One Dimensional (1D) and Two Dimensional (2D) Spring Mass Chains

Size: px
Start display at page:

Download "One Dimensional (1D) and Two Dimensional (2D) Spring Mass Chains"

Transcription

1 One Dimensional (1D) and Two Dimensional (2D) Spring Mass Chains Massimo Ruzzene D. Guggenheim School of Aerospace Engineering G. Woodruff School of Mechanical Engineering Georgia InsJtute of Technology Atlanta, GA Wave Propaga+on in Linear and Nonlinear Periodic Media: Analysis and Applica+ons June 21 25,

2 ConfiguraJon Coarse approximajon of a uniform rod: Rod is discrejzed into N elements of length a; Mass and sjffness distribujons are described as lumped parameters; LocaJon of n th mass: 2

3 Notes System under considerajon is the first, simplest example of a PERIODIC structure: Here obtained considering a dumb discrejzajon of a conjnuous rod; Can be considered as a simple academic exercise System inijally studied by Newton (1686) to calculate the speed of sound in air: Newton, Principia, Book II, System is used by John Bernoulli and son Daniel (1727) to demonstrate that a system of N masses is characterized by N modes of vibrajon and associated frequencies ConfiguraJon considered by Baden Powell (1841) to calculate the velocity of wave propagajon along one axis of a cubic lacce structure Results later corrected and expanded by Lord Kelvin (1881) Popular Lecture, Vol. I, p Detailed discussions can be found in: L. Brillouin, Wave Propaga+on In Periodic Structures, Dover C. Kihel, Introduc+on to Solid Sate Physics, 8th ed. John Wiley & Sons, Inc.,

4 Governing equajons & wave solujon System s behavior is governed by N equajons of the kind: Impose a harmonic solujon Impose a wave solujon where Under the assumpjon that no external forces are applied: Free wave propagajon 4

5 SubsJtute wave solujon at frequency ω in n th equajon: Dispersion relajons (1) Non trivial solujons Dispersion relajon (frequency wavenumber relajons): 5

6 :direct solujon ConJnuous rod vs. discrete: DiscreJzaJon process can be described in terms of FINITE DIFFERENCE formalism This approximajon is used in deriving equivalent conjnuum systems for discrete assemblies DiscreJzaJon causes the system to be dispersive Periodic/discrete ConJnuous 6

7 Dispersion relajon is PERIODIC in the wavenumber space: Notes k space is periodic of period 2 /a As a result, displacements are also periodic in the wavenumber space = 7

8 Result is due to the SAMPLING of a conjnuous system: Notes SpaJal sampling occurs at a frequency The result is an expression of the Sampling Theorem (Shannon) theorem, for a system sampled in space A single period of the wavenumber/frequency relajon for a periodic system is called: FIRST BRILLOUIN ZONE 8

9 :direct solujon First Brillouin Zone Irreducible Brillouin Zone 9

10 Analogy with Jme domain signals can be used to obtain a good guess about the NATURAL FREQUENCIES of a FINITE PERIODIC system with N masses (free free for simplicity): Finite system can be considered as a truncajon of an infinite one TruncaJon causes the system to be DISCRETE instead of conjnuous Notes where wavenumber resolujon is: and Discrete wavenumber values correspond to N values of frequencies Natural frequencies can be read directly on the dispersion curve, given the number of masses and boundary condijons 10

11 Natural frequencies (N=5) Is parallel with finite Jme signal completely true? Not quite. A factor 2 is missing!!!! 11

12 : inverse solujon AlternaJvely, the solujon of the dispersion relajon: can be found by imposing frequency: where The wave solujon to the governing equajon: should be expressed as follows AhenuaJon constant 12

13 Harmonic response of a finite system (N masses) AhenuaJon PropagaJon 13

14 Harmonic response of a finite system (N=100 masses) 14

15 Harmonic response of a finite system (N=100 masses) 15

16 Phase velocity: Group velocity: Wave speeds 16

17 Average Energy Average energy density: sum of average potenjal and kinejc energy of the unit cell: Average potenjal energy Average kinejc energy Total energy 17

18 Energy flow Energy flow from one cell to the next is the AVERAGE POWER flowing from one cell to the next (n) (n+1) Energy velocity: rate at which energy flows along the lacce The energy velocity equals the group velocity 18

19 Diatomic lacce System is representajve of: Bi material rod: E 1, 1 E 2, 2 NaCl crystal along one of lacce direcjons GaAs zincblende crystal: vibrajon of the (1 0 0) plane 19

20 Governing equajons for 2n and (2n+1) masses: Governing equajons Impose a solujon of the kind: This solujon describes waves propagajng only through parjcles (a) and (b). Wavelength and frequencies are the same, but the amplitudes of the two waves are not equal 20

21 SubsJtuJng gives: Dispersion relajons In matrix form: CharacterisJc equajon SoluJon idenjfies TWO BRANCHES: 21

22 where: Dispersion relajons ACOUSTIC BRANCH OPTICAL BRANCH Both branches are PERIODIC in the wavenumber domain: 22

23 Direct solujon OPTICAL BRANCH ACOUSTIC BRANCH Band gap 23

24 Direct solujon Single mass system Two mass system Band gap disappears 24

25 Period of wavenumber/frequency domain is: First Brillouin zone Single mass system Two mass system The period of the dispersion relajon is always given by: where: Single mass system: Two mass system: 25

26 First Brillouin zone For any 1D periodic system, the frequency/wavenumber spectrum is periodic in the domain: where PropagaJon constant: First Brillouin zone: The definijon of the Brillouin zone can be used to define unequivocally the SPATIAL PERIOD of the system 26

27 : inverse solujon 27

28 Response 28

29 Response of a system of N=200 masses 29

30 Response of a system of N=200 masses 30

31 Spring Mass System Unit Cell: 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 31

32 EquaJon of harmonic mojon for mass n,m: Governing equajons & wave solujon Wave propagajon solujon: where 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 32

33 DirecJon of wave propagajon Note Wave front 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 33

34 Wave propagajon solujon Rewrite solujon as: and 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 34

35 SubsJtuJng in governing equajon leads to: Dispersion relajon 2D dispersion relajon Surface in the wavenumber domain 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 35

36 2D Dispersion relajon First Brioullin zone Irreducible Brillouin zone 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 36

37 2D Dispersion relajon 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 37

38 Group velocity According to definijon: Where Recall that: Velocity of energy flow equals the group velocity Energy flows in the direcjon corresponding to the group velocity 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 38

39 In this case: Group velocity Assume 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 39

40 Contour at a single frequency Contour of dispersion surface From dispersion relajons: DirecJon of energy flow at a given frequency and direcjon is perpendicular to isofrequency contour 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 40

41 Dispersion surface vs. group velocity 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 41

42 Dispersion surface vs. group velocity 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 42

43 Dispersion surface vs. group velocity 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 43

44 Dispersion surface vs. group velocity 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 44

45 Dispersion surface vs. group velocity 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 45

46 PropagaJon of waves is strongly direcjonal at specified frequency At those frequencies, waves propagate only in certain direcjons Notes BEAMING PHENOMENA For considered configurajon beaming is a very focused, but very narrow band phenomenon 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 46

47 Harmonic response of 40*40 lacce: Example: 2D spring mass lacce mass # mass # mass # mass # 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 47

48 Time domain response Time domain simulajons Input modulated sine burst at various frequencies e $!"*!"+!"'!"% f(t)!!!"%!!"'!!"+!!"*!$!!"# $ $"# % %"# & &"# ' '"# # t [s] ()$!!& 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 48

49 Time domain response 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 49

50 Anisotropic lacce 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 50

51 Anisotropic lacce 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 51

52 Anisotropic lacce 6/7/10 M. Ruzzene Lecture 2 M. Ruzzene 52

53 Forbidden propagajon zone Note Waves do not propagate along the x direcjon M. Ruzzene Lecture 2 6/7/10 53

54 Harmonic response of 40*40 lacce: Example: 2D spring mass lacce mass # mass # mass # mass # M. Ruzzene Lecture 2 6/7/10 54

Tsunami modeling. Philip L-F. Liu Class of 1912 Professor School of Civil and Environmental Engineering Cornell University Ithaca, NY USA

Tsunami modeling. Philip L-F. Liu Class of 1912 Professor School of Civil and Environmental Engineering Cornell University Ithaca, NY USA Tsunami modeling Philip L-F. Liu Class of 1912 Professor School of Civil and Environmental Engineering Cornell University Ithaca, NY USA PASI 2013: Tsunamis and storm surges Valparaiso, Chile January 2-13,

More information

Galaxies Astro 530 Fall 2015 Prof. Jeff Kenney. CLASS 4 September 14, 2015 Structure of Stellar Disks & IntroducJon to KinemaJcs

Galaxies Astro 530 Fall 2015 Prof. Jeff Kenney. CLASS 4 September 14, 2015 Structure of Stellar Disks & IntroducJon to KinemaJcs Galaxies Astro 530 Fall 2015 Prof. Jeff Kenney CLASS 4 September 14, 2015 Structure of Stellar Disks & IntroducJon to KinemaJcs 1 How does stellar disk form? Gas, which is collisional and dissipates energy

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.62 Physical Chemistry II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.62 Spring 2008 Lecture

More information

Phonons I - Crystal Vibrations (Kittel Ch. 4)

Phonons I - Crystal Vibrations (Kittel Ch. 4) Phonons I - Crystal Vibrations (Kittel Ch. 4) Displacements of Atoms Positions of atoms in their perfect lattice positions are given by: R 0 (n 1, n 2, n 3 ) = n 10 x + n 20 y + n 30 z For simplicity here

More information

SURFACE WAVES & DISPERSION

SURFACE WAVES & DISPERSION SEISMOLOGY Master Degree Programme in Physics - UNITS Physics of the Earth and of the Environment SURFACE WAVES & DISPERSION FABIO ROMANELLI Department of Mathematics & Geosciences University of Trieste

More information

The Biological Physics Labs in the Johns Hopkins University Department of Physics & Astronomy

The Biological Physics Labs in the Johns Hopkins University Department of Physics & Astronomy The Biological Physics Labs in the Johns Hopkins University Department of Physics & Astronomy Steven K. Wonnell & Daniel H. Reich Department of Physics and Astronomy 3400 N. Charles Street BalJmore, MD

More information

Comparison of Unit Cell Geometry for Bloch Wave Analysis in Two Dimensional Periodic Beam Structures

Comparison of Unit Cell Geometry for Bloch Wave Analysis in Two Dimensional Periodic Beam Structures Clemson University TigerPrints All Theses Theses 8-018 Comparison of Unit Cell Geometry for Bloch Wave Analysis in Two Dimensional Periodic Beam Structures Likitha Marneni Clemson University, lmarnen@g.clemson.edu

More information

Solid State Physics. Lecturer: Dr. Lafy Faraj

Solid State Physics. Lecturer: Dr. Lafy Faraj Solid State Physics Lecturer: Dr. Lafy Faraj CHAPTER 1 Phonons and Lattice vibration Crystal Dynamics Atoms vibrate about their equilibrium position at absolute zero. The amplitude of the motion increases

More information

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur Lecture 14 Waves Propagation in Solids Overview Terminology: phasor, wave front, wave number, phase velocity, and

More information

Lecture 21 Reminder/Introduction to Wave Optics

Lecture 21 Reminder/Introduction to Wave Optics Lecture 1 Reminder/Introduction to Wave Optics Program: 1. Maxwell s Equations.. Magnetic induction and electric displacement. 3. Origins of the electric permittivity and magnetic permeability. 4. Wave

More information

Acoustooptic Bragg Diffraction in 2-Dimensional Photonic Crystals

Acoustooptic Bragg Diffraction in 2-Dimensional Photonic Crystals Acoustooptic Bragg Diffraction in 2-Dimensional Photonic Crystals Z.A. Pyatakova M.V. Lomonosov Moscow State University, Physics Department zoya.pyatakova@gmail.com Abstract. The paper shows that silicon-based

More information

OPAC102. The Acoustic Wave Equation

OPAC102. The Acoustic Wave Equation OPAC102 The Acoustic Wave Equation Acoustic waves in fluid Acoustic waves constitute one kind of pressure fluctuation that can exist in a compressible fluid. The restoring forces responsible for propagating

More information

Physics 106a/196a Problem Set 7 Due Dec 2, 2005

Physics 106a/196a Problem Set 7 Due Dec 2, 2005 Physics 06a/96a Problem Set 7 Due Dec, 005 Version 3, Nov 7, 005 In this set we finish up the SHO and study coupled oscillations/normal modes and waves. Problems,, and 3 are for 06a students only, 4, 5,

More information

Waves & Oscillations

Waves & Oscillations Physics 42200 Waves & Oscillations Lecture 22 Review Spring 2013 Semester Matthew Jones Midterm Exam: Date: Wednesday, March 6 th Time: 8:00 10:00 pm Room: PHYS 203 Material: French, chapters 1-8 Review

More information

Classical Theory of Harmonic Crystals

Classical Theory of Harmonic Crystals Classical Theory of Harmonic Crystals HARMONIC APPROXIMATION The Hamiltonian of the crystal is expressed in terms of the kinetic energies of atoms and the potential energy. In calculating the potential

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

Topic 5-1: Introduction to Phonons Kittel pages: 91, 92

Topic 5-1: Introduction to Phonons Kittel pages: 91, 92 Topic 5-1: Introduction to Phonons Kittel pages: 91, 92 Summary: In this video we introduce the concept that atoms are not rigid, fixed points within the lattice. Instead we treat them as quantum harmonic

More information

Waves, the Wave Equation, and Phase Velocity. We ll start with optics. The one-dimensional wave equation. What is a wave? Optional optics texts: f(x)

Waves, the Wave Equation, and Phase Velocity. We ll start with optics. The one-dimensional wave equation. What is a wave? Optional optics texts: f(x) We ll start with optics Optional optics texts: Waves, the Wave Equation, and Phase Velocity What is a wave? f(x) f(x-) f(x-) f(x-3) Eugene Hecht, Optics, 4th ed. J.F. James, A Student's Guide to Fourier

More information

Beyond Superlocal: Dominators, Data-Flow Analysis, and DVNT. COMP 506 Rice University Spring target code. source code OpJmizer

Beyond Superlocal: Dominators, Data-Flow Analysis, and DVNT. COMP 506 Rice University Spring target code. source code OpJmizer COMP 506 Rice University Spring 2017 Beyond Superlocal: Dominators, Data-Flow Analysis, and DVNT source code Front End IR OpJmizer IR Back End target code Copyright 2017, Keith D. Cooper & Linda Torczon,

More information

Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal

Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal Exploiting pattern transformation to tune phononic band gaps in a two-dimensional granular crystal The Harvard community has made this article openly available. Please share how this access benefits you.

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 The Schrödinger Wave Equation 6.2 Expectation Values 6.3 Infinite Square-Well Potential 6.4 Finite Square-Well Potential 6.5 Three-Dimensional Infinite-Potential Well

More information

Galaxies Astro 530 Prof. Jeff Kenney

Galaxies Astro 530 Prof. Jeff Kenney Galaxies Astro 530 Prof. Jeff Kenney CLASS 8 February 7, 2018 Spiral Structure (Part 2) 1 Spiral structure in galaxies something interesjng that happens in a disk can reveal physical condijons in that

More information

Derivation of the General Propagation Equation

Derivation of the General Propagation Equation Derivation of the General Propagation Equation Phys 477/577: Ultrafast and Nonlinear Optics, F. Ö. Ilday, Bilkent University February 25, 26 1 1 Derivation of the Wave Equation from Maxwell s Equations

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 8: Lattice Waves in 1D Monatomic Crystals Outline Overview of Lattice Vibrations so far Models for Vibrations in Discrete 1-D Lattice Example of Nearest

More information

Metadamping: An emergent phenomenon in dissipative metamaterials

Metadamping: An emergent phenomenon in dissipative metamaterials Metadamping: An emergent phenomenon in dissipative metamaterials Mahmoud I. Hussein and Michael J. Frazier Department of Aerospace Engineering Sciences, University of Colorado Boulder, Boulder, CO 80309

More information

spring mass equilibrium position +v max

spring mass equilibrium position +v max Lecture 20 Oscillations (Chapter 11) Review of Simple Harmonic Motion Parameters Graphical Representation of SHM Review of mass-spring pendulum periods Let s review Simple Harmonic Motion. Recall we used

More information

Spatio-Temporal Characterization of Bio-acoustic Scatterers in Complex Media

Spatio-Temporal Characterization of Bio-acoustic Scatterers in Complex Media DISTRIBUTION STATEMENT A. Approved for public release; distribution is unlimited. Spatio-Temporal Characterization of Bio-acoustic Scatterers in Complex Media Karim G. Sabra, School of Mechanical Engineering,

More information

Lecture 4 Notes: 06 / 30. Energy carried by a wave

Lecture 4 Notes: 06 / 30. Energy carried by a wave Lecture 4 Notes: 06 / 30 Energy carried by a wave We want to find the total energy (kinetic and potential) in a sine wave on a string. A small segment of a string at a fixed point x 0 behaves as a harmonic

More information

Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA SURFACE WAVES FABIO ROMANELLI

Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA SURFACE WAVES FABIO ROMANELLI Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA SURFACE WAVES FABIO ROMANELLI Department of Mathematics & Geosciences University of Trieste romanel@units.it http://moodle.units.it/course/view.php?id=887

More information

Nondifractive propagation of light in photonic crystals

Nondifractive propagation of light in photonic crystals Nondifractive propagation of light in photonic crystals Kestutis Staliunas (1) and Ramon Herrero () (1) ICREA, Departament de Fisica i Enginyeria Nuclear, Universitat Politecnica de Catalunya, Colom 11,

More information

Canalization of Sub-wavelength Images by Electromagnetic Crystals

Canalization of Sub-wavelength Images by Electromagnetic Crystals Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 37 Canalization of Sub-wavelength Images by Electromagnetic Crystals P. A. Belov 1 and C. R. Simovski 2 1 Queen Mary

More information

Coherent THz Noise Sources. T.M.Loftus Dr R.Donnan Dr T.Kreouzis Dr R.Dubrovka

Coherent THz Noise Sources. T.M.Loftus Dr R.Donnan Dr T.Kreouzis Dr R.Dubrovka Coherent THz Noise Sources T.M.Loftus Dr R.Donnan Dr T.Kreouzis Dr R.Dubrovka 1 Noise Source An unusual source Broadband Incoherent Lambertian emission Why consider it? 2 Power from various devices in

More information

Lecture 19 Optical MEMS (1)

Lecture 19 Optical MEMS (1) EEL6935 Advanced MEMS (Spring 5) Instructor: Dr. Huikai Xie Lecture 19 Optical MEMS (1) Agenda: Optics Review EEL6935 Advanced MEMS 5 H. Xie 3/8/5 1 Optics Review Nature of Light Reflection and Refraction

More information

Measurements of Plasma Turbulence in Tokamaks

Measurements of Plasma Turbulence in Tokamaks Measurements of Plasma Turbulence in Tokamaks Anne White Nuclear Science & Engineering Department MIT Symposium on Laboratory Astrophysics at the CfA Friday, April 26, 2013 With thanks to many people at

More information

Making Waves in Vector Calculus

Making Waves in Vector Calculus Making Waves in Vector Calculus J. B. Thoo Yuba College 2014 MAA MathFest, Portland, OR This presentation was produced

More information

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic

Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Electro Dynamic Electrodynamics I Final Exam - Part A - Closed Book KSU 2005/12/12 Name Electro Dynamic Instructions: Use SI units. Short answers! No derivations here, just state your responses clearly. 1. (2) Write an

More information

Propagation of longitudinal waves in a random binary rod

Propagation of longitudinal waves in a random binary rod Downloaded By: [University of North Carolina, Charlotte At: 7:3 2 May 28 Waves in Random and Complex Media Vol. 6, No. 4, November 26, 49 46 Propagation of longitudinal waves in a random binary rod YURI

More information

Vibrations and waves: revision. Martin Dove Queen Mary University of London

Vibrations and waves: revision. Martin Dove Queen Mary University of London Vibrations and waves: revision Martin Dove Queen Mary University of London Form of the examination Part A = 50%, 10 short questions, no options Part B = 50%, Answer questions from a choice of 4 Total exam

More information

UNIVERSITY OF SOUTHAMPTON

UNIVERSITY OF SOUTHAMPTON UNIVERSITY OF SOUTHAMPTON PHYS2023W1 SEMESTER 1 EXAMINATION 2016-2017 WAVE PHYSICS Duration: 120 MINS (2 hours) This paper contains 9 questions. Answers to Section A and Section B must be in separate answer

More information

Physics General Physics II

Physics General Physics II Physics 21900 General Physics II Electricity, Magne/sm, Op/cs, and Modern Physics Review III: Chapter 21 28 Spring 2017 Semester Prof. Andreas Jung Bubble/Cloud chamber Bubble/Cloud chamber Announcement

More information

An Introduction to Lattice Vibrations

An Introduction to Lattice Vibrations An Introduction to Lattice Vibrations Andreas Wacker 1 Mathematical Physics, Lund University November 3, 2015 1 Introduction Ideally, the atoms in a crystal are positioned in a regular manner following

More information

SCIENCE VISION INSTITUTE For CSIR NET/JRF, GATE, JEST, TIFR & IIT-JAM Web:

SCIENCE VISION INSTITUTE For CSIR NET/JRF, GATE, JEST, TIFR & IIT-JAM Web: Test Series: CSIR NET/JRF Exam Physical Sciences Test Paper: Solid State Physics Instructions: 1. Attempt all Questions. Max Marks: 75 2. There is a negative marking of 1/4 for each wrong answer. 3. Each

More information

Electromagnetic fields and waves

Electromagnetic fields and waves Electromagnetic fields and waves Maxwell s rainbow Outline Maxwell s equations Plane waves Pulses and group velocity Polarization of light Transmission and reflection at an interface Macroscopic Maxwell

More information

Phonons and lattice dynamics

Phonons and lattice dynamics Chapter Phonons and lattice dynamics. Vibration modes of a cluster Consider a cluster or a molecule formed of an assembly of atoms bound due to a specific potential. First, the structure must be relaxed

More information

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD

in Electromagnetics Numerical Method Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD 2141418 Numerical Method in Electromagnetics Introduction to Electromagnetics I Lecturer: Charusluk Viphavakit, PhD ISE, Chulalongkorn University, 2 nd /2018 Email: charusluk.v@chula.ac.th Website: Light

More information

C1: One-dimensional phonon modes

C1: One-dimensional phonon modes C1: One-dimensional phonon modes Anders Blom Solid State Theory, Lund University March 001 1 Introduction The basic theory of phonons is covered in the lecture notes, which should be studied carefully

More information

18 The Electromagnetic Wave Equation

18 The Electromagnetic Wave Equation Utah State University DigitalCommons@USU Foundations of Wave Phenomena Physics, Department of 1-1-2004 18 The Electromagnetic Wave Equation Charles G. Torre Department of Physics, Utah State University,

More information

Nanomaterials and their Optical Applications

Nanomaterials and their Optical Applications Nanomaterials and their Optical Applications Winter Semester 2012 Lecture 08 rachel.grange@uni-jena.de http://www.iap.uni-jena.de/multiphoton Outline: Photonic crystals 2 1. Photonic crystals vs electronic

More information

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between: Physics with Neutrons I, WS 2015/2016 Lecture 11, 11.1.2016 MLZ is a cooperation between: Organization Exam (after winter term) Registration: via TUM-Online between 16.11.2015 15.1.2015 Email: sebastian.muehlbauer@frm2.tum.de

More information

Seminar 8. HAMILTON S EQUATIONS. p = L q = m q q = p m, (2) The Hamiltonian (3) creates Hamilton s equations as follows: = p ṗ = H = kq (5)

Seminar 8. HAMILTON S EQUATIONS. p = L q = m q q = p m, (2) The Hamiltonian (3) creates Hamilton s equations as follows: = p ṗ = H = kq (5) Problem 31. Derive Hamilton s equations for a one-dimensional harmonic oscillator. Seminar 8. HAMILTON S EQUATIONS Solution: The Lagrangian L = T V = 1 m q 1 kq (1) yields and hence the Hamiltonian is

More information

Summary: Thermodynamic Potentials and Conditions of Equilibrium

Summary: Thermodynamic Potentials and Conditions of Equilibrium Summary: Thermodynamic Potentials and Conditions of Equilibrium Isolated system: E, V, {N} controlled Entropy, S(E,V{N}) = maximum Thermal contact: T, V, {N} controlled Helmholtz free energy, F(T,V,{N})

More information

Lecture 12: Phonon heat capacity

Lecture 12: Phonon heat capacity Lecture 12: Phonon heat capacity Review o Phonon dispersion relations o Quantum nature of waves in solids Phonon heat capacity o Normal mode enumeration o Density of states o Debye model Review By considering

More information

(2) A two-dimensional solid has an electron energy band of the form, . [1]

(2) A two-dimensional solid has an electron energy band of the form, . [1] (1) The figure shows a two-dimensional periodic lattice, containing A atoms (white) and B atoms (black). The section of lattice shown makes a 3a 4a rectangle, as shown (measured from A atom to A atom).

More information

Cold plasma waves. Waves in non-magnetized plasma Cold plasma dispersion equation Cold plasma wave modes

Cold plasma waves. Waves in non-magnetized plasma Cold plasma dispersion equation Cold plasma wave modes Cold plasma waves Waves in non-magnetized plasma Cold plasma dispersion equation Cold plasma wave modes EM wave propagation through and interaction with plasmas belong to central issues of plasma physics.

More information

arxiv: v1 [cond-mat.mes-hall] 2 May 2017

arxiv: v1 [cond-mat.mes-hall] 2 May 2017 Amplitude-dependent topological edge states in nonlinear phononic lattices Raj Kumar Pal, 1, Javier Vila, 1 Michael Leamy, and Massimo Ruzzene 1, 1 School of Aerospace Engineering, Georgia Institute of

More information

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams.

Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Outline of Continuous Systems. Introduction to Continuous Systems. Continuous Systems. Strings, Torsional Rods and Beams. Vibrations of Flexible Strings. Torsional Vibration of Rods. Bernoulli-Euler Beams.

More information

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z

Liquid Crystals IAM-CHOON 1(1100 .,4 WILEY 2007 WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION. 'i; Second Edition. n z Liquid Crystals Second Edition IAM-CHOON 1(1100.,4 z 'i; BICENTCNNIAL 1 8 0 7 WILEY 2007 DICENTENNIAL n z z r WILEY-INTERSCIENCE A JOHN WILEY & SONS, INC., PUBLICATION Contents Preface xiii Chapter 1.

More information

Physical and Biological Properties of Agricultural Products Acoustic, Electrical and Optical Properties and Biochemical Property

Physical and Biological Properties of Agricultural Products Acoustic, Electrical and Optical Properties and Biochemical Property Physical and Biological Properties of Agricultural Products Acoustic, Electrical and Optical Properties and Biochemical Property 1. Acoustic and Vibrational Properties 1.1 Acoustics and Vibration Engineering

More information

Lecture 1. Rejish Nath. Optics, IDC202

Lecture 1. Rejish Nath. Optics, IDC202 Lecture 1. Rejish Nath Optics, IDC202 Contents 1. Waves: The wave equation 2. Harmonic Waves 3. Plane waves 4. Spherical Waves Literature: 1. Optics, (Eugene Hecht and A. R. Ganesan) 2. Optical Physics,

More information

Lecture #8 Non-linear phononics

Lecture #8 Non-linear phononics Lecture #8 Non-linear phononics Dr. Ari Salmi www.helsinki.fi/yliopisto 10.4.2018 1 Last lecture High pressure phononics can give insight into phase transitions in materials SASER can be used to generate

More information

The Basic Properties of Surface Waves

The Basic Properties of Surface Waves The Basic Properties of Surface Waves Lapo Boschi lapo@erdw.ethz.ch April 24, 202 Love and Rayleigh Waves Whenever an elastic medium is bounded by a free surface, coherent waves arise that travel along

More information

CHAPTER 6 Quantum Mechanics II

CHAPTER 6 Quantum Mechanics II CHAPTER 6 Quantum Mechanics II 6.1 6.2 6.3 6.4 6.5 6.6 6.7 The Schrödinger Wave Equation Expectation Values Infinite Square-Well Potential Finite Square-Well Potential Three-Dimensional Infinite-Potential

More information

Phonons Thermal energy Heat capacity Einstein model Density of states Debye model Anharmonic effects Thermal expansion Thermal conduction by phonons

Phonons Thermal energy Heat capacity Einstein model Density of states Debye model Anharmonic effects Thermal expansion Thermal conduction by phonons 3b. Lattice Dynamics Phonons Thermal energy Heat capacity Einstein model Density of states Debye model Anharmonic effects Thermal expansion Thermal conduction by phonons Neutron scattering G. Bracco-Material

More information

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET

Nonlinear Effects in Optical Fiber. Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Nonlinear Effects in Optical Fiber Dr. Mohammad Faisal Assistant Professor Dept. of EEE, BUET Fiber Nonlinearities The response of any dielectric material to the light becomes nonlinear for intense electromagnetic

More information

7.2.1 Seismic waves. Waves in a mass- spring system

7.2.1 Seismic waves. Waves in a mass- spring system 7..1 Seismic waves Waves in a mass- spring system Acoustic waves in a liquid or gas Seismic waves in a solid Surface waves Wavefronts, rays and geometrical attenuation Amplitude and energy Waves in a mass-

More information

Longitudinal Waves. waves in which the particle or oscillator motion is in the same direction as the wave propagation

Longitudinal Waves. waves in which the particle or oscillator motion is in the same direction as the wave propagation Longitudinal Waves waves in which the particle or oscillator motion is in the same direction as the wave propagation Longitudinal waves propagate as sound waves in all phases of matter, plasmas, gases,

More information

Critical loss factor in 2-DOF in-series system with hysteretic friction and its use for vibration control

Critical loss factor in 2-DOF in-series system with hysteretic friction and its use for vibration control Critical loss factor in -DOF in-series system with hysteretic friction and its use for vibration control Roman Vinokur Acvibrela, Woodland Hills, CA Email: romanv99@aol.com Although the classical theory

More information

Dispersion relation for transverse waves in a linear chain of particles

Dispersion relation for transverse waves in a linear chain of particles Dispersion relation for transverse waves in a linear chain of particles V. I. Repchenkov* It is difficult to overestimate the importance that have for the development of science the simplest physical and

More information

Metamaterials. Peter Hertel. University of Osnabrück, Germany. Lecture presented at APS, Nankai University, China

Metamaterials. Peter Hertel. University of Osnabrück, Germany. Lecture presented at APS, Nankai University, China University of Osnabrück, Germany Lecture presented at APS, Nankai University, China http://www.home.uni-osnabrueck.de/phertel Spring 2012 are produced artificially with strange optical properties for instance

More information

Interfacial effects in electromagnetic coupling within piezoelectric phononic crystals

Interfacial effects in electromagnetic coupling within piezoelectric phononic crystals Acta Mech Sin (29) 25:95 99 DOI 1.17/s149-8-21-y RESEARCH PAPER Interfacial effects in electromagnetic coupling within pieoelectric phononic crystals F. J. Sabina A. B. Movchan Received: 14 July 28 / Accepted:

More information

Outline. Oscillations & Waves. 1. Equilibrium. A. Harmonic Oscillators. b. Unstable Equilibrium. 1. Equilibrium. 2. Periodic Motion. 3.

Outline. Oscillations & Waves. 1. Equilibrium. A. Harmonic Oscillators. b. Unstable Equilibrium. 1. Equilibrium. 2. Periodic Motion. 3. CSUEB Physics CSUEB Physics 1200 Oscillations & Waves Outline A. Harmonic Oscillators 2 B. Waves Updated 2012 August2 C. Wave Phenomena Dr. Bill Pezzaglia A. Harmonic Oscillators 3 1. Equilibrium 4 1.

More information

Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3.12 in Boas)

Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3.12 in Boas) Lecture 9: Eigenvalues and Eigenvectors in Classical Mechanics (See Section 3 in Boas) As suggested in Lecture 8 the formalism of eigenvalues/eigenvectors has many applications in physics, especially in

More information

1D Wave Equation General Solution / Gaussian Function

1D Wave Equation General Solution / Gaussian Function D Wave Euation General Solution / Gaussian Function Phys 375 Overview and Motivation: Last time we derived the partial differential euation known as the (one dimensional wave euation Today we look at the

More information

Lectures on Certain Problems in the Theory of Oscillations

Lectures on Certain Problems in the Theory of Oscillations Lectures on Certain Problems in the Theory of Oscillations L. I. Mandel shtam May 5, 1944 Abstract [By the translator] This lecture covers the problems of energy velocity and its relation to group velocity.

More information

Introduction to Nonlinear Optics

Introduction to Nonlinear Optics Introduction to Nonlinear Optics Prof. Cleber R. Mendonca http://www.fotonica.ifsc.usp.br Outline Linear optics Introduction to nonlinear optics Second order nonlinearities Third order nonlinearities Two-photon

More information

Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur

Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur Modern Optics Prof. Partha Roy Chaudhuri Department of Physics Indian Institute of Technology, Kharagpur Lecture 09 Wave propagation in anisotropic media (Contd.) So, we have seen the various aspects of

More information

Elastic Wave Propagation in Periodic Cellular Structures

Elastic Wave Propagation in Periodic Cellular Structures Copyright 2011 Tech Science Press CMES, vol.76, no.4, pp.217-233, 2011 Elastic Wave Propagation in Periodic Cellular Structures B.Y. Tian 1, B. Tie 1, D. Aubry 1 and X.Y. Su 2 Abstract: The present work

More information

1 Fundamentals of laser energy absorption

1 Fundamentals of laser energy absorption 1 Fundamentals of laser energy absorption 1.1 Classical electromagnetic-theory concepts 1.1.1 Electric and magnetic properties of materials Electric and magnetic fields can exert forces directly on atoms

More information

Nonlinear Considerations in Energy Harvesting

Nonlinear Considerations in Energy Harvesting Nonlinear Considerations in Energy Harvesting Daniel J. Inman Alper Erturk* Amin Karami Center for Intelligent Material Systems and Structures Virginia Tech Blacksburg, VA 24061, USA dinman@vt.edu www.cimss.vt.edu

More information

Schedule for the remainder of class

Schedule for the remainder of class Schedule for the remainder of class 04/25 (today): Regular class - Sound and the Doppler Effect 04/27: Cover any remaining new material, then Problem Solving/Review (ALL chapters) 04/29: Problem Solving/Review

More information

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur

Sound Propagation through Media. Nachiketa Tiwari Indian Institute of Technology Kanpur Sound Propagation through Media Nachiketa Tiwari Indian Institute of Technology Kanpur LECTURE-13 WAVE PROPAGATION IN SOLIDS Longitudinal Vibrations In Thin Plates Unlike 3-D solids, thin plates have surfaces

More information

Light as a Transverse Wave.

Light as a Transverse Wave. Waves and Superposition (Keating Chapter 21) The ray model for light (i.e. light travels in straight lines) can be used to explain a lot of phenomena (like basic object and image formation and even aberrations)

More information

Lecture Introduction

Lecture Introduction Lecture 1 1.1 Introduction The theory of Partial Differential Equations (PDEs) is central to mathematics, both pure and applied. The main difference between the theory of PDEs and the theory of Ordinary

More information

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian

Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian Structural Dynamics Lecture Eleven: Dynamic Response of MDOF Systems: (Chapter 11) By: H. Ahmadian ahmadian@iust.ac.ir Dynamic Response of MDOF Systems: Mode-Superposition Method Mode-Superposition Method:

More information

Plasma waves in the fluid picture I

Plasma waves in the fluid picture I Plasma waves in the fluid picture I Langmuir oscillations and waves Ion-acoustic waves Debye length Ordinary electromagnetic waves General wave equation General dispersion equation Dielectric response

More information

Periodic Assembly of Multi-Coupled Beams: Wave Propagation and Natural Modes

Periodic Assembly of Multi-Coupled Beams: Wave Propagation and Natural Modes Acoustics 8 Paris Periodic Assembly of Multi-Coupled Beams: Wave Propagation and Natural Modes G. Gosse a, C. Pezerat a and F. Bessac b a Laboratoire Vibrations Acoustique - INSA Lyon, 5 bis avenue Jean

More information

Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber

Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber J.C. Ji, N. Zhang Faculty of Engineering, University of Technology, Sydney PO Box, Broadway,

More information

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester

SOLID STATE PHYSICS. Second Edition. John Wiley & Sons. J. R. Hook H. E. Hall. Department of Physics, University of Manchester SOLID STATE PHYSICS Second Edition J. R. Hook H. E. Hall Department of Physics, University of Manchester John Wiley & Sons CHICHESTER NEW YORK BRISBANE TORONTO SINGAPORE Contents Flow diagram Inside front

More information

Born simulation report

Born simulation report Born simulation report Name: The atoms in a solid are in constant thermally induced motion. In born we study the dynamics of a linear chain of atoms. We assume that the atomic arrangement that has minimum

More information

Jiří Plešek, Radek Kolman, Miloslav Okrouhĺık

Jiří Plešek, Radek Kolman, Miloslav Okrouhĺık DISPERSNÍ ANALÝZA VLNOVÉHO ŘEŠENÍ V METODĚ KONEČNÝCH PRVKŮ Jiří Plešek, Radek Kolman, Miloslav Okrouhĺık Ústav termomechaniky Akademie věd České republiky Praha Contents Dispersion diagrams (overview)

More information

WAVE PROPAGATION IN NONLINEAR PERIODIC STRUCTURES

WAVE PROPAGATION IN NONLINEAR PERIODIC STRUCTURES WAVE PROPAGATION IN NONLINEAR PERIODIC STRUCTURES A Dissertation Presented to The Academic Faculty by Raj K. Narisetti In Partial Fulfillment of the Requirements for the Degree Doctor of Philosophy in

More information

Cosmic-Ray Transport in the Heliosphere

Cosmic-Ray Transport in the Heliosphere Cosmic-Ray Transport in the Heliosphere J. Giacalone University of Arizona Heliophysics Summer School, Boulder, CO, July 16, 2013 Outline Lecture 1: Background The heliosphere Cosmic Rays in the heliosphere

More information

MP464: Solid State Physics Problem Sheet

MP464: Solid State Physics Problem Sheet MP464: Solid State Physics Problem Sheet 1) Write down primitive lattice vectors for the -dimensional rectangular lattice, with sides a and b in the x and y-directions respectively, and a face-centred

More information

SURFACE ACOUSTIC WAVE FERROELECTRIC PHONONIC CRYSTAL TUNABLE BY ELECTRIC FIELD

SURFACE ACOUSTIC WAVE FERROELECTRIC PHONONIC CRYSTAL TUNABLE BY ELECTRIC FIELD NANOSYSTEMS: PHYSICS, CHEMISTRY, MATHEMATICS, 2013, 4 (5), P. 630 634 SURFACE ACOUSTIC WAVE FERROELECTRIC PHONONIC CRYSTAL TUNABLE BY ELECTRIC FIELD V. P. Pashchenko 1,2 1 Saint Petersburg State Polytechnical

More information

Measuring the Universal Gravitational Constant, G

Measuring the Universal Gravitational Constant, G Measuring the Universal Gravitational Constant, G Introduction: The universal law of gravitation states that everything in the universe is attracted to everything else. It seems reasonable that everything

More information

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves.

Lecture 17. Mechanical waves. Transverse waves. Sound waves. Standing Waves. Lecture 17 Mechanical waves. Transverse waves. Sound waves. Standing Waves. What is a wave? A wave is a traveling disturbance that transports energy but not matter. Examples: Sound waves (air moves back

More information

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16.

NDT&E Methods: UT. VJ Technologies CAVITY INSPECTION. Nondestructive Testing & Evaluation TPU Lecture Course 2015/16. CAVITY INSPECTION NDT&E Methods: UT VJ Technologies NDT&E Methods: UT 6. NDT&E: Introduction to Methods 6.1. Ultrasonic Testing: Basics of Elasto-Dynamics 6.2. Principles of Measurement 6.3. The Pulse-Echo

More information

Waves Part 1: Travelling Waves

Waves Part 1: Travelling Waves Waves Part 1: Travelling Waves Last modified: 15/05/2018 Links Contents Travelling Waves Harmonic Waves Wavelength Period & Frequency Summary Example 1 Example 2 Example 3 Example 4 Transverse & Longitudinal

More information

Chiroptical Spectroscopy

Chiroptical Spectroscopy Chiroptical Spectroscopy Theory and Applications in Organic Chemistry Lecture 2: Polarized light Masters Level Class (181 041) Mondays, 8.15-9.45 am, NC 02/99 Wednesdays, 10.15-11.45 am, NC 02/99 28 Electromagnetic

More information

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones

Physics General Physics. Lecture 24 Oscillating Systems. Fall 2016 Semester Prof. Matthew Jones Physics 22000 General Physics Lecture 24 Oscillating Systems Fall 2016 Semester Prof. Matthew Jones 1 2 Oscillating Motion We have studied linear motion objects moving in straight lines at either constant

More information