Cho, Yong-Won Ahn GPS Research

More information

IGS POLAR MOTION MEASUREMENTS

IGS POLAR MOTION MEASUREMENTS STATUS & PROSPECTS FOR IGS POLAR MOTION MEASUREMENTS Why does the IGS care about EOPs? observations, predictions, & IGS product table Recent pole & pole rate accuracies & error sources Rapid & Final products

More information

GRACE processing at TU Graz

GRACE processing at TU Graz S C I E N C E P A S S I O N T E C H N O L O G Y GRACE processing at TU Graz Torsten Mayer-Gürr, Saniya Behzadpour, Andreas Kvas, Matthias Ellmer, Beate Klinger, Norbert Zehentner, and Sebastian Strasser

More information

Celestial Reference Systems:

Celestial Reference Systems: Celestial Reference Systems: Stability and Alignment G. Bourda Laboratoire d Astrophysique de Bordeaux (LAB) Observatoire Aquitain des Sciences de l Univers (OASU) Université Bordeaux 1 Floirac FRANCE

More information

Warkworth geodetic station as a potential GGOS core site in New Zealand

Warkworth geodetic station as a potential GGOS core site in New Zealand "Launching the Next-Generation IVS Network Session 2: Correlators, Stations and Operations Centers. 7th IVS General Meeting March 5, 2012 Madrid, Spain Warkworth geodetic station as a potential GGOS core

More information