Classical Theory of Harmonic Crystals

Size: px
Start display at page:

Download "Classical Theory of Harmonic Crystals"

Transcription

1 Classical Theory of Harmonic Crystals HARMONIC APPROXIMATION The Hamiltonian of the crystal is expressed in terms of the kinetic energies of atoms and the potential energy. In calculating the potential energy, we use the assumptions: 1. The mean equilibrium position of each ion is a Bravais lattice site R. 2. Ions oscillate about their equilibrium positions with amplitudes small compared with the interionic spacing. The total potential of the crystal is the sum of all pair potentials: Use Taylor expansion: ( ) ( ) The first term is the equilibrium potential energy: The second term in equation (4) vanishes since the coefficient of each displacement is simply the negative of the sum of all forces acting on an atom at its equilibrium position: The third term is the harmonic contribution to the potential energy: 1

2 [ ] [ ] Equation (7) can be rewritten in a more compact form: This is a more useful form since the coefficients D μν cannot be always represented by pair potentials (except in the simple case of crystals of noble gases). ADIABATIC APPROXIMATION In ionic crystals, the long-range coulomb interaction makes it difficult to calculate the coefficients D μν. In covalent crystals and metals, the ionic motion is coupled to the motion of the valence electrons, the wave functions of which depend on the positions of the ion cores. The adiabatic approximation is based on the fact that valence electrons move much faster than the ion cores (10 8 cm/s vs cm/s). Thus the ion cores can be considered instantaneously at rest with displacements u(r) from their equilibrium positions, and the electron configuration is calculated and the additional energy due to electron-ion interactions computed and added. This is a difficult problem, and more practically, the coefficients can be regarded as empirical parameters to be determined by experiment. SPECIFIC HEAT To determine the specific heat per unit volume for a solid, we first calculate its energy density. Using the canonical ensemble, this is given by: Here β = k BT, and Q is the partition function given by the integral over phase space: The energy H of the system is given by equations (1) and (8). The partition function is then given by: [ ( )] Change of variables: 2

3 With this definition, equation (11) becomes: [ ( )] Thus equation (9) yields: The specific heat at constant volume (constant ionic number per unit volume) is then: The specific heat per ion is simply 3k B, which is the famous Dulong-Petit law. The molar specific heat for a monatomic solid is given by: Note: Naively speaking, the expansion of the solid due to crystal vibrations results from an-harmonic contributions to the energy which are very small (and ignored in our previous analysis). Ignoring such contributions leaves the volume of the solid constant, and the specific heat at constant pressure is identical to that at constant volume. An-harmonic contributions become more significant with increasing temperature due to the increase of vibrational amplitudes, and the consequent deviation of the crystal potential from the harmonic form. At room temperature, the specific heat at constant pressure is within 1% of the specific heat at constant volume. The difference between the two specific heats becomes much less than 1% at low temperatures. The experimental specific heat of a typical monatomic solid (such as argon, krypton, or xenon) is shown in Fig. 1. The specific heat approaches the Dulong-Petit value at temperatures above 100 K. The deviation of the high temperature experimental value from the theoretical value can be explained classically as due to failure of the harmonic approximation in this temperature range, since neglected an-harmonic effects become appreciable. However, at low temperatures where the harmonic approximation is expected to hold quite well, the specific heat drops sharply toward zero, 10 which indicates the inadequacy of classical treatment. However, before resorting to a quantum theory of T (K) 80 lattice vibrations, we can make use of the classical Fig. 1: Measured specific heat for Ar solid 3 CV (J/mole.K)

4 theory due to the resemblance of the quantum energies to the classical energies of the 3N modes of vibrations of N oscillators in a harmonic crystal as determined using the theory of small oscillations. The only modification we make is the replacement of the energy (nhν) of a classical vibrational mode by the correct phonon quantum energy (n + ½)hν. Therefore, we next consider the analysis of classical normal modes of lattice vibrations. ONE DIMENSINAL MONATOMIC LATTICE First consider N ions of mass M each, positioned along a line at the equilibrium positions na, and vibrate with small amplitudes about these positions. In the case of nearest neighbor interactions, equation (7) reduces to the form: Notice that each term in the sum occurs twice due to the sum over m. This equation therefore reduces to the form: The force constant K is the second derivative of the interaction potential of two adjacent ions. The equations of motion are constructed from the potential in (17): [( ) ( )] [ ] Since the number of ions is very large, the end points can be ignored, and we can use Born-von Karman boundary conditions for mathematical convenience, and thus in solving (18) we use: We look for propagating wave solution of (18) of the form: The periodic boundary conditions in (19) indicate that: Equation (20) indicates that k and (k + 2π/a) give the same solution. Therefore the full range of k is (2π/a) which is spanned by N distinct wave vectors. Since waves can propagate in either the right or left directions, the full range of wave vectors can be chosen to be between π/a and +π/a for reasons that will be clear shortly. 4

5 With the solution given by (20), the equation of motion (18) reads: [ ] [ ] [ ] Equation (22) is used to determine the normal mode frequencies of the chain, which are given by: [ ] ( ) ( ) Notice that ω( k) = ω(k), thus the above mentioned choice for the zone boundaries is valid and displays the symmetry of the dispersion relation. There are N normal modes corresponding to the N distinct values of k. The dispersion relation (23) is shown in Fig. 2. The physical motion of the chain is described by: { } ω(k) These two solutions differ in phase by π/2. The general solution is determined by specifying N initial positions of the ions, and their initial velocities. The phase and group velocities of propagating waves are: ω ( ) The group velocity starts with a constant value near the origin (the long wavelength limit) and decreases to zero at the zone boundaries when the wavelength π/a 0 π/a Fig. 2: Dispersion curve for a monatomic linear chain. The straight lines represent the curve ω = ck. becomes comparable with the interionic spacings. In the long wavelength limit the phase velocity and group velocity are equal (= aω 0/2). The number of modes in the frequency range dω is given in terms of density of normal mode frequencies by: k Here k varies between 0 and π/a. The factor 2 is due to the fact that each frequency corresponds to 2- k points ( k and +k). We therefore obtain the density of normal mode frequencies as: ( ) 5

6 Using equation (25) and (23) we obtain: G(ω) ( ) ( ) Combining these last two equations we obtain: [ ] 0 ω 0 Fig. 3: Density of normal modes for a monatomic linear ω Fig. 3 shows the density of normal modes. Notice that in the long wavelength limit the density of modes is constant, and then starts rising with frequency, and diverges at the maximum frequency. ONE DIMENSINAL DIATOMIC LATTICE In this chain, the two ions per primitive cell are identical and situated at positions na and na + d. If d < a/2, then the interaction between the two ions separated by d is different from that between two ions separated by (d a), leading to two different force constants. Fig. 4 shows the chain in this case. d na a (n+1) a Fig. 4: One-dimensional diatomic chain The harmonic potential energy for the chain, assuming nearest neighbor interactions only, is: [ ] [ ] In this equation we have the following assignments: u n the displacement of the first ion in the basis with equilibrium position at na. s n the displacement of the second ion in the basis with equilibrium position at na + d. u n+1 the displacement of the first ion in the basis with equilibrium position at (n+ 1)a. 6

7 K 1 K 2 the force constant between ions separated by d in the same cell. the force constant between ions separated by a d in adjacent cells. The equations of motion for the two basis ions are: [ ] [ ] [ ] [ ] We seek solutions of equation (31) of the form: Born-von Karman boundary conditions again give the N values of k given by equation (21). Substituting (32) into (31) leads to the two coupled equations: [ ] [ ] [ ] [ ] Solution is the obtained by setting the determinant of the coefficients A and B equal to zero: [ ] [ ] [ ] Solving this equation gives: Substituting these values into (33) gives the ratios of the amplitudes: [ ] 7

8 For each k value, there are two characteristic frequencies, giving a total of 2N normal modes characteristic of the 2N degrees of freedom. The two branches of the dispersion curve are shown in Fig. 5. The acoustic branch starts from zero frequency and goes up to a maximum frequency at the zone boundary as shown. This branch exhibits characteristics similar to sound waves in the long wavelength limit. The optical branch starts from a maximum frequency and goes down to a minimum frequency at the zone boundary. This minimum frequency, however, is higher than the maximum frequency of the acoustic branch, leading to a band gap at the zone boundary. In the long wavelength limit, the optical modes can interact with electromagnetic fields, and give rise to the characteristic optical properties of ionic crystals. 1. Long wavelength limit: k π/a: π/a 0 ω(k) K K M Fig. 5: Dispersion curves for a diatomic linear chain π/a K K k M M In this limit, ions in neighboring cells move in phase as indicated by equation (32). In the acoustic branch (Fig. 6) the two ions in a cell also move in phase according to equation (37), resulting in zero frequency at k = 0 (the translational mode). Fig. 6: The long wavelength acoustic mode for a onedimensional diatomic chain In the optical branch, however, the two ions in a cell move out of phase (Fig. 7), resulting in stretching and compressing both springs consistent with (38). 8

9 Fig. 7: The long wavelength optical mode for a onedimensional diatomic chain 2. Short wavelength limit: k = π/a: Here the ions in neighboring cells move out of phase. The ions in a cell for the acoustic mode move together, resulting in stretching and compressing spring K 2 (Fig. 8). Fig. 8: The short wavelength acoustic mode for a onedimensional diatomic chain In the optical mode, however, the two ions in a cell move out of phase, resulting in stretching and compressing spring K 1 (Fig. 9). Fig. 9: The short wavelength acoustic mode for a onedimensional diatomic chain 3. Weak interaction between neighboring cells: K 1 K 2: In this limit, equation (35), to leading order, reduces to the form: Since the second term under the square root is small compared to 1, to leading order we have: 9

10 ( ) (1) For the optical mode we then have (with the + sign): Notice that this equation is consistent with (38) for ka = 0. The dispersion relation for this mode is then given by: [ ] This dispersion relation differs from that for a single diatomic molecule by (K 2/4K 1) times the k- dependent factor in parentheses. This factor leads to a shallow optical band spreading from the value ω 0 at the zone boundary to the value ω 0(1 + K 2/2K 1) at k = 0. This small broadening is a consequence of weak coupling between the molecular vibrations in neighboring cells. (2) For the acoustic mode we then have (with the ve sign): The dispersion relation in this case is then given by: This is the dispersion relation of a linear chain of monatomic ions with mass 2M each, connected by springs of the type K 2 (compare the result with (23). Comparing the behavior of the optical and acoustic branches we conclude the following: 10

11 a. In the acoustic mode the basis ions in a primitive cell move in phase, and the dynamics of crystal vibration is dominated by intercellular interactions (between the cells). b. In the optical branch the dynamics of crystal vibration is dominated by intracellular molecular vibrational mode within each primitive cell, which is broadened by intercellular weak interactions. This behavior is similar to the shallow bands obtained in the tight binding model for electronic states as shown in Fig. 10. Generalization to three dimensions The modes discussed above are the longitudinal modes of vibrations. If transverse motion is investigated, it is found to produce similar transverse modes with shallower bands. Crystal symmetries may lead to degeneracies of these bands. The general dispersion curves for a crystal with two ions per primitive cell in a general direction of k (which is not a high symmetry direction) is shown in Fig. 11 in the case of strong intracellular interactions compared to intercellular interactions. π/a 0 ω(k) Fig. 10: Dispersion curves for a diatomic linear chain in tight binding limit 0 K K M ω(k) π/a K K k M M k Fig. 11: Dispersion curves for a diatomic linear chain in tight binding limit 11

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W

Lattice Vibrations. Chris J. Pickard. ω (cm -1 ) 200 W L Γ X W K K W Lattice Vibrations Chris J. Pickard 500 400 300 ω (cm -1 ) 200 100 L K W X 0 W L Γ X W K The Breakdown of the Static Lattice Model The free electron model was refined by introducing a crystalline external

More information

Solid State Physics. Lecturer: Dr. Lafy Faraj

Solid State Physics. Lecturer: Dr. Lafy Faraj Solid State Physics Lecturer: Dr. Lafy Faraj CHAPTER 1 Phonons and Lattice vibration Crystal Dynamics Atoms vibrate about their equilibrium position at absolute zero. The amplitude of the motion increases

More information

4. Thermal properties of solids. Time to study: 4 hours. Lecture Oscillations of the crystal lattice

4. Thermal properties of solids. Time to study: 4 hours. Lecture Oscillations of the crystal lattice 4. Thermal properties of solids Time to study: 4 hours Objective After studying this chapter you will get acquainted with a description of oscillations of atoms learn how to express heat capacity for different

More information

An Introduction to Lattice Vibrations

An Introduction to Lattice Vibrations An Introduction to Lattice Vibrations Andreas Wacker 1 Mathematical Physics, Lund University November 3, 2015 1 Introduction Ideally, the atoms in a crystal are positioned in a regular manner following

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MIT OpenCourseWare http://ocw.mit.edu 5.62 Physical Chemistry II Spring 2008 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 5.62 Spring 2008 Lecture

More information

Phonons I - Crystal Vibrations (Kittel Ch. 4)

Phonons I - Crystal Vibrations (Kittel Ch. 4) Phonons I - Crystal Vibrations (Kittel Ch. 4) Displacements of Atoms Positions of atoms in their perfect lattice positions are given by: R 0 (n 1, n 2, n 3 ) = n 10 x + n 20 y + n 30 z For simplicity here

More information

Phonons and lattice dynamics

Phonons and lattice dynamics Chapter Phonons and lattice dynamics. Vibration modes of a cluster Consider a cluster or a molecule formed of an assembly of atoms bound due to a specific potential. First, the structure must be relaxed

More information

Non-Continuum Energy Transfer: Phonons

Non-Continuum Energy Transfer: Phonons Non-Continuum Energy Transfer: Phonons D. B. Go Slide 1 The Crystal Lattice The crystal lattice is the organization of atoms and/or molecules in a solid simple cubic body-centered cubic hexagonal a NaCl

More information

Quantum Condensed Matter Physics Lecture 5

Quantum Condensed Matter Physics Lecture 5 Quantum Condensed Matter Physics Lecture 5 detector sample X-ray source monochromator David Ritchie http://www.sp.phy.cam.ac.uk/drp2/home QCMP Lent/Easter 2019 5.1 Quantum Condensed Matter Physics 1. Classical

More information

3. LATTICE VIBRATIONS. 3.1 Sound Waves

3. LATTICE VIBRATIONS. 3.1 Sound Waves 3. LATTIC VIBRATIONS Atoms in lattice are not stationary even at T 0K. They vibrate about particular equilibrium positions at T 0K ( zero-point energy). For T > 0K, vibration amplitude increases as atoms

More information

FYS Vår 2015 (Kondenserte fasers fysikk)

FYS Vår 2015 (Kondenserte fasers fysikk) FYS410 - Vår 015 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys410/v15/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9 and 17, 18, 0)

More information

Summary: Thermodynamic Potentials and Conditions of Equilibrium

Summary: Thermodynamic Potentials and Conditions of Equilibrium Summary: Thermodynamic Potentials and Conditions of Equilibrium Isolated system: E, V, {N} controlled Entropy, S(E,V{N}) = maximum Thermal contact: T, V, {N} controlled Helmholtz free energy, F(T,V,{N})

More information

Phonons (Classical theory)

Phonons (Classical theory) Phonons (Classical theory) (Read Kittel ch. 4) Classical theory. Consider propagation of elastic waves in cubic crystal, along [00], [0], or [] directions. Entire plane vibrates in phase in these directions

More information

Crystals. Peter Košovan. Dept. of Physical and Macromolecular Chemistry

Crystals. Peter Košovan. Dept. of Physical and Macromolecular Chemistry Crystals Peter Košovan peter.kosovan@natur.cuni.cz Dept. of Physical and Macromolecular Chemistry Lecture 1, Statistical Thermodynamics, MC26P15, 5.1.216 If you find a mistake, kindly report it to the

More information

Structure and Dynamics : An Atomic View of Materials

Structure and Dynamics : An Atomic View of Materials Structure and Dynamics : An Atomic View of Materials MARTIN T. DOVE Department ofearth Sciences University of Cambridge OXFORD UNIVERSITY PRESS Contents 1 Introduction 1 1.1 Observations 1 1.1.1 Microscopic

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 5: Specific Heat of Lattice Waves Outline Review Lecture 4 3-D Elastic Continuum 3-D Lattice Waves Lattice Density of Modes Specific Heat of Lattice Specific

More information

PHYSICS 219 Homework 2 Due in class, Wednesday May 3. Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235.

PHYSICS 219 Homework 2 Due in class, Wednesday May 3. Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235. PHYSICS 219 Homework 2 Due in class, Wednesday May 3 Note: Makeup lectures on Friday May 12 and 19, usual time. Location will be ISB 231 or 235. No lecture: May 8 (I m away at a meeting) and May 29 (holiday).

More information

Topic 5-1: Introduction to Phonons Kittel pages: 91, 92

Topic 5-1: Introduction to Phonons Kittel pages: 91, 92 Topic 5-1: Introduction to Phonons Kittel pages: 91, 92 Summary: In this video we introduce the concept that atoms are not rigid, fixed points within the lattice. Instead we treat them as quantum harmonic

More information

MP464: Solid State Physics Problem Sheet

MP464: Solid State Physics Problem Sheet MP464: Solid State Physics Problem Sheet 1) Write down primitive lattice vectors for the -dimensional rectangular lattice, with sides a and b in the x and y-directions respectively, and a face-centred

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term 2013 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.044 Statistical Physics I Spring Term 2013 Problem 1: The Big Bang Problem Set #9 Due in hand-in box by 4;00 PM, Friday, April 19 Early in the

More information

Dispersion relation for transverse waves in a linear chain of particles

Dispersion relation for transverse waves in a linear chain of particles Dispersion relation for transverse waves in a linear chain of particles V. I. Repchenkov* It is difficult to overestimate the importance that have for the development of science the simplest physical and

More information

6.730 Physics for Solid State Applications

6.730 Physics for Solid State Applications 6.730 Physics for Solid State Applications Lecture 8: Lattice Waves in 1D Monatomic Crystals Outline Overview of Lattice Vibrations so far Models for Vibrations in Discrete 1-D Lattice Example of Nearest

More information

introduction of thermal transport

introduction of thermal transport Subgroup meeting 2010.12.07 introduction of thermal transport members: 王虹之. 盧孟珮 introduction of thermal transport Phonon effect Electron effect Lattice vibration phonon Debye model of lattice vibration

More information

Physics 541: Condensed Matter Physics

Physics 541: Condensed Matter Physics Physics 541: Condensed Matter Physics In-class Midterm Exam Wednesday, October 26, 2011 / 14:00 15:20 / CCIS 4-285 Student s Name: Instructions There are 23 questions. You should attempt all of them. Mark

More information

Physics 211B : Problem Set #0

Physics 211B : Problem Set #0 Physics 211B : Problem Set #0 These problems provide a cross section of the sort of exercises I would have assigned had I taught 211A. Please take a look at all the problems, and turn in problems 1, 4,

More information

Lecture 12: Phonon heat capacity

Lecture 12: Phonon heat capacity Lecture 12: Phonon heat capacity Review o Phonon dispersion relations o Quantum nature of waves in solids Phonon heat capacity o Normal mode enumeration o Density of states o Debye model Review By considering

More information

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation:

Physics 213. Practice Final Exam Spring The next two questions pertain to the following situation: The next two questions pertain to the following situation: Consider the following two systems: A: three interacting harmonic oscillators with total energy 6ε. B: two interacting harmonic oscillators, with

More information

MP464: Solid State Physics Problem Sheet

MP464: Solid State Physics Problem Sheet MP464: Solid State Physics Problem Sheet 1 Write down primitive lattice vectors for the -dimensional rectangular lattice, with sides a and b in the x and y-directions respectively, and a face-centred rectangular

More information

Phonons Thermal energy Heat capacity Einstein model Density of states Debye model Anharmonic effects Thermal expansion Thermal conduction by phonons

Phonons Thermal energy Heat capacity Einstein model Density of states Debye model Anharmonic effects Thermal expansion Thermal conduction by phonons 3b. Lattice Dynamics Phonons Thermal energy Heat capacity Einstein model Density of states Debye model Anharmonic effects Thermal expansion Thermal conduction by phonons Neutron scattering G. Bracco-Material

More information

16.1 Molecular Vibrations

16.1 Molecular Vibrations 16.1 Molecular Vibrations molecular degrees of freedom are used to predict the number of vibrational modes vibrations occur as coordinated movement among many nuclei the harmonic oscillator approximation

More information

Lecture 11: Periodic systems and Phonons

Lecture 11: Periodic systems and Phonons Lecture 11: Periodic systems and Phonons Aims: Mainly: Vibrations in a periodic solid Complete the discussion of the electron-gas Astrophysical electrons Degeneracy pressure White dwarf stars Compressibility/bulk

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2009 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2009 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 Spring 2009 POP QUIZ

More information

Lecture 2. Contents. 1 Fermi s Method 2. 2 Lattice Oscillators 3. 3 The Sine-Gordon Equation 8. Wednesday, August 28

Lecture 2. Contents. 1 Fermi s Method 2. 2 Lattice Oscillators 3. 3 The Sine-Gordon Equation 8. Wednesday, August 28 Lecture 2 Wednesday, August 28 Contents 1 Fermi s Method 2 2 Lattice Oscillators 3 3 The Sine-Gordon Equation 8 1 1 Fermi s Method Feynman s Quantum Electrodynamics refers on the first page of the first

More information

3- APPROXIMATIONS USED IN THE THEORY OF LATTICE DYNAMICS

3- APPROXIMATIONS USED IN THE THEORY OF LATTICE DYNAMICS 45 3- APPROXIMATIONS USED IN THE THEORY OF LATTICE DYNAMICS 3.1 INTRODUCTION:- The theoretical and experimental study of lattice dynamical problem has been of interest to physicists for understanding the

More information

I. Collective Behavior, From Particles to Fields

I. Collective Behavior, From Particles to Fields I. Collective Behavior, From Particles to Fields I.A Introduction The object of the first part of this course was to introduce the principles of statistical mechanics which provide a bridge between the

More information

Handout 10. Applications to Solids

Handout 10. Applications to Solids ME346A Introduction to Statistical Mechanics Wei Cai Stanford University Win 2011 Handout 10. Applications to Solids February 23, 2011 Contents 1 Average kinetic and potential energy 2 2 Virial theorem

More information

The Oxford Solid State Basics

The Oxford Solid State Basics The Oxford Solid State Basics Steven H. Simon University of Oxford OXFORD UNIVERSITY PRESS Contents 1 About Condensed Matter Physics 1 1.1 What Is Condensed Matter Physics 1 1.2 Why Do We Study Condensed

More information

Solid State Physics II Lattice Dynamics and Heat Capacity

Solid State Physics II Lattice Dynamics and Heat Capacity SEOUL NATIONAL UNIVERSITY SCHOOL OF PHYSICS http://phya.snu.ac.kr/ ssphy2/ SPRING SEMESTER 2004 Chapter 3 Solid State Physics II Lattice Dynamics and Heat Capacity Jaejun Yu jyu@snu.ac.kr http://phya.snu.ac.kr/

More information

Concepts for Specific Heat

Concepts for Specific Heat Concepts for Specific Heat Andreas Wacker 1 Mathematical Physics, Lund University August 17, 018 1 Introduction These notes shall briefly explain general results for the internal energy and the specific

More information

Atoms, electrons and Solids

Atoms, electrons and Solids Atoms, electrons and Solids Shell model of an atom negative electron orbiting a positive nucleus QM tells that to minimize total energy the electrons fill up shells. Each orbit in a shell has a specific

More information

Chemistry 365: Normal Mode Analysis David Ronis McGill University

Chemistry 365: Normal Mode Analysis David Ronis McGill University Chemistry 365: Normal Mode Analysis David Ronis McGill University 1. Quantum Mechanical Treatment Our starting point is the Schrodinger wave equation: Σ h 2 2 2m i N i=1 r 2 i + U( r 1,..., r N ) Ψ( r

More information

SURFACE WAVES & DISPERSION

SURFACE WAVES & DISPERSION SEISMOLOGY Master Degree Programme in Physics - UNITS Physics of the Earth and of the Environment SURFACE WAVES & DISPERSION FABIO ROMANELLI Department of Mathematics & Geosciences University of Trieste

More information

Infrared Spectroscopy

Infrared Spectroscopy Infrared Spectroscopy The Interaction of Light with Matter Electric fields apply forces to charges, according to F = qe In an electric field, a positive charge will experience a force, but a negative charge

More information

1+e θvib/t +e 2θvib/T +

1+e θvib/t +e 2θvib/T + 7Mar218 Chemistry 21b Spectroscopy & Statistical Thermodynamics Lecture # 26 Vibrational Partition Functions of Diatomic Polyatomic Molecules Our starting point is again the approximation that we can treat

More information

Collective behavior, from particles to fields

Collective behavior, from particles to fields 978-0-51-87341-3 - Statistical Physics of Fields 1 Collective behavior, from particles to fields 1.1 Introduction One of the most successful aspects of physics in the twentieth century was revealing the

More information

Chapter 4: Summary. Solve lattice vibration equation of one atom/unitcellcase Consider a set of ions M separated by a distance a,

Chapter 4: Summary. Solve lattice vibration equation of one atom/unitcellcase Consider a set of ions M separated by a distance a, Chapter 4: Summary Solve lattice vibration equation of one atom/unitcellcase case. Consider a set of ions M separated by a distance a, R na for integral n. Let u( na) be the displacement. Assuming only

More information

(a) What are the probabilities associated with finding the different allowed values of the z-component of the spin after time T?

(a) What are the probabilities associated with finding the different allowed values of the z-component of the spin after time T? 1. Quantum Mechanics (Fall 2002) A Stern-Gerlach apparatus is adjusted so that the z-component of the spin of an electron (spin-1/2) transmitted through it is /2. A uniform magnetic field in the x-direction

More information

Lecture contents. A few concepts from Quantum Mechanics. Tight-binding model Solid state physics review

Lecture contents. A few concepts from Quantum Mechanics. Tight-binding model Solid state physics review Lecture contents A few concepts from Quantum Mechanics Particle in a well Two wells: QM perturbation theory Many wells (atoms) BAND formation Tight-binding model Solid state physics review Approximations

More information

30 Photons and internal motions

30 Photons and internal motions 3 Photons and internal motions 353 Summary Radiation field is understood as a collection of quantized harmonic oscillators. The resultant Planck s radiation formula gives a finite energy density of radiation

More information

Physics 607 Final Exam

Physics 607 Final Exam Physics 607 Final Exam Please be well-organized, and show all significant steps clearly in all problems. You are graded on your work, so please do not just write down answers with no explanation! Do all

More information

Phonons II - Thermal Properties (Kittel Ch. 5)

Phonons II - Thermal Properties (Kittel Ch. 5) Phonons II - Thermal Properties (Kittel Ch. 5) Heat Capacity C T 3 Approaches classical limit 3 N k B T Physics 460 F 2006 Lect 10 1 Outline What are thermal properties? Fundamental law for probabilities

More information

PHY 140A: Solid State Physics. Solution to Midterm #2

PHY 140A: Solid State Physics. Solution to Midterm #2 PHY 140A: Solid State Physics Solution to Midterm #2 TA: Xun Jia 1 December 4, 2006 1 Email: jiaxun@physics.ucla.edu Problem #1 (20pt)(20 points) Use the equation dp dt + p = ee for the electron momentum,

More information

5.62 Physical Chemistry II Spring 2008

5.62 Physical Chemistry II Spring 2008 MI OpenCourseWare http://ocw.mit.edu 5.6 Physical Chemistry II Spring 008 For information about citing these materials or our erms of Use, visit: http://ocw.mit.edu/terms. 5.6 Spring 008 Lecture Summary

More information

Thermodynamics & Statistical Mechanics

Thermodynamics & Statistical Mechanics hysics GRE: hermodynamics & Statistical Mechanics G. J. Loges University of Rochester Dept. of hysics & Astronomy xkcd.com/66/ c Gregory Loges, 206 Contents Ensembles 2 Laws of hermodynamics 3 hermodynamic

More information

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between:

Physics with Neutrons I, WS 2015/2016. Lecture 11, MLZ is a cooperation between: Physics with Neutrons I, WS 2015/2016 Lecture 11, 11.1.2016 MLZ is a cooperation between: Organization Exam (after winter term) Registration: via TUM-Online between 16.11.2015 15.1.2015 Email: sebastian.muehlbauer@frm2.tum.de

More information

Lecture 12 Debye Theory

Lecture 12 Debye Theory Lecture 12 Debye Theory 12.1 Background As an improvement over the Einstein model, we now account for interactions between particles they are really coupled together by springs. Consider the 3N normal

More information

The one-dimensional monatomic solid

The one-dimensional monatomic solid Chapter 5 The one-dimensional monatomic solid In the first few chapters we found that our simple models of solids, and electrons in solids, were insufficient in several ways. In order to improve our understanding,

More information

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them

THEORY OF MOLECULE. A molecule consists of two or more atoms with certain distances between them THEORY OF MOLECULE A molecule consists of two or more atoms with certain distances between them through interaction of outer electrons. Distances are determined by sum of all forces between the atoms.

More information

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 9, February 8, 2006

Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer. Lecture 9, February 8, 2006 Chem 3502/4502 Physical Chemistry II (Quantum Mechanics) 3 Credits Spring Semester 2006 Christopher J. Cramer Lecture 9, February 8, 2006 The Harmonic Oscillator Consider a diatomic molecule. Such a molecule

More information

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #9.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Statistical Physics I Spring Term Solutions to Problem Set #9. MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department 8.44 Statistical Physics I Spring Term 3 Problem : The Big Bang Solutions to Problem Set #9 If the expansion is adiabatic, S =. ( ) F S = T ( V

More information

Micron School of Materials Science and Engineering. Problem Set 9 Solutions

Micron School of Materials Science and Engineering. Problem Set 9 Solutions Problem Set 9 Solutions 1. Mobility in extrinsic semiconductors is affected by phonon scattering and impurity scattering. Thoroughly explain the mobility plots for the following figures from your textbook

More information

Measurement p. 1 What Is Physics? p. 2 Measuring Things p. 2 The International System of Units p. 2 Changing Units p. 3 Length p. 4 Time p. 5 Mass p.

Measurement p. 1 What Is Physics? p. 2 Measuring Things p. 2 The International System of Units p. 2 Changing Units p. 3 Length p. 4 Time p. 5 Mass p. Measurement p. 1 What Is Physics? p. 2 Measuring Things p. 2 The International System of Units p. 2 Changing Units p. 3 Length p. 4 Time p. 5 Mass p. 7 Review & Summary p. 8 Problems p. 8 Motion Along

More information

ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 30, 2009 This afternoon s plan

ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 30, 2009 This afternoon s plan ab initio Lattice Vibrations: Calculating the Thermal Expansion Coeffcient Felix Hanke & Martin Fuchs June 3, 29 This afternoon s plan introductory talk Phonons: harmonic vibrations for solids Phonons:

More information

BIBECHANA A Multidisciplinary Journal of Science, Technology and Mathematics

BIBECHANA A Multidisciplinary Journal of Science, Technology and Mathematics S.R.B. Thapa / BIBECHANA 9 (2013) 13-17 : BMHSS, p.13 (Online Publication: Nov., 2012) BIBECHANA A Multidisciplinary Journal of Science, Technology and Mathematics ISSN 2091-0762 (online) Journal homepage:

More information

PHONON HEAT CAPACITY

PHONON HEAT CAPACITY Solid State Physics PHONON HEAT CAPACITY Lecture 11 A.H. Harker Physics and Astronomy UCL 4.5 Experimental Specific Heats Element Z A C p Element Z A C p J K 1 mol 1 J K 1 mol 1 Lithium 3 6.94 24.77 Rhenium

More information

Queen s University Belfast. School of Mathematics and Physics

Queen s University Belfast. School of Mathematics and Physics Queen s University Belfast School of Mathematics and Physics PHY3012 SOLID STATE PHYSICS A T Paxton, November 2012 Books The primary textbook for this course is H Ibach and H Lüth, Solid State Physics,

More information

Supplementary Information

Supplementary Information Supplementary Information Ballistic Thermal Transport in Carbyne and Cumulene with Micron-Scale Spectral Acoustic Phonon Mean Free Path Mingchao Wang and Shangchao Lin * Department of Mechanical Engineering,

More information

Born-Oppenheimer Approximation

Born-Oppenheimer Approximation Born-Oppenheimer Approximation Adiabatic Assumption: Nuclei move so much more slowly than electron that the electrons that the electrons are assumed to be obtained if the nuclear kinetic energy is ignored,

More information

5.1 Classical Harmonic Oscillator

5.1 Classical Harmonic Oscillator Chapter 5 Harmonic Oscillator 5.1 Classical Harmonic Oscillator m l o l Hooke s Law give the force exerting on the mass as: f = k(l l o ) where l o is the equilibrium length of the spring and k is the

More information

Light Waves and Polarization

Light Waves and Polarization Light Waves and Polarization Xavier Fernando Ryerson Communications Lab http://www.ee.ryerson.ca/~fernando The Nature of Light There are three theories explain the nature of light: Quantum Theory Light

More information

Problems for Solid State Physics (3rd year course B.VI) A. Ardavan and T. Hesjedal

Problems for Solid State Physics (3rd year course B.VI) A. Ardavan and T. Hesjedal 1 Problems for Solid State Physics (3rd year course B.VI) A. Ardavan and T. Hesjedal These problems are based substantially on those prepared and distributed by Prof S.H. Simon in Hilary Term 2015. Suggested

More information

M.Sc. (Final) DEGREE EXAMINATION, MAY Second Year Physics

M.Sc. (Final) DEGREE EXAMINATION, MAY Second Year Physics Physics Paper - V : ELECTROMAGNETIC THEORY AND MODERN OPTICS (DPHY 21) Answer any Five questions 1) Discuss the phenomenon of reflection and refraction of electromagnetic waves at a plane interface between

More information

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5

PH575 Spring Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 Spring 2014 Lecture #26 & 27 Phonons: Kittel Ch. 4 & 5 PH575 POP QUIZ Phonons are: A. Fermions B. Bosons C. Lattice vibrations D. Light/matter interactions PH575 POP QUIZ Phonon dispersion relation:

More information

STRUCTURE OF MATTER, VIBRATIONS & WAVES and QUANTUM PHYSICS

STRUCTURE OF MATTER, VIBRATIONS & WAVES and QUANTUM PHYSICS UNIVERSITY OF LONDON BSc/MSci EXAMINATION June 2007 for Internal Students of Imperial College of Science, Technology and Medicine This paper is also taken for the relevant Examination for the Associateship

More information

EXPERIMENT 3. HEAT-CAPACITY RATIOS FOR GASES

EXPERIMENT 3. HEAT-CAPACITY RATIOS FOR GASES EXERIMENT 3. HEAT-CAACITY RATIOS FOR GASES The ratio Cp/Cv of the heat capacity of a gas at constant pressure to that at constant volume will be determined by either the method of adiabatic expansion.

More information

Introduction to solid state physics

Introduction to solid state physics PHYS 342/555 Introduction to solid state physics Instructor: Dr. Pengcheng Dai Professor of Physics The University of Tennessee (Room 407A, Nielsen, 974-1509) Chapter 5: Thermal properties Lecture in pdf

More information

Lattice dynamics. Javier Junquera. Philippe Ghosez. Andrei Postnikov

Lattice dynamics. Javier Junquera. Philippe Ghosez. Andrei Postnikov Lattice dynamics Javier Junquera Philippe Ghosez Andrei Postnikov Warm up: a little bit of notation Greek characters ( ) refer to atoms within the unit cell Latin characters ( ) refer to the different

More information

Solutions for Homework 4

Solutions for Homework 4 Solutions for Homework 4 October 6, 2006 1 Kittel 3.8 - Young s modulus and Poison ratio As shown in the figure stretching a cubic crystal in the x direction with a stress Xx causes a strain e xx = δl/l

More information

Thermal Energy at the Nanoscale Homework Solution - Week 3

Thermal Energy at the Nanoscale Homework Solution - Week 3 Thermal Energy at the Nanoscale Homework Solution - Week 3 Spring 3. Graphene ZA mode specific heat (a) The cutoff wavevector K Q is found by equating the number of states in k-space within a circle of

More information

The Dulong-Petit (1819) rule for molar heat capacities of crystalline matter c v, predicts the constant value

The Dulong-Petit (1819) rule for molar heat capacities of crystalline matter c v, predicts the constant value I believe that nobody who has a reasonably reliable sense for the experimental test of a theory will be able to contemplate these results without becoming convinced of the mighty logical power of the quantum

More information

Written Test A. [Solve three out of the following five problems.] ψ = B(x + y + 2z)e x 2 +y 2 +z 2

Written Test A. [Solve three out of the following five problems.] ψ = B(x + y + 2z)e x 2 +y 2 +z 2 Written Test A Solve three out of the following five problems.] Problem 1. A spinless particle is described by the wave function where B is a constant. ψ = B(x + y + z)e x +y +z 1. Determine the total

More information

Solid State Physics 1. Vincent Casey

Solid State Physics 1. Vincent Casey Solid State Physics 1 Vincent Casey Autumn 2017 Contents 1 Crystal Mechanics 1 1.1 Stress and Strain Tensors...................... 2 1.1.1 Physical Meaning...................... 6 1.1.2 Simplification

More information

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations

Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations Thermodynamics of Solids: Harmonic and Quasi-harmonic Approximations, USA, July 9-14, 2017 Alessandro Erba Dipartimento di Chimica, Università di Torino (Italy) alessandro.erba@unito.it 2017 Outline -

More information

b) Discuss the amplitude of electromagnetic waves on reflection and refraction at the boundary of a dielectric interface.

b) Discuss the amplitude of electromagnetic waves on reflection and refraction at the boundary of a dielectric interface. (DPHY 21) ASSIGNMENT - 1, DEC - 2018. PAPER- V : ELECTROMAGNETIC THEORY AND MODERN OPTICS 1) a)derive Fresnel equation. b) Discuss the amplitude of electromagnetic waves on reflection and refraction at

More information

Physical Chemistry - Problem Drill 01: Chemistry and Physics Review

Physical Chemistry - Problem Drill 01: Chemistry and Physics Review Physical Chemistry - Problem Drill 01: Chemistry and Physics Review No. 1 of 10 1. Chemical bonds are considered to be the interaction of their electronic structures of bonding atoms involved, with the

More information

van Quantum tot Molecuul

van Quantum tot Molecuul 10 HC10: Molecular and vibrational spectroscopy van Quantum tot Molecuul Dr Juan Rojo VU Amsterdam and Nikhef Theory Group http://www.juanrojo.com/ j.rojo@vu.nl Molecular and Vibrational Spectroscopy Based

More information

Chapter 3. Crystal Binding

Chapter 3. Crystal Binding Chapter 3. Crystal Binding Energy of a crystal and crystal binding Cohesive energy of Molecular crystals Ionic crystals Metallic crystals Elasticity What causes matter to exist in three different forms?

More information

Department of Physics, University of Maryland, College Park MIDTERM TEST

Department of Physics, University of Maryland, College Park MIDTERM TEST PHYSICS 731 Nov. 5, 2002 Department of Physics, University of Maryland, College Park Name: MIDTERM TEST Budget your time. Look at all 5 pages. Do the problems you find easiest first. 1. Consider a D-dimensional

More information

2. Fingerprints of Matter: Spectra

2. Fingerprints of Matter: Spectra 2. Fingerprints of Matter: Spectra 2.1 Measuring spectra: prism and diffraction grating Light from the sun: white light, broad spectrum (wide distribution) of wave lengths. 19th century: light assumed

More information

Q1. A) 53.3 cm/s B) 59.8 cm/s C) 77.5 cm/s D) 35.1 cm/s E) 44.7 cm/s. Ans: 1.6 Q2.

Q1. A) 53.3 cm/s B) 59.8 cm/s C) 77.5 cm/s D) 35.1 cm/s E) 44.7 cm/s. Ans: 1.6 Q2. Coordinator: Dr. W. Al-Basheer Wednesday, July 11, 2018 Page: 1 Q1. A string of 80.0 cm length is fixed at both ends. The string oscillates in the fundamental mode with a frequency of 60.0 Hz and a maximum

More information

Lecture 11 - Phonons II - Thermal Prop. Continued

Lecture 11 - Phonons II - Thermal Prop. Continued Phonons II - hermal Properties - Continued (Kittel Ch. 5) Low High Outline Anharmonicity Crucial for hermal expansion other changes with pressure temperature Gruneisen Constant hermal Heat ransport Phonon

More information

C1: One-dimensional phonon modes

C1: One-dimensional phonon modes C1: One-dimensional phonon modes Anders Blom Solid State Theory, Lund University March 001 1 Introduction The basic theory of phonons is covered in the lecture notes, which should be studied carefully

More information

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions

PHYS3113, 3d year Statistical Mechanics Tutorial problems. Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions 1 PHYS3113, 3d year Statistical Mechanics Tutorial problems Tutorial 1, Microcanonical, Canonical and Grand Canonical Distributions Problem 1 The macrostate probability in an ensemble of N spins 1/2 is

More information

SCIENCE VISION INSTITUTE For CSIR NET/JRF, GATE, JEST, TIFR & IIT-JAM Web:

SCIENCE VISION INSTITUTE For CSIR NET/JRF, GATE, JEST, TIFR & IIT-JAM Web: Test Series: CSIR NET/JRF Exam Physical Sciences Test Paper: Solid State Physics Instructions: 1. Attempt all Questions. Max Marks: 75 2. There is a negative marking of 1/4 for each wrong answer. 3. Each

More information

Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA SURFACE WAVES FABIO ROMANELLI

Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA SURFACE WAVES FABIO ROMANELLI Corso di Laurea in Fisica - UNITS ISTITUZIONI DI FISICA PER IL SISTEMA TERRA SURFACE WAVES FABIO ROMANELLI Department of Mathematics & Geosciences University of Trieste romanel@units.it http://moodle.units.it/course/view.php?id=887

More information

Atoms, Molecules and Solids (selected topics)

Atoms, Molecules and Solids (selected topics) Atoms, Molecules and Solids (selected topics) Part I: Electronic configurations and transitions Transitions between atomic states (Hydrogen atom) Transition probabilities are different depending on the

More information

FYS Vår 2017 (Kondenserte fasers fysikk)

FYS Vår 2017 (Kondenserte fasers fysikk) FYS3410 - Vår 2017 (Kondenserte fasers fysikk) http://www.uio.no/studier/emner/matnat/fys/fys3410/v16/index.html Pensum: Introduction to Solid State Physics by Charles Kittel (Chapters 1-9, 11, 17, 18,

More information

The Failure of Classical Mechanics

The Failure of Classical Mechanics Chapter 1 The Failure of Classical Mechanics Classical mechanics, erected by Galileo and Newton, with enormous contributions from many others, is remarkably successful. It enables us to calculate celestial

More information

Understanding Phonon Dynamics via 1D Atomic Chains

Understanding Phonon Dynamics via 1D Atomic Chains Understanding Phonon Dynamics via 1D Atomic Chains Timothy S. Fisher Purdue University School of Mechanical Engineering, and Birck Nanotechnology Center tsfisher@purdue.edu Nanotechnology 501 Lecture Series

More information

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion

A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion 1. Simple harmonic motion and the greenhouse effect (a) A body is displaced from equilibrium. State the two conditions necessary for the body to execute simple harmonic motion. 1. 2. (b) In a simple model

More information