End-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for Human Pose Estimation

Size: px
Start display at page:

Download "End-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for Human Pose Estimation"

Transcription

1 End-to-End Learning of Deformable Mixture of Parts and Deep Convolutional Neural Networks for Human Pose Estimation Wei Yang, Wanli Ouyang, Hongsheng Li, and Xiaogang Wang Department of Electronic Engineering, The Chinese University of Hong Kong

2 Outline Introduction Methodology Experiments 2

3 What is Human Pose Estimation? 3 Results are generated by the proposed methods (without temporal constraints). Video Credit: Peter Jasko solo - M-idzomer 2013

4 Human Pose Estimation is to recover the joint positions of articulated limbs of human body given an image or a video. 4 Results are generated by the proposed methods (without temporal constraints). Video Credit: Peter Jasko solo - M-idzomer 2013

5 Applications Activity Recognition Game and Animation Clothing Parsing [Yamaguchi et al. CVPR 14] 5

6 Challenges Articulation Forshortening Clothing Dantone et al. CVPR

7 Structure Modeling Unary template Springs Figure Drawing Cylinders for each body parts Join up the cylinders Pictorial Structures Unary templates Pairwise springs Unable to handle large variations Image credit: artintegrity.wordpress.com Fischler & Elschlager 1973 Felzenszwalb & Huttenlocher

8 Structure Modeling Figure Drawing Cylinders for each body parts Join up the cylinders Pictorial Structures Unary templates Pairwise springs Unable to handle large variations Mixtures of each part Unary template for each mixture type Clustering on ( x, y) Graph Structures Trees Latent trees Loopy graphs Fully connected graphs Image credit: artintegrity.wordpress.com Fischler & Elschlager 1973 Felzenszwalb & Huttenlocher 2005 Yang & Ramanan

9 Deep Learning Based Methods Heat map prediction Benefits from better neural network architectures VGG GoogLeNet, ResNet Fully Convolutional Networks Structures are only used for post processing 9

10 Gap Between Deep Models and Structure Modeling Gap 10

11 Gap Between Deep Models and Structure Modeling End-to-End Learning 11

12 Motivation: Geometric Constraints Among Body Parts Helps in Learning Better Representation Forward Forward CNN Backward Backward Local appearance is ambiguous Global consistency helps training 12

13 Outline Introduction Methodology Experiments 13

14 Graph Models G = (V, E) Vertices Locations and mixture types of body parts Modeled by a front-end CNN Edges Pairwise spatial relationships between body parts Modeled by message passing layers 14

15 Soft Logarithm Message Passing Layers Framework head neck l.shou CNN r.shou r.knee r.ankle 15

16 Soft Logarithm Message Passing Layers Framework head neck l.shou CNN r.shou F l, t I; θ, ω = φ(l i, t i I; θ) r.knee i V t i,t j ψ l i, l j, t i, t j I; ω i,j r.ankle i,j E 16

17 Soft Logarithm Message Passing Layers Framework l = l i = {(x i, y i )}: location of part i head neck l.shou CNN r.shou F l, t I; θ, ω = φ(l i, t i I; θ) r.knee i V t i,t j ψ l i, l j, t i, t j I; ω i,j r.ankle i,j E 17

18 Soft Logarithm Message Passing Layers Framework l = l i = {(x i, y i )}: location of part i head neck l.shou CNN r.shou F l, t I; θ, ω = φ(l i, t i I; θ) r.knee i V t i,t j ψ l i, l j, t i, t j I; ω i,j r.ankle i,j E t = t i : mixture type of part i 18

19 Soft Logarithm Front-End CNN Part Appearance Terms head neck l.shou CNN r.shou F l, t I; θ, ω = φ(l i, t i I; θ) r.knee i V t i,t j ψ l i, l j, t i, t j I; ω i,j r.ankle i,j E 19

20 Soft Logarithm Message Passing Layers Spatial Relationship Terms head neck l.shou CNN r.shou F l, t I; θ, ω = φ(l i, t i I; θ) r.knee i V t i,t j ψ l i, l j, t i, t j I; ω i,j r.ankle i,j E 20

21 PxK 1x1 Dropout 1x1 Dropout Front end CNN CNN norm pool norm pool 1x1 drop out Local confidence of the appearance of part i with mixture type t i : φ(l i, t i I; θ) = log p l i, t i I; θ = log σ(f l i, t i I; θ ) 21

22 PxK 1x1 Dropout 1x1 Dropout Front end CNN CNN norm pool norm pool 1x1 drop out Local confidence of the appearance of part i with mixture type t i : φ(l i, t i I; θ) = log p l i, t i I; θ = log σ(f l i, t i I; θ ) output of the front-end CNN 22

23 PxK 1x1 Dropout 1x1 Dropout Front end CNN CNN norm pool norm pool 1x1 drop out Local confidence of the appearance of part i with mixture type t i : φ(l i, t i I; θ) = log p l i, t i I; θ = log σ(f l i, t i I; θ ) 23

24 PxK 1x1 Dropout 1x1 Dropout Front end CNN CNN norm pool norm pool 1x1 drop out Local confidence of the appearance of part i with mixture type t i : φ(l i, t i I; θ) = log p l i, t i I; θ = log σ(f l i, t i I; θ ) Soft function 24

25 PxK 1x1 Dropout 1x1 Dropout Front end CNN CNN norm pool norm pool 1x1 drop out Local confidence of the appearance of part i with mixture type t i : φ(l i, t i I; θ) = log p l i, t i I; θ = log σ(f l i, t i I; θ ) Logarithm 25

26 Soft Logarithm Message Passing Layers Spatial Relationship Terms head neck l.shou CNN r.shou F l, t I; θ, ω = φ(l i, t i I; θ) r.knee i V t i,t j ψ l i, l j, t i, t j I; ω i,j r.ankle i,j E 26

27 Spatial Relationship Terms Quadratic deformation constraints t ψ l i, l j, t i, t j I; ω i,t j i,j t = ω i,t j i,j, d(l i, l j ) d l i, l j = x, x 2, y, y 2 x = x i x j, y = y i y j Yang Y, Ramanan D. Articulated pose estimation with flexible mixtures-of-parts. CVPR,

28 Message Passing: Max-Sum Algorithm 1 2 m 21 m ij l j, t j The α m message u i lpassed i, t i from ψ l i, lpart j, t i, it j to j l i,t i 28

29 Message Passing: Max-Sum Algorithm 1 2 m 21 m ij l j, t j The α m message u i lpassed i, t i from ψ l i, lpart j, t i, it j to j l i,t i u i l i, t i α u φ lthe i, t i belief of part m ki i(l i, t i ) k N(i) 29

30 Message Passing: Max-Sum Algorithm m ij l j, t j α m l i,t i u i l i, t i ψ l i, l j, t i, t j u i l i, t i α u φ l i, t i k N(i) m ki (l i, t i ) l i, t i = arg u i l i, t i l i,t i 30

31 Diagnosis on Message Passing Layers 1 st 31

32 Diagnosis on Message Passing Layers 2 nd 32

33 Diagnosis on Message Passing Layers 3 rd 33

34 Outline Introduction Methodology Experiments 34

35 Datasets LSP FLIC Sports 1000 training 1000 testing Films 3987 training 1016 testing 35

36 Qualitative Results on the LSP Dataset 36

37 37

38 PCP on the LSP dataset [Percentage of Correct Parts] 38

39 STRICT PCP ON THE LSP DATASET Yang&Ramanan, CVPR'11 Eichner&Ferrari, ACCV'13 Pose Machines, ECCV'14 Pishchulin et al., ICCV'13 Chen&Yuille, NIPS'14 Pishchulin et al., CVPR'13 Kiefel&Gehler, ECCV'14 Ouyang et al., CVPR'14 DeepPose, CVPR'14 Ours TORSO HEAD UPPER ARMS LOWER ARMS UPPER LEGS LOWER LEGS MEAN 39

40 Percentage of Detected Joints (PDJ) Our method LSP FLIC 40

41 Datasets LSP FLIC Image Parse Sports 1000 training 1000 testing Films 3987 training 1016 testing Activities 100 training 205 testing Cross-dataset validation 41

42 Generalization Image Parse Dataset Ours Ouyang et al., CVPR'14 Yang&Ramanan, TPAMI'13 Pishchulin et al., ICCV'13 Pishchulin et al., CVPR'13 Pishchulin et al., CVPR'12 Johnson&Everingham, CVPR'11 Yang&Ramanan, CVPR'11 MEAN L OWER LEGS UPPER LEGS L OWER ARMS UPPER ARMS H EAD TORSO

43 Component Analysis 43

44 Unary Term vs. Full Model STRICT PCP ON THE LSP DATASET (VGG-LG) Unary term only Full model (seperately trained) Full model (jointly trained) TORSO HEAD UPPER ARMS LOWER ARMS UPPER LEGS LOWER LEGS MEAN 44

45 Tree-Structured Model vs. Loopy Model Loopy Model Tree Model Mean Lower Legs Upper Legs Lower Arms Upper Arms Head Torso

46 Human Pose Estimation in This CVPR Chu et al. Structured Feature Learning for Pose Estimation. Carreira et al. Human Pose Estimation With Iterative Error Feedback. Wei et al. Convolutional Pose Machines. 46

47 Summary CNN Structure End-to-End Learning Bridge the gap between structure modeling and deep learning A new message passing layer, which is flexible to treestructured/loopy relational graphs.

48 CNN Structure Thank you. Welcome to our poster session #5 Scan for more details

Pictorial Structures Revisited: People Detection and Articulated Pose Estimation. Department of Computer Science TU Darmstadt

Pictorial Structures Revisited: People Detection and Articulated Pose Estimation. Department of Computer Science TU Darmstadt Pictorial Structures Revisited: People Detection and Articulated Pose Estimation Mykhaylo Andriluka Stefan Roth Bernt Schiele Department of Computer Science TU Darmstadt Generic model for human detection

More information

Juergen Gall. Analyzing Human Behavior in Video Sequences

Juergen Gall. Analyzing Human Behavior in Video Sequences Juergen Gall Analyzing Human Behavior in Video Sequences 09. 10. 2 01 7 Juer gen Gall Instit u t e of Com puter Science III Com puter Vision Gr oup 2 Analyzing Human Behavior Analyzing Human Behavior Human

More information

Introduction To Graphical Models

Introduction To Graphical Models Peter Gehler Introduction to Graphical Models Introduction To Graphical Models Peter V. Gehler Max Planck Institute for Intelligent Systems, Tübingen, Germany ENS/INRIA Summer School, Paris, July 2013

More information

Fast Memory-Efficient Generalized Belief Propagation

Fast Memory-Efficient Generalized Belief Propagation Fast Memory-Efficient Generalized Belief Propagation M. Pawan Kumar P.H.S. Torr Department of Computing Oxford Brookes University Oxford, UK, OX33 1HX {pkmudigonda,philiptorr}@brookes.ac.uk http://cms.brookes.ac.uk/computervision

More information

Normalization Techniques in Training of Deep Neural Networks

Normalization Techniques in Training of Deep Neural Networks Normalization Techniques in Training of Deep Neural Networks Lei Huang ( 黄雷 ) State Key Laboratory of Software Development Environment, Beihang University Mail:huanglei@nlsde.buaa.edu.cn August 17 th,

More information

Learning with Structured Inputs and Outputs

Learning with Structured Inputs and Outputs Learning with Structured Inputs and Outputs Christoph H. Lampert IST Austria (Institute of Science and Technology Austria), Vienna Microsoft Machine Learning and Intelligence School 2015 July 29-August

More information

Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net

Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net Two at Once: Enhancing Learning and Generalization Capacities via IBN-Net Supplementary Material Xingang Pan 1, Ping Luo 1, Jianping Shi 2, and Xiaoou Tang 1 1 CUHK-SenseTime Joint Lab, The Chinese University

More information

Fine-grained Classification

Fine-grained Classification Fine-grained Classification Marcel Simon Department of Mathematics and Computer Science, Germany marcel.simon@uni-jena.de http://www.inf-cv.uni-jena.de/ Seminar Talk 23.06.2015 Outline 1 Motivation 2 3

More information

Higher-order Statistical Modeling based Deep CNNs (Introduction) Peihua Li Dalian University of Technology

Higher-order Statistical Modeling based Deep CNNs (Introduction) Peihua Li Dalian University of Technology Higher-order Statistical Modeling based Deep CNNs (Introduction) Peihua Li Dalian University of Technology http://peihuali.org Outline What is Higher-order? Why We Study High-order Overview of Speaker

More information

Object Detection Grammars

Object Detection Grammars Object Detection Grammars Pedro F. Felzenszwalb and David McAllester February 11, 2010 1 Introduction We formulate a general grammar model motivated by the problem of object detection in computer vision.

More information

Bayesian Networks (Part I)

Bayesian Networks (Part I) 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Bayesian Networks (Part I) Graphical Model Readings: Murphy 10 10.2.1 Bishop 8.1,

More information

Convolutional Neural Network Architecture

Convolutional Neural Network Architecture Convolutional Neural Network Architecture Zhisheng Zhong Feburary 2nd, 2018 Zhisheng Zhong Convolutional Neural Network Architecture Feburary 2nd, 2018 1 / 55 Outline 1 Introduction of Convolution Motivation

More information

INTRODUCTION HIERARCHY OF CLASSIFIERS

INTRODUCTION HIERARCHY OF CLASSIFIERS INTRODUCTION DETECTION AND FOLDED HIERARCHIES FOR EFFICIENT DONALD GEMAN JOINT WORK WITH FRANCOIS FLEURET 2 / 35 INTRODUCTION DETECTION (CONT.) HIERARCHY OF CLASSIFIERS...... Advantages - Highly efficient

More information

Structured Determinantal Point Processes

Structured Determinantal Point Processes Structured Determinantal Point Processes Alex Kulesza Ben Taskar Department of Computer and Information Science University of Pennsylvania Philadelphia, PA 194 {kulesza,taskar}@cis.upenn.edu Abstract We

More information

Asaf Bar Zvi Adi Hayat. Semantic Segmentation

Asaf Bar Zvi Adi Hayat. Semantic Segmentation Asaf Bar Zvi Adi Hayat Semantic Segmentation Today s Topics Fully Convolutional Networks (FCN) (CVPR 2015) Conditional Random Fields as Recurrent Neural Networks (ICCV 2015) Gaussian Conditional random

More information

Discriminative part-based models. Many slides based on P. Felzenszwalb

Discriminative part-based models. Many slides based on P. Felzenszwalb More sliding window detection: ti Discriminative part-based models Many slides based on P. Felzenszwalb Challenge: Generic object detection Pedestrian detection Features: Histograms of oriented gradients

More information

Social Saliency Prediction. Hyun Soo Park and Jianbo Shi

Social Saliency Prediction. Hyun Soo Park and Jianbo Shi Social Saliency Prediction Hyun Soo Park and Jianbo Shi Nonverbal social signals 67% Hogan and Stubbs, Can t Get Through 8 Barriers to Communication, 2003. Vinciarelli et al., Social Signal Processing:

More information

RAGAV VENKATESAN VIJETHA GATUPALLI BAOXIN LI NEURAL DATASET GENERALITY

RAGAV VENKATESAN VIJETHA GATUPALLI BAOXIN LI NEURAL DATASET GENERALITY RAGAV VENKATESAN VIJETHA GATUPALLI BAOXIN LI NEURAL DATASET GENERALITY SIFT HOG ALL ABOUT THE FEATURES DAISY GABOR AlexNet GoogleNet CONVOLUTIONAL NEURAL NETWORKS VGG-19 ResNet FEATURES COMES FROM DATA

More information

Lecture 15. Probabilistic Models on Graph

Lecture 15. Probabilistic Models on Graph Lecture 15. Probabilistic Models on Graph Prof. Alan Yuille Spring 2014 1 Introduction We discuss how to define probabilistic models that use richly structured probability distributions and describe how

More information

HeadNet: Pedestrian Head Detection Utilizing Body in Context

HeadNet: Pedestrian Head Detection Utilizing Body in Context HeadNet: Pedestrian Head Detection Utilizing Body in Context Gang Chen 1,2, Xufen Cai 1, Hu Han,1, Shiguang Shan 1,2,3 and Xilin Chen 1,2 1 Key Laboratory of Intelligent Information Processing of Chinese

More information

Improved Bayesian Compression

Improved Bayesian Compression Improved Bayesian Compression Marco Federici University of Amsterdam marco.federici@student.uva.nl Karen Ullrich University of Amsterdam karen.ullrich@uva.nl Max Welling University of Amsterdam Canadian

More information

Adversarial Image Perturbation for Privacy Protection A Game Theory Perspective Supplementary Materials

Adversarial Image Perturbation for Privacy Protection A Game Theory Perspective Supplementary Materials Adversarial Image Perturbation for Privacy Protection A Game Theory Perspective Supplementary Materials 1. Contents The supplementary materials contain auxiliary experiments for the empirical analyses

More information

Multimodal context analysis and prediction

Multimodal context analysis and prediction Multimodal context analysis and prediction Valeria Tomaselli (valeria.tomaselli@st.com) Sebastiano Battiato Giovanni Maria Farinella Tiziana Rotondo (PhD student) Outline 2 Context analysis vs prediction

More information

Hidden Markov Models

Hidden Markov Models 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Hidden Markov Models Matt Gormley Lecture 22 April 2, 2018 1 Reminders Homework

More information

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4

ECE521 Tutorial 11. Topic Review. ECE521 Winter Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides. ECE521 Tutorial 11 / 4 ECE52 Tutorial Topic Review ECE52 Winter 206 Credits to Alireza Makhzani, Alex Schwing, Rich Zemel and TAs for slides ECE52 Tutorial ECE52 Winter 206 Credits to Alireza / 4 Outline K-means, PCA 2 Bayesian

More information

Visual Object Detection

Visual Object Detection Visual Object Detection Ying Wu Electrical Engineering and Computer Science Northwestern University, Evanston, IL 60208 yingwu@northwestern.edu http://www.eecs.northwestern.edu/~yingwu 1 / 47 Visual Object

More information

Convolutional Neural Networks

Convolutional Neural Networks Convolutional Neural Networks Books» http://www.deeplearningbook.org/ Books http://neuralnetworksanddeeplearning.com/.org/ reviews» http://www.deeplearningbook.org/contents/linear_algebra.html» http://www.deeplearningbook.org/contents/prob.html»

More information

13 : Variational Inference: Loopy Belief Propagation and Mean Field

13 : Variational Inference: Loopy Belief Propagation and Mean Field 10-708: Probabilistic Graphical Models 10-708, Spring 2012 13 : Variational Inference: Loopy Belief Propagation and Mean Field Lecturer: Eric P. Xing Scribes: Peter Schulam and William Wang 1 Introduction

More information

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018

INF 5860 Machine learning for image classification. Lecture 14: Reinforcement learning May 9, 2018 Machine learning for image classification Lecture 14: Reinforcement learning May 9, 2018 Page 3 Outline Motivation Introduction to reinforcement learning (RL) Value function based methods (Q-learning)

More information

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials

Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Efficient Inference in Fully Connected CRFs with Gaussian Edge Potentials Philipp Krähenbühl and Vladlen Koltun Stanford University Presenter: Yuan-Ting Hu 1 Conditional Random Field (CRF) E x I = φ u

More information

Deep Learning: Approximation of Functions by Composition

Deep Learning: Approximation of Functions by Composition Deep Learning: Approximation of Functions by Composition Zuowei Shen Department of Mathematics National University of Singapore Outline 1 A brief introduction of approximation theory 2 Deep learning: approximation

More information

Dynamic Approaches: The Hidden Markov Model

Dynamic Approaches: The Hidden Markov Model Dynamic Approaches: The Hidden Markov Model Davide Bacciu Dipartimento di Informatica Università di Pisa bacciu@di.unipi.it Machine Learning: Neural Networks and Advanced Models (AA2) Inference as Message

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

Graphical Object Models for Detection and Tracking

Graphical Object Models for Detection and Tracking Graphical Object Models for Detection and Tracking (ls@cs.brown.edu) Department of Computer Science Brown University Joined work with: -Ying Zhu, Siemens Corporate Research, Princeton, NJ -DorinComaniciu,

More information

Variational Inference (11/04/13)

Variational Inference (11/04/13) STA561: Probabilistic machine learning Variational Inference (11/04/13) Lecturer: Barbara Engelhardt Scribes: Matt Dickenson, Alireza Samany, Tracy Schifeling 1 Introduction In this lecture we will further

More information

Pattern Recognition and Machine Learning

Pattern Recognition and Machine Learning Christopher M. Bishop Pattern Recognition and Machine Learning ÖSpri inger Contents Preface Mathematical notation Contents vii xi xiii 1 Introduction 1 1.1 Example: Polynomial Curve Fitting 4 1.2 Probability

More information

Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization

Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization Bridging the Gap between Stochastic Gradient MCMC and Stochastic Optimization Changyou Chen, David Carlson, Zhe Gan, Chunyuan Li, Lawrence Carin May 2, 2016 1 Changyou Chen Bridging the Gap between Stochastic

More information

Very Deep Residual Networks with Maxout for Plant Identification in the Wild Milan Šulc, Dmytro Mishkin, Jiří Matas

Very Deep Residual Networks with Maxout for Plant Identification in the Wild Milan Šulc, Dmytro Mishkin, Jiří Matas Very Deep Residual Networks with Maxout for Plant Identification in the Wild Milan Šulc, Dmytro Mishkin, Jiří Matas Center for Machine Perception Department of Cybernetics Faculty of Electrical Engineering

More information

Binary Convolutional Neural Network on RRAM

Binary Convolutional Neural Network on RRAM Binary Convolutional Neural Network on RRAM Tianqi Tang, Lixue Xia, Boxun Li, Yu Wang, Huazhong Yang Dept. of E.E, Tsinghua National Laboratory for Information Science and Technology (TNList) Tsinghua

More information

Machine Learning for Computer Vision 8. Neural Networks and Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group

Machine Learning for Computer Vision 8. Neural Networks and Deep Learning. Vladimir Golkov Technical University of Munich Computer Vision Group Machine Learning for Computer Vision 8. Neural Networks and Deep Learning Vladimir Golkov Technical University of Munich Computer Vision Group INTRODUCTION Nonlinear Coordinate Transformation http://cs.stanford.edu/people/karpathy/convnetjs/

More information

CSC487/2503: Foundations of Computer Vision. Visual Tracking. David Fleet

CSC487/2503: Foundations of Computer Vision. Visual Tracking. David Fleet CSC487/2503: Foundations of Computer Vision Visual Tracking David Fleet Introduction What is tracking? Major players: Dynamics (model of temporal variation of target parameters) Measurements (relation

More information

Discrete Inference and Learning Lecture 3

Discrete Inference and Learning Lecture 3 Discrete Inference and Learning Lecture 3 MVA 2017 2018 h

More information

Tutorial on Methods for Interpreting and Understanding Deep Neural Networks. Part 3: Applications & Discussion

Tutorial on Methods for Interpreting and Understanding Deep Neural Networks. Part 3: Applications & Discussion Tutorial on Methods for Interpreting and Understanding Deep Neural Networks W. Samek, G. Montavon, K.-R. Müller Part 3: Applications & Discussion ICASSP 2017 Tutorial W. Samek, G. Montavon & K.-R. Müller

More information

Probabilistic Graphical Models & Applications

Probabilistic Graphical Models & Applications Probabilistic Graphical Models & Applications Learning of Graphical Models Bjoern Andres and Bernt Schiele Max Planck Institute for Informatics The slides of today s lecture are authored by and shown with

More information

Deep Feedforward Networks

Deep Feedforward Networks Deep Feedforward Networks Liu Yang March 30, 2017 Liu Yang Short title March 30, 2017 1 / 24 Overview 1 Background A general introduction Example 2 Gradient based learning Cost functions Output Units 3

More information

Human Pose Tracking I: Basics. David Fleet University of Toronto

Human Pose Tracking I: Basics. David Fleet University of Toronto Human Pose Tracking I: Basics David Fleet University of Toronto CIFAR Summer School, 2009 Looking at People Challenges: Complex pose / motion People have many degrees of freedom, comprising an articulated

More information

Learning the Number of Neurons in Deep Networks

Learning the Number of Neurons in Deep Networks Learning the Number of Jose M. Alvarez 1 Mathieu Salzmanno 2 1 Data61 @ CSIRO,Canberra, ACT 2601, Australia 2 CVLab, EPFL,CH-1015 Lausanne, Switzerland NIPS,2016 Presenter: Arshdeep Sekhon NIPS,2016 Presenter:

More information

Laconic: Label Consistency for Image Categorization

Laconic: Label Consistency for Image Categorization 1 Laconic: Label Consistency for Image Categorization Samy Bengio, Google with Jeff Dean, Eugene Ie, Dumitru Erhan, Quoc Le, Andrew Rabinovich, Jon Shlens, and Yoram Singer 2 Motivation WHAT IS THE OCCLUDED

More information

Jakub Hajic Artificial Intelligence Seminar I

Jakub Hajic Artificial Intelligence Seminar I Jakub Hajic Artificial Intelligence Seminar I. 11. 11. 2014 Outline Key concepts Deep Belief Networks Convolutional Neural Networks A couple of questions Convolution Perceptron Feedforward Neural Network

More information

Introduction to Machine Learning Midterm Exam

Introduction to Machine Learning Midterm Exam 10-701 Introduction to Machine Learning Midterm Exam Instructors: Eric Xing, Ziv Bar-Joseph 17 November, 2015 There are 11 questions, for a total of 100 points. This exam is open book, open notes, but

More information

Latent Semantic Analysis. Hongning Wang

Latent Semantic Analysis. Hongning Wang Latent Semantic Analysis Hongning Wang CS@UVa VS model in practice Document and query are represented by term vectors Terms are not necessarily orthogonal to each other Synonymy: car v.s. automobile Polysemy:

More information

Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities

Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities Modeling Mutual Context of Object and Human Pose in Human-Object Interaction Activities Bangpeng Yao and Li Fei-Fei Computer Science Department, Stanford University {bangpeng,feifeili}@cs.stanford.edu

More information

<Special Topics in VLSI> Learning for Deep Neural Networks (Back-propagation)

<Special Topics in VLSI> Learning for Deep Neural Networks (Back-propagation) Learning for Deep Neural Networks (Back-propagation) Outline Summary of Previous Standford Lecture Universal Approximation Theorem Inference vs Training Gradient Descent Back-Propagation

More information

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016

Bayesian Networks: Construction, Inference, Learning and Causal Interpretation. Volker Tresp Summer 2016 Bayesian Networks: Construction, Inference, Learning and Causal Interpretation Volker Tresp Summer 2016 1 Introduction So far we were mostly concerned with supervised learning: we predicted one or several

More information

Scalable Subspace Clustering

Scalable Subspace Clustering Scalable Subspace Clustering René Vidal Center for Imaging Science, Laboratory for Computational Sensing and Robotics, Institute for Computational Medicine, Department of Biomedical Engineering, Johns

More information

Deep Residual. Variations

Deep Residual. Variations Deep Residual Network and Its Variations Diyu Yang (Originally prepared by Kaiming He from Microsoft Research) Advantages of Depth Degradation Problem Possible Causes? Vanishing/Exploding Gradients. Overfitting

More information

Convolutional Neural Networks. Srikumar Ramalingam

Convolutional Neural Networks. Srikumar Ramalingam Convolutional Neural Networks Srikumar Ramalingam Reference Many of the slides are prepared using the following resources: neuralnetworksanddeeplearning.com (mainly Chapter 6) http://cs231n.github.io/convolutional-networks/

More information

Shape Outlier Detection Using Pose Preserving Dynamic Shape Models

Shape Outlier Detection Using Pose Preserving Dynamic Shape Models Shape Outlier Detection Using Pose Preserving Dynamic Shape Models Chan-Su Lee and Ahmed Elgammal Rutgers, The State University of New Jersey Department of Computer Science Outline Introduction Shape Outlier

More information

Recurrent Neural Network

Recurrent Neural Network Recurrent Neural Network Xiaogang Wang xgwang@ee..edu.hk March 2, 2017 Xiaogang Wang (linux) Recurrent Neural Network March 2, 2017 1 / 48 Outline 1 Recurrent neural networks Recurrent neural networks

More information

Machine Learning Lecture 5

Machine Learning Lecture 5 Machine Learning Lecture 5 Linear Discriminant Functions 26.10.2017 Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de leibe@vision.rwth-aachen.de Course Outline Fundamentals Bayes Decision Theory

More information

Brief Introduction of Machine Learning Techniques for Content Analysis

Brief Introduction of Machine Learning Techniques for Content Analysis 1 Brief Introduction of Machine Learning Techniques for Content Analysis Wei-Ta Chu 2008/11/20 Outline 2 Overview Gaussian Mixture Model (GMM) Hidden Markov Model (HMM) Support Vector Machine (SVM) Overview

More information

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1

What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 What Do Neural Networks Do? MLP Lecture 3 Multi-layer networks 1 Multi-layer networks Steve Renals Machine Learning Practical MLP Lecture 3 7 October 2015 MLP Lecture 3 Multi-layer networks 2 What Do Single

More information

Spatial Transformer Networks

Spatial Transformer Networks BIL722 - Deep Learning for Computer Vision Spatial Transformer Networks Max Jaderberg Andrew Zisserman Karen Simonyan Koray Kavukcuoglu Contents Introduction to Spatial Transformers Related Works Spatial

More information

Multi-scale Geometric Summaries for Similarity-based Upstream S

Multi-scale Geometric Summaries for Similarity-based Upstream S Multi-scale Geometric Summaries for Similarity-based Upstream Sensor Fusion Duke University, ECE / Math 3/6/2019 Overall Goals / Design Choices Leverage multiple, heterogeneous modalities in identification

More information

Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning

Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning Action-Decision Networks for Visual Tracking with Deep Reinforcement Learning Sangdoo Yun 1 Jongwon Choi 1 Youngjoon Yoo 2 Kimin Yun 3 and Jin Young Choi 1 1 ASRI, Dept. of Electrical and Computer Eng.,

More information

Minimizing D(Q,P) def = Q(h)

Minimizing D(Q,P) def = Q(h) Inference Lecture 20: Variational Metods Kevin Murpy 29 November 2004 Inference means computing P( i v), were are te idden variables v are te visible variables. For discrete (eg binary) idden nodes, exact

More information

STA 4273H: Statistical Machine Learning

STA 4273H: Statistical Machine Learning STA 4273H: Statistical Machine Learning Russ Salakhutdinov Department of Statistics! rsalakhu@utstat.toronto.edu! http://www.utstat.utoronto.ca/~rsalakhu/ Sidney Smith Hall, Room 6002 Lecture 11 Project

More information

Transformation of Markov Random Fields for Marginal Distribution Estimation

Transformation of Markov Random Fields for Marginal Distribution Estimation Transformation of Markov Random Fields for Marginal Distribution Estimation Masaki Saito Takayuki Okatani Tohoku University, Japan {msaito, okatani}@vision.is.tohoku.ac.jp Abstract This paper presents

More information

Undirected Graphical Models

Undirected Graphical Models Outline Hong Chang Institute of Computing Technology, Chinese Academy of Sciences Machine Learning Methods (Fall 2012) Outline Outline I 1 Introduction 2 Properties Properties 3 Generative vs. Conditional

More information

Deep Learning (CNNs)

Deep Learning (CNNs) 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Deep Learning (CNNs) Deep Learning Readings: Murphy 28 Bishop - - HTF - - Mitchell

More information

Generative Models for Sentences

Generative Models for Sentences Generative Models for Sentences Amjad Almahairi PhD student August 16 th 2014 Outline 1. Motivation Language modelling Full Sentence Embeddings 2. Approach Bayesian Networks Variational Autoencoders (VAE)

More information

Deep Reinforcement Learning for Unsupervised Video Summarization with Diversity- Representativeness Reward

Deep Reinforcement Learning for Unsupervised Video Summarization with Diversity- Representativeness Reward Deep Reinforcement Learning for Unsupervised Video Summarization with Diversity- Representativeness Reward Kaiyang Zhou, Yu Qiao, Tao Xiang AAAI 2018 What is video summarization? Goal: to automatically

More information

CPSC 540: Machine Learning

CPSC 540: Machine Learning CPSC 540: Machine Learning MCMC and Non-Parametric Bayes Mark Schmidt University of British Columbia Winter 2016 Admin I went through project proposals: Some of you got a message on Piazza. No news is

More information

Introduction Neural Networks - Architecture Network Training Small Example - ZIP Codes Summary. Neural Networks - I. Henrik I Christensen

Introduction Neural Networks - Architecture Network Training Small Example - ZIP Codes Summary. Neural Networks - I. Henrik I Christensen Neural Networks - I Henrik I Christensen Robotics & Intelligent Machines @ GT Georgia Institute of Technology, Atlanta, GA 30332-0280 hic@cc.gatech.edu Henrik I Christensen (RIM@GT) Neural Networks 1 /

More information

A Graphical Model for Simultaneous Partitioning and Labeling

A Graphical Model for Simultaneous Partitioning and Labeling A Graphical Model for Simultaneous Partitioning and Labeling Philip J Cowans Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, United Kingdom pjc51@camacuk Martin Szummer Microsoft Research

More information

Recurrent Neural Networks (RNN) and Long-Short-Term-Memory (LSTM) Yuan YAO HKUST

Recurrent Neural Networks (RNN) and Long-Short-Term-Memory (LSTM) Yuan YAO HKUST 1 Recurrent Neural Networks (RNN) and Long-Short-Term-Memory (LSTM) Yuan YAO HKUST Summary We have shown: Now First order optimization methods: GD (BP), SGD, Nesterov, Adagrad, ADAM, RMSPROP, etc. Second

More information

Sparse Subspace Clustering

Sparse Subspace Clustering Sparse Subspace Clustering Based on Sparse Subspace Clustering: Algorithm, Theory, and Applications by Elhamifar and Vidal (2013) Alex Gutierrez CSCI 8314 March 2, 2017 Outline 1 Motivation and Background

More information

Probabilistic Graphical Models Homework 2: Due February 24, 2014 at 4 pm

Probabilistic Graphical Models Homework 2: Due February 24, 2014 at 4 pm Probabilistic Graphical Models 10-708 Homework 2: Due February 24, 2014 at 4 pm Directions. This homework assignment covers the material presented in Lectures 4-8. You must complete all four problems to

More information

Approximate Inference in Practice Microsoft s Xbox TrueSkill TM

Approximate Inference in Practice Microsoft s Xbox TrueSkill TM 1 Approximate Inference in Practice Microsoft s Xbox TrueSkill TM Daniel Hernández-Lobato Universidad Autónoma de Madrid 2014 2 Outline 1 Introduction 2 The Probabilistic Model 3 Approximate Inference

More information

Reinforcement Learning as Classification Leveraging Modern Classifiers

Reinforcement Learning as Classification Leveraging Modern Classifiers Reinforcement Learning as Classification Leveraging Modern Classifiers Michail G. Lagoudakis and Ronald Parr Department of Computer Science Duke University Durham, NC 27708 Machine Learning Reductions

More information

Toward Correlating and Solving Abstract Tasks Using Convolutional Neural Networks Supplementary Material

Toward Correlating and Solving Abstract Tasks Using Convolutional Neural Networks Supplementary Material Toward Correlating and Solving Abstract Tasks Using Convolutional Neural Networks Supplementary Material Kuan-Chuan Peng Cornell University kp388@cornell.edu Tsuhan Chen Cornell University tsuhan@cornell.edu

More information

Using Both Latent and Supervised Shared Topics for Multitask Learning

Using Both Latent and Supervised Shared Topics for Multitask Learning Using Both Latent and Supervised Shared Topics for Multitask Learning Ayan Acharya, Aditya Rawal, Raymond J. Mooney, Eduardo R. Hruschka UT Austin, Dept. of ECE September 21, 2013 Problem Definition An

More information

Neural Networks. Yan Shao Department of Linguistics and Philology, Uppsala University 7 December 2016

Neural Networks. Yan Shao Department of Linguistics and Philology, Uppsala University 7 December 2016 Neural Networks Yan Shao Department of Linguistics and Philology, Uppsala University 7 December 2016 Outline Part 1 Introduction Feedforward Neural Networks Stochastic Gradient Descent Computational Graph

More information

Final Examination CS540-2: Introduction to Artificial Intelligence

Final Examination CS540-2: Introduction to Artificial Intelligence Final Examination CS540-2: Introduction to Artificial Intelligence May 9, 2018 LAST NAME: SOLUTIONS FIRST NAME: Directions 1. This exam contains 33 questions worth a total of 100 points 2. Fill in your

More information

Graph based Subspace Segmentation. Canyi Lu National University of Singapore Nov. 21, 2013

Graph based Subspace Segmentation. Canyi Lu National University of Singapore Nov. 21, 2013 Graph based Subspace Segmentation Canyi Lu National University of Singapore Nov. 21, 2013 Content Subspace Segmentation Problem Related Work Sparse Subspace Clustering (SSC) Low-Rank Representation (LRR)

More information

Dual Decomposition for Inference

Dual Decomposition for Inference Dual Decomposition for Inference Yunshu Liu ASPITRG Research Group 2014-05-06 References: [1]. D. Sontag, A. Globerson and T. Jaakkola, Introduction to Dual Decomposition for Inference, Optimization for

More information

Memory-Augmented Attention Model for Scene Text Recognition

Memory-Augmented Attention Model for Scene Text Recognition Memory-Augmented Attention Model for Scene Text Recognition Cong Wang 1,2, Fei Yin 1,2, Cheng-Lin Liu 1,2,3 1 National Laboratory of Pattern Recognition Institute of Automation, Chinese Academy of Sciences

More information

Structured deep models: Deep learning on graphs and beyond

Structured deep models: Deep learning on graphs and beyond Structured deep models: Deep learning on graphs and beyond Hidden layer Hidden layer Input Output ReLU ReLU, 25 May 2018 CompBio Seminar, University of Cambridge In collaboration with Ethan Fetaya, Rianne

More information

Feedback Loop between High Level Semantics and Low Level Vision

Feedback Loop between High Level Semantics and Low Level Vision Feedback Loop between High Level Semantics and Low Level Vision Varun K. Nagaraja Vlad I. Morariu Larry S. Davis {varun,morariu,lsd}@umiacs.umd.edu University of Maryland, College Park, MD, USA. Abstract.

More information

An overview of deep learning methods for genomics

An overview of deep learning methods for genomics An overview of deep learning methods for genomics Matthew Ploenzke STAT115/215/BIO/BIST282 Harvard University April 19, 218 1 Snapshot 1. Brief introduction to convolutional neural networks What is deep

More information

Hidden Markov Models

Hidden Markov Models 10-601 Introduction to Machine Learning Machine Learning Department School of Computer Science Carnegie Mellon University Hidden Markov Models Matt Gormley Lecture 19 Nov. 5, 2018 1 Reminders Homework

More information

Multi-Layer Boosting for Pattern Recognition

Multi-Layer Boosting for Pattern Recognition Multi-Layer Boosting for Pattern Recognition François Fleuret IDIAP Research Institute, Centre du Parc, P.O. Box 592 1920 Martigny, Switzerland fleuret@idiap.ch Abstract We extend the standard boosting

More information

STA 414/2104: Machine Learning

STA 414/2104: Machine Learning STA 414/2104: Machine Learning Russ Salakhutdinov Department of Computer Science! Department of Statistics! rsalakhu@cs.toronto.edu! http://www.cs.toronto.edu/~rsalakhu/ Lecture 9 Sequential Data So far

More information

Leaving Some Stones Unturned: Dynamic Feature Prioritization for Activity Detection in Streaming Video

Leaving Some Stones Unturned: Dynamic Feature Prioritization for Activity Detection in Streaming Video In Proceedings of the European Conference on Computer Vision (ECCV), 26 Leaving Some Stones Unturned: Dynamic Feature Prioritization for Activity Detection in Streaming Video Yu-Chuan Su and Kristen Grauman

More information

Real-Time Computerized Annotation of Pictures

Real-Time Computerized Annotation of Pictures Real-Time Computerized Annotation of Pictures Jia Li James Z. Wang The Pennsylvania State University Email: jiali@psu.edu, jwang@ist.psu.edu How Visible Are Web Images? Keukenhof photos ALIPR: Automatic

More information

Aspect Term Extraction with History Attention and Selective Transformation 1

Aspect Term Extraction with History Attention and Selective Transformation 1 Aspect Term Extraction with History Attention and Selective Transformation 1 Xin Li 1, Lidong Bing 2, Piji Li 1, Wai Lam 1, Zhimou Yang 3 Presenter: Lin Ma 2 1 The Chinese University of Hong Kong 2 Tencent

More information

Introduction to Restricted Boltzmann Machines

Introduction to Restricted Boltzmann Machines Introduction to Restricted Boltzmann Machines Ilija Bogunovic and Edo Collins EPFL {ilija.bogunovic,edo.collins}@epfl.ch October 13, 2014 Introduction Ingredients: 1. Probabilistic graphical models (undirected,

More information

Data Mining Techniques

Data Mining Techniques Data Mining Techniques CS 622 - Section 2 - Spring 27 Pre-final Review Jan-Willem van de Meent Feedback Feedback https://goo.gl/er7eo8 (also posted on Piazza) Also, please fill out your TRACE evaluations!

More information

CSC321 Lecture 16: ResNets and Attention

CSC321 Lecture 16: ResNets and Attention CSC321 Lecture 16: ResNets and Attention Roger Grosse Roger Grosse CSC321 Lecture 16: ResNets and Attention 1 / 24 Overview Two topics for today: Topic 1: Deep Residual Networks (ResNets) This is the state-of-the

More information