Introduction to System Optimization: Part 1

Size: px
Start display at page:

Download "Introduction to System Optimization: Part 1"

Transcription

1 Introduction to System Optimization: Part 1 James Allison ME 555 March 7, 2007

2 System Optimization Subsystem optimization results optimal system? Objective: provide tools for developing system optimization strategy

3 System Optimization Subsystem optimization results optimal system? Objective: provide tools for developing system optimization strategy

4 Overview Systems and Interactions 1 Systems and Interactions Definitions Interaction Examples 2 3 AiO IDF ATC

5 System Definition Systems and Interactions Definitions Interaction Examples What makes something a system?

6 System Definition Systems and Interactions Definitions Interaction Examples What makes something a system? Comprised of several components (or subsystems)

7 System Definition Systems and Interactions Definitions Interaction Examples What makes something a system? Comprised of several components (or subsystems) Interactions exist between the components

8 System Definition Systems and Interactions Definitions Interaction Examples What makes something a system? Comprised of several components (or subsystems) Interactions exist between the components Some aspect of one component influences the effect of changes in another component

9 Explicit Analysis Interactions Definitions Interaction Examples Analysis: evaluate f, g, and h in design problem for a given x y ij : analysis output passed from subsystem j to i (coupling variable) Example: deflection and pressures in aeroelastic analysis

10 Interaction Example (First Type) Definitions Interaction Examples System objective function: f (y 12, y 13 ) = c 1 (y 12 c 2 ) 2 + c 3 (y 13 c 4 ) 2 + c 5 y 12 y 13 Inputs to subsystem 1: y 12 : output (response) of subsystem 2 y 13 : output (response) of subsystem 3 Three objective function terms: 1 Depends only on SS2 response 2 Depends only on SS3 response 3 Depends on a combination of the responses (interaction)

11 Interaction Example (First Type) Case I: No Interaction c = (1, 1, 1, 1, 0) T Definitions Interaction Examples 6 (x 1-1) 2 +(x 2-1) x x 1

12 Interaction Example (First Type) Definitions Interaction Examples Case II: Interaction Present c = (1, 1, 1, 1, 1) T 6 (x 1-1) 2 +(x 2-1) 2 -x 1 x x 2 3 OFAT solution 2 optimum x 1

13 Definitions Interaction Examples Interaction Example (Second Type) Governing Equations of Motion: [ ] { } m1 0 z1 + 0 m 2 z 2 [ k1 + k 2 k 2 k 2 k 2 ] { z1 z 2 } = { 0 0 } m 1 k 1 Coupled in stiffness: Motion of m 1 (i.e. x 1 (t)) is dependent of the value of k 2 ( z 1 (t) depends on the state of z 2 ), and visa-versa. m 2 k 2 z 1 z 2

14 Interaction Representation Definitions Interaction Examples Example system: a 1 (x 1, x 2, x 4 ) a 2 (x 6, y 21 ) a 3 (x 2, x 3, x 4, y 31, y 34 ) a 4 (x 4, x 5, y 41 )

15 Interaction Identification Definitions Interaction Examples Example: Interaction between automotive subsystems structure powertrain suspension steering braking cabin (interior geometry, HVAC, etc.)

16 Analysis Interactions Definitions Interaction Examples What might result if interactions are ignored in system design?

17 Analysis Interactions Definitions Interaction Examples What might result if interactions are ignored in system design? Missed opportunity to improve performance (not system optimal) Incompatibility between subsystems (inconsistent system)

18 Analysis Interactions Definitions Interaction Examples What are some interactions between your subsystems? Specific effects of ignoring interactions?

19 System Consistency A system has coupling variable consistency if for every coupling variable, y ij a j (x j, y j ) = 0 is satisfied.

20 System Consistency A system has coupling variable consistency if for every coupling variable, y ij a j (x j, y j ) = 0 is satisfied. System Analysis: task of solving system analysis equations for y p, given x.

21 System Optimality Subsystem Optimality System Optimality

22 From Subsystem to System Formulation Subsystem i optimization formulation: min x i f i (x i, y p ) subject to g i (x i, y p ) 0 System optimization formulation: h i (x i, y p ) = 0 min x f (x, y p ) subject to g(x) = [g 1, g 2,..., g N ] 0 h(x) = [h 1, h 2,..., h N ] = 0 where: f k select one subsystem objective f = N i=1 w if i (x, y p ) weighted sum of subsystem objectives f (x, y p ) define new function

23 AiO IDF ATC All-in-One (AiO) Design Approach Nest system analysis within system optimization but: Can identify system optimum Can be very computationally expensive Requires a complete system analysis for every design iteration May not converge System Optimizer x f, g, h System Analysis

24 AiO IDF ATC Example Problem Single Element Aeroelasticity Aeroelasticity: Requires both aerodynamic and structural analysis Application: Air-flow sensor design

25 Air-flow Sensor Analysis Structural Analysis: M = kθ = 1 2 F l cos θ Given a design (l, w) and a drag force F, solve for the corresponding deflection θ. AiO IDF ATC Aerodynamic Analysis: F = CA f v 2 = Clw cos θv 2 Given a design (l, w) and a deflection θ, find the drag force F. System Analysis: Given a design (l, w), find the equilibrium values F and θ. v F 1 2 l cos θ θ l k

26 Air-flow Sensor Design AiO IDF ATC (Sensor Calibration Problem) AiO Formulation: min l,w (θ ˆθ) 2 subject to F F max 0 Design Parameters: k, A, F max, C, v lw A = 0

27 AiO IDF ATC Solution by Monotonicity Analysis For cases where meeting the deflection target requires a drag force greater than F max, the target cannot be met, and the inequality constraint will be active.

28 AiO IDF ATC Solution by Monotonicity Analysis For cases where meeting the deflection target requires a drag force greater than F max, the target cannot be met, and the inequality constraint will be active. F max = Clw cos θv 2 kθ 1 2 F maxl cos θ = 0 ( ) θ = cos 1 Fmax CAv 2 l = 2k cos 1 ( F max CAv 2 ) CAv 2 F 2 max

29 AiO IDF ATC Solution by Monotonicity Analysis For cases where meeting the deflection target requires a drag force greater than F max, the target cannot be met, and the inequality constraint will be active. F max = Clw cos θv 2 kθ 1 2 F maxl cos θ = 0 ( ) θ = cos 1 Fmax CAv 2 l = 2k cos 1 ( F max CAv 2 ) CAv 2 F 2 max F, θ and l known solve for w using w = A/l

30 AiO IDF ATC Shared Quantities and System Analysis θ Structural Analysis l F Aerodynamic Analysis l, w Shared variable: l Coupling variables: θ and F System analysis requires finding θ and F such that: θ = θ(f ) F = F (θ)

31 System Analysis Options AiO IDF ATC Solve the system analysis equations at each optimization iteration (AiO) Could we use the optimization algorithm to solve these equations?

32 System Analysis Options AiO IDF ATC Solve the system analysis equations at each optimization iteration (AiO) Could we use the optimization algorithm to solve these equations? Yes! Make the system analysis equations constraints Let the optimizer choose values for the coupling variables, in addition to design variables

33 AiO IDF ATC Why Use the Optimizer for Analysis? No longer have to completely solve system analysis when you are far from the system optimum Breaks feedback loops (eliminating nested iterations) Enables coarse-grained parallel computation AiO can overlook global optimum in some cases, or even fail

34 Air Flow Sensor Reformulation AiO IDF ATC AiO Formulation: min l,w (θ ˆθ) 2 subject to F F max 0 lw A = 0 System analysis is implicitly required in the calculation of F and θ. New Formulation: min l,w,θ,f (θ ˆθ) 2 subject to F F max 0 lw A = 0 θ θ(l, F ) = 0 F F (l, w, θ) = 0

35 AiO IDF ATC Individual Disciplinary Feasible (IDF) Method IDF: simplest formal approach to combining analysis and optimization tasks. IDF General Formulation: min x,y f (x, y) subject to g(x, y) = [g 1, g 2,..., g N ] 0 h(x, y) = [h 1, h 2,..., h N ] = 0 h aux (x, y) = Sa(x, y) y = 0

36 IDF Architecture Systems and Interactions AiO IDF ATC System Optimizer g 1, h 1, y i1 f, g 2, h 2, y i2 x l1, x s1, y 1j SS1 Analysis x l2, x s2, y 2j SS2 Analysis

37 AiO IDF ATC IDF Formulation Example: Electric Water Pump min x subject to P e = VI P P min = 100 kpa T T max = 428 K L + l c 0.2 m Q = m 3 /sec Analysis Functions T = a 1 (I, ω, d, d 2, d 3, L, l c ) Mot. winding temp. (K) I = a 2 (τ, T, d, d 2, d 3, L) Motor current (amps) ω = a 3 (I, T, d, d 2, d 3, L, l c ) Motor speed (rad/sec) τ = a 4 (ω, D 2, b, β 1, β 2, β 3 ) Pump drive torque (Nm) P = a 5 (ω, D 2, b, β 1, β 2, β 3 ) Pressure differential (kpa)

38 Other Options Systems and Interactions AiO IDF ATC IDF seems helpful for many problems, but what if I have more design variables than my optimization algorithm can handle?

39 Other Options Systems and Interactions AiO IDF ATC IDF seems helpful for many problems, but what if I have more design variables than my optimization algorithm can handle? Multilevel Methods: Use multiple optimization algorithms to share the load Distributed decision making reduces individual problem dimension

40 Multi-level Methods AiO IDF ATC Optimization algorithm coupled with every element of the system Local optimizers make local decisions (distributed decision making) Can utilized specialized optimization algorithms Best for sparse problem structures Many local decisions required, but relatively few subsystem connections Possible to reduce individual problem dimension w/ multilevel methods

41 AiO IDF ATC Analytical Target Cascading (ATC) Multi-level system design method Developed based on needs in the automotive industry Intended for hierarchical problems with object-based decomposition (covered in detail in a later lecture)

42 AiO IDF ATC Individual Disciplinary Feasible (IDF) Method R 1A i = 1 j = A x1a, y1a R 2B R 2C Levels i i = 2 j = B x2b, y2b j = C x2c, y2c R 3D R 3E R 3F R 3G i = 3 j = D j = E j = F j = G x3d, y3d x3e, y3e x3f, y3f x3f, y3g

Introduction to System Partitioning and Coordination

Introduction to System Partitioning and Coordination Introduction to System Partitioning and Coordination James T. Allison ME 555 April 4, 2005 University of Michigan Department of Mechanical Engineering Your Subsystem Optimization Problems are Complete

More information

Lecture Notes: Introduction to IDF and ATC

Lecture Notes: Introduction to IDF and ATC Lecture Notes: Introduction to IDF and ATC James T. Allison April 5, 2006 This lecture is an introductory tutorial on the mechanics of implementing two methods for optimal system design: the individual

More information

Target Cascading: A Design Process For Achieving Vehicle Targets

Target Cascading: A Design Process For Achieving Vehicle Targets Target Cascading: A Design Process For Achieving Vehicle Targets Hyung Min Kim and D. Geoff Rideout The University of Michigan May 24, 2000 Overview Systems Engineering and Target Cascading Hierarchical

More information

Analysis and Design of an Electric Vehicle using Matlab and Simulink

Analysis and Design of an Electric Vehicle using Matlab and Simulink Analysis and Design of an Electric Vehicle using Matlab and Simulink Advanced Support Group January 22, 29 23-27: University of Michigan Research: Optimal System Partitioning and Coordination Original

More information

ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems

ELEC4631 s Lecture 2: Dynamic Control Systems 7 March Overview of dynamic control systems ELEC4631 s Lecture 2: Dynamic Control Systems 7 March 2011 Overview of dynamic control systems Goals of Controller design Autonomous dynamic systems Linear Multi-input multi-output (MIMO) systems Bat flight

More information

Computer Intensive Methods in Mathematical Statistics

Computer Intensive Methods in Mathematical Statistics Computer Intensive Methods in Mathematical Statistics Department of mathematics johawes@kth.se Lecture 16 Advanced topics in computational statistics 18 May 2017 Computer Intensive Methods (1) Plan of

More information

Fast proximal gradient methods

Fast proximal gradient methods L. Vandenberghe EE236C (Spring 2013-14) Fast proximal gradient methods fast proximal gradient method (FISTA) FISTA with line search FISTA as descent method Nesterov s second method 1 Fast (proximal) gradient

More information

2.010 Fall 2000 Solution of Homework Assignment 1

2.010 Fall 2000 Solution of Homework Assignment 1 2. Fall 2 Solution of Homework Assignment. Compact Disk Player. This is essentially a reprise of Problems and 2 from the Fall 999 2.3 Homework Assignment 7. t is included here to encourage you to review

More information

Introduction to Control (034040) lecture no. 2

Introduction to Control (034040) lecture no. 2 Introduction to Control (034040) lecture no. 2 Leonid Mirkin Faculty of Mechanical Engineering Technion IIT Setup: Abstract control problem to begin with y P(s) u where P is a plant u is a control signal

More information

4. Convex optimization problems (part 1: general)

4. Convex optimization problems (part 1: general) EE/AA 578, Univ of Washington, Fall 2016 4. Convex optimization problems (part 1: general) optimization problem in standard form convex optimization problems quasiconvex optimization 4 1 Optimization problem

More information

Additional Mathematics Lines and circles

Additional Mathematics Lines and circles Additional Mathematics Lines and circles Topic assessment 1 The points A and B have coordinates ( ) and (4 respectively. Calculate (i) The gradient of the line AB [1] The length of the line AB [] (iii)

More information

EXAMPLE: MODELING THE PT326 PROCESS TRAINER

EXAMPLE: MODELING THE PT326 PROCESS TRAINER CHAPTER 1 By Radu Muresan University of Guelph Page 1 EXAMPLE: MODELING THE PT326 PROCESS TRAINER The PT326 apparatus models common industrial situations in which temperature control is required in the

More information

On Selecting Single-Level Formulations for Complex System Design Optimization

On Selecting Single-Level Formulations for Complex System Design Optimization James T. Allison Ph.D. Candidate e-mail: optimize@umich.edu Michael Kokkolaras Associate Research Scientist Mem. ASME e-mail: mk@umich.edu Panos Y. Papalambros Professor Fellow ASME e-mail: pyp@umich.edu

More information

Multidisciplinary System Design Optimization (MSDO)

Multidisciplinary System Design Optimization (MSDO) Multidisciplinary System Design Optimization (MSDO) Numerical Optimization II Lecture 8 Karen Willcox 1 Massachusetts Institute of Technology - Prof. de Weck and Prof. Willcox Today s Topics Sequential

More information

The Area bounded by Two Functions

The Area bounded by Two Functions The Area bounded by Two Functions The graph below shows 2 functions f(x) and g(x) that are continuous between x = a and x = b and f(x) g(x). The area shaded in green is the area between the 2 curves. We

More information

Exam 05: Chapters 10 and 11

Exam 05: Chapters 10 and 11 Name: Exam 05: Chapters 10 and 11 Select and solve five of the following problems to the best of your ability. You must choose two problem from each column, and a final problem at your own discretion.

More information

Conditional Sparse Linear Regression

Conditional Sparse Linear Regression COMS 6998-4 Fall 07 November 3, 07 Introduction. Background Conditional Sparse Linear Regression esenter: Xingyu Niu Scribe: Jinyi Zhang Given a distribution D over R d R and data samples (y, z) D, linear

More information

Goals for today 2.004

Goals for today 2.004 Goals for today Block diagrams revisited Block diagram components Block diagram cascade Summing and pickoff junctions Feedback topology Negative vs positive feedback Example of a system with feedback Derivation

More information

MECHATRONICS ENGINEERING TECHNOLOGY. Modeling a Servo Motor System

MECHATRONICS ENGINEERING TECHNOLOGY. Modeling a Servo Motor System Modeling a Servo Motor System Definitions Motor: A device that receives a continuous (Analog) signal and operates continuously in time. Digital Controller: Discretizes the amplitude of the signal and also

More information

Solving Systems of Polynomial Equations

Solving Systems of Polynomial Equations Solving Systems of Polynomial Equations David Eberly, Geometric Tools, Redmond WA 98052 https://www.geometrictools.com/ This work is licensed under the Creative Commons Attribution 4.0 International License.

More information

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) =

100 (s + 10) (s + 100) e 0.5s. s 100 (s + 10) (s + 100). G(s) = 1 AME 3315; Spring 215; Midterm 2 Review (not graded) Problems: 9.3 9.8 9.9 9.12 except parts 5 and 6. 9.13 except parts 4 and 5 9.28 9.34 You are given the transfer function: G(s) = 1) Plot the bode plot

More information

POINTS OF CAUTION BEFORE USE...

POINTS OF CAUTION BEFORE USE... INSTRUCTION MANUAL NPN DISCRETE INPUT & NPN TRANSISTOR OUTPUT MODULE, 6 points each (-I/-II, e-con connector) MODEL BEFORE USE... Thank you for choosing M-System. Before use, check the contents of the

More information

EE595S : Class Lecture Notes Parameter Identification and Maximum Torque Per Amp Control Algorithm

EE595S : Class Lecture Notes Parameter Identification and Maximum Torque Per Amp Control Algorithm EE595S : Class Lecture Notes Parameter Identification and Maximum Torque Per Amp Control Algorithm Outline GA based AQDM Characterization Procedure MTPA Control strategy AMTPA Control Strategy 2 Alternate

More information

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10)

Subject: Optimal Control Assignment-1 (Related to Lecture notes 1-10) Subject: Optimal Control Assignment- (Related to Lecture notes -). Design a oil mug, shown in fig., to hold as much oil possible. The height and radius of the mug should not be more than 6cm. The mug must

More information

Objective. 1 Specification/modeling of the controlled system. 2 Specification of a performance criterion

Objective. 1 Specification/modeling of the controlled system. 2 Specification of a performance criterion Optimal Control Problem Formulation Optimal Control Lectures 17-18: Problem Formulation Benoît Chachuat Department of Chemical Engineering Spring 2009 Objective Determine the control

More information

Chapter 2 Optimal Control Problem

Chapter 2 Optimal Control Problem Chapter 2 Optimal Control Problem Optimal control of any process can be achieved either in open or closed loop. In the following two chapters we concentrate mainly on the first class. The first chapter

More information

Scientific Computing: Optimization

Scientific Computing: Optimization Scientific Computing: Optimization Aleksandar Donev Courant Institute, NYU 1 donev@courant.nyu.edu 1 Course MATH-GA.2043 or CSCI-GA.2112, Spring 2012 March 8th, 2011 A. Donev (Courant Institute) Lecture

More information

SYSTEM INTERCONNECTION

SYSTEM INTERCONNECTION p. 1/60 Elgersburg Lectures March 2010 Lecture IV SYSTEM INTERCONNECTION p. 2/60 Outline Motivation Modeling by tearing, zooming, and linking An example Control as interconnection Pole assignment and stabilization

More information

Multi-level hierarchical MDO formulation with functional coupling satisfaction under uncertainty, application to sounding rocket design.

Multi-level hierarchical MDO formulation with functional coupling satisfaction under uncertainty, application to sounding rocket design. 11 th World Congress on Structural and Multidisciplinary Optimisation 07 th -12 th, June 2015, Sydney Australia Multi-level hierarchical MDO formulation with functional coupling satisfaction under uncertainty,

More information

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11

sc Control Systems Design Q.1, Sem.1, Ac. Yr. 2010/11 sc46 - Control Systems Design Q Sem Ac Yr / Mock Exam originally given November 5 9 Notes: Please be reminded that only an A4 paper with formulas may be used during the exam no other material is to be

More information

Lecture 1: Introduction to System Modeling and Control. Introduction Basic Definitions Different Model Types System Identification

Lecture 1: Introduction to System Modeling and Control. Introduction Basic Definitions Different Model Types System Identification Lecture 1: Introduction to System Modeling and Control Introduction Basic Definitions Different Model Types System Identification What is Mathematical Model? A set of mathematical equations (e.g., differential

More information

Linear Shaft Motor Sizing Application Note

Linear Shaft Motor Sizing Application Note Linear Shaft Motor Sizing Application Note By Jeramé Chamberlain One of the most straightforward tasks in the design of a linear motion system is to specify a motor and drive combination that can provide

More information

Figure 5.28 (a) Spring-restrained cylinder, (b) Kinematic variables, (c) Free-body diagram

Figure 5.28 (a) Spring-restrained cylinder, (b) Kinematic variables, (c) Free-body diagram Lecture 30. MORE GENERAL-MOTION/ROLLING- WITHOUT-SLIPPING EXAMPLES A Cylinder, Restrained by a Spring and Rolling on a Plane Figure 5.28 (a) Spring-restrained cylinder, (b) Kinematic variables, (c) Free-body

More information

Simple Car Dynamics. Outline. Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, May 18, 2005

Simple Car Dynamics. Outline. Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, May 18, 2005 Simple Car Dynamics Claude Lacoursière HPC2N/VRlab, Umeå Universitet, Sweden, and CMLabs Simulations, Montréal, Canada May 18, 2005 Typeset by FoilTEX May 16th 2005 Outline basics of vehicle dynamics different

More information

Multidisciplinary design optimisation methods for automotive structures

Multidisciplinary design optimisation methods for automotive structures Multidisciplinary design optimisation methods for automotive structures Rebecka Domeij Bäckryd, Ann-Britt Rydberg and Larsgunnar Nilsson The self-archived version of this journal article is available at

More information

Overview of Solution Methods

Overview of Solution Methods 20 Overview of Solution Methods NFEM Ch 20 Slide 1 Nonlinear Structural Analysis is a Multilevel Continuation Process Stages Increments Iterations Individual stage Increments Iterations NFEM Ch 20 Slide

More information

Modeling a powertrain in Simscape in a modular vehicle component model library. Stuttgart, , MBtech, Jörn Bader

Modeling a powertrain in Simscape in a modular vehicle component model library. Stuttgart, , MBtech, Jörn Bader Modeling a powertrain in Simscape in a modular vehicle component model library Stuttgart, 24.09.2015, MBtech, Jörn Bader Contents { Introduction initial situation { Driving performance and consumption

More information

BEAMS AND PLATES ANALYSIS

BEAMS AND PLATES ANALYSIS BEAMS AND PLATES ANALYSIS Automotive body structure can be divided into two types: i. Frameworks constructed of beams ii. Panels Classical beam versus typical modern vehicle beam sections Assumptions:

More information

Estimation of Tire-Road Friction by Tire Rotational Vibration Model

Estimation of Tire-Road Friction by Tire Rotational Vibration Model 53 Research Report Estimation of Tire-Road Friction by Tire Rotational Vibration Model Takaji Umeno Abstract Tire-road friction is the most important piece of information used by active safety systems.

More information

Rotational Systems, Gears, and DC Servo Motors

Rotational Systems, Gears, and DC Servo Motors Rotational Systems Rotational Systems, Gears, and DC Servo Motors Rotational systems behave exactly like translational systems, except that The state (angle) is denoted with rather than x (position) Inertia

More information

On the Use of Analytical Target Cascading and Collaborative Optimization for Complex System Design

On the Use of Analytical Target Cascading and Collaborative Optimization for Complex System Design 6 th World Congress on Structural and Multidisciplinary Optimization Rio de Janeiro, 30 May 03 June, 005 Brazil x On the Use of Analytical Target Cascading and Collaborative Optimization for Complex System

More information

Nomenclature. Length of the panel between the supports. Width of the panel between the supports/ width of the beam

Nomenclature. Length of the panel between the supports. Width of the panel between the supports/ width of the beam omenclature a b c f h Length of the panel between the supports Width of the panel between the supports/ width of the beam Sandwich beam/ panel core thickness Thickness of the panel face sheet Sandwich

More information

SSY155 Applied Mechatronics Examination date

SSY155 Applied Mechatronics Examination date Chalmers University of Technology Department of Signals and Systems SSY155 Applied Mechatronics Examination date 937 Time: 8:3-12:3 Teacher: Jonas Sjöberg, tel 31-772 1855. Allowed material during the

More information

Introduction to Feedback Control

Introduction to Feedback Control Introduction to Feedback Control Control System Design Why Control? Open-Loop vs Closed-Loop (Feedback) Why Use Feedback Control? Closed-Loop Control System Structure Elements of a Feedback Control System

More information

L -Bounded Robust Control of Nonlinear Cascade Systems

L -Bounded Robust Control of Nonlinear Cascade Systems L -Bounded Robust Control of Nonlinear Cascade Systems Shoudong Huang M.R. James Z.P. Jiang August 19, 2004 Accepted by Systems & Control Letters Abstract In this paper, we consider the L -bounded robust

More information

MATH 4211/6211 Optimization Basics of Optimization Problems

MATH 4211/6211 Optimization Basics of Optimization Problems MATH 4211/6211 Optimization Basics of Optimization Problems Xiaojing Ye Department of Mathematics & Statistics Georgia State University Xiaojing Ye, Math & Stat, Georgia State University 0 A standard minimization

More information

6) Motors and Encoders

6) Motors and Encoders 6) Motors and Encoders Electric motors are by far the most common component to supply mechanical input to a linear motion system. Stepper motors and servo motors are the popular choices in linear motion

More information

Chapter 5 HW Solution

Chapter 5 HW Solution Chapter 5 HW Solution Review Questions. 1, 6. As usual, I think these are just a matter of text lookup. 1. Name the four components of a block diagram for a linear, time-invariant system. Let s see, I

More information

4. Convex optimization problems

4. Convex optimization problems Convex Optimization Boyd & Vandenberghe 4. Convex optimization problems optimization problem in standard form convex optimization problems quasiconvex optimization linear optimization quadratic optimization

More information

Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression

Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression Machine Learning and Computational Statistics, Spring 2017 Homework 2: Lasso Regression Due: Monday, February 13, 2017, at 10pm (Submit via Gradescope) Instructions: Your answers to the questions below,

More information

Modelling the Dynamics of Flight Control Surfaces Under Actuation Compliances and Losses

Modelling the Dynamics of Flight Control Surfaces Under Actuation Compliances and Losses Modelling the Dynamics of Flight Control Surfaces Under Actuation Compliances and Losses Ashok Joshi Department of Aerospace Engineering Indian Institute of Technology, Bombay Powai, Mumbai, 4 76, India

More information

Compositional Safety Analysis using Barrier Certificates

Compositional Safety Analysis using Barrier Certificates Compositional Safety Analysis using Barrier Certificates Department of Electronic Systems Aalborg University Denmark November 29, 2011 Objective: To verify that a continuous dynamical system is safe. Definition

More information

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 44

The L-Shaped Method. Operations Research. Anthony Papavasiliou 1 / 44 1 / 44 The L-Shaped Method Operations Research Anthony Papavasiliou Contents 2 / 44 1 The L-Shaped Method [ 5.1 of BL] 2 Optimality Cuts [ 5.1a of BL] 3 Feasibility Cuts [ 5.1b of BL] 4 Proof of Convergence

More information

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems

CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems R. M. Murray Fall 2004 CALIFORNIA INSTITUTE OF TECHNOLOGY Control and Dynamical Systems CDS 101/110 Homework Set #2 Issued: 4 Oct 04 Due: 11 Oct 04 Note: In the upper left hand corner of the first page

More information

Online Model Predictive Torque Control for Permanent Magnet Synchronous Motors

Online Model Predictive Torque Control for Permanent Magnet Synchronous Motors Online Model Predictive Torque Control for Permanent Magnet Synchronous Motors Gionata Cimini, Daniele Bernardini, Alberto Bemporad and Stephen Levijoki ODYS Srl General Motors Company 2015 IEEE International

More information

Team-Exercises for DGC 100 Modelica Course

Team-Exercises for DGC 100 Modelica Course Team-Exercises for DGC 100 Modelica Course Hubertus Tummescheit United Technologies Research Center, East Hartford, CT 06108. November 4, 2003 Abstract This document is a preliminary version and is going

More information

Lecture 5: The Bellman Equation

Lecture 5: The Bellman Equation Lecture 5: The Bellman Equation Florian Scheuer 1 Plan Prove properties of the Bellman equation (In particular, existence and uniqueness of solution) Use this to prove properties of the solution Think

More information

Definition of differential equations and their classification. Methods of solution of first-order differential equations

Definition of differential equations and their classification. Methods of solution of first-order differential equations Introduction to differential equations: overview Definition of differential equations and their classification Solutions of differential equations Initial value problems Existence and uniqueness Mathematical

More information

SERVOSTAR S- and CD-Series Regeneration Requirements

SERVOSTAR S- and CD-Series Regeneration Requirements www.danaherotion.com SEROSTAR S- and CD-Series Regeneration Requirements One of the key (and often overlooked) considerations for servo system sizing is regeneration requirements. An undersized regeneration

More information

Assignment on iterative solution methods and preconditioning

Assignment on iterative solution methods and preconditioning Division of Scientific Computing, Department of Information Technology, Uppsala University Numerical Linear Algebra October-November, 2018 Assignment on iterative solution methods and preconditioning 1.

More information

BEFORE USE... POINTS OF CAUTION COMPONENT IDENTIFICATION INSTRUCTION MANUAL MODEL R7K4DH-1-DAC32D R7K4DH-1-DAC32D

BEFORE USE... POINTS OF CAUTION COMPONENT IDENTIFICATION INSTRUCTION MANUAL MODEL R7K4DH-1-DAC32D R7K4DH-1-DAC32D INSTRUCTION MANUAL PNP DISCRETE INPUT & PNP TRANSISTOR OUTPUT MODULE, 6 points each (High-speed Link System, e-con connector) R7KDH--DACD MODEL R7KDH--DACD BEFORE USE... Thank you for choosing M-System.

More information

Lecture 4 September 15

Lecture 4 September 15 IFT 6269: Probabilistic Graphical Models Fall 2017 Lecture 4 September 15 Lecturer: Simon Lacoste-Julien Scribe: Philippe Brouillard & Tristan Deleu 4.1 Maximum Likelihood principle Given a parametric

More information

Thermodynamics and Flexure of Beams as applied to a Racing Kart

Thermodynamics and Flexure of Beams as applied to a Racing Kart Thermodynamics and Flexure of Beams as applied to a Racing Kart Matthew Hodek Bowling Green State University Adviser: Dr. Robert Boughton Bowling Green State University Fall 2006 1 Introduction 1.1 Quantum

More information

Completeness of Online Planners for Partially Observable Deterministic Tasks

Completeness of Online Planners for Partially Observable Deterministic Tasks Completeness of Online Planners for Partially Observable Deterministic Tasks Blai Bonet Gabriel Formica Melecio Ponte Universidad Simón Boĺıvar, Venezuela ICAPS. Pittsburgh, USA. June 2017. 2 of 18 Motivation

More information

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields

Physics 54 Lecture March 1, Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Physics 54 Lecture March 1, 2012 OUTLINE Micro-quiz problems (magnetic fields and forces) Magnetic dipoles and their interaction with magnetic fields Electromagnetic induction Introduction to electromagnetic

More information

AE 714 Aeroelastic Effects in Structures Term Project (Revised Version 20/05/2009) Flutter Analysis of a Tapered Wing Using Assumed Modes Method

AE 714 Aeroelastic Effects in Structures Term Project (Revised Version 20/05/2009) Flutter Analysis of a Tapered Wing Using Assumed Modes Method AE 714 Aeroelastic Effects in Structures Term Project (Revised Version 20/05/2009) Flutter Analysis of a Tapered Wing Using Assumed Modes Method Project Description In this project, you will perform classical

More information

Chapter 3 Salient Feature Inference

Chapter 3 Salient Feature Inference Chapter 3 Salient Feature Inference he building block of our computational framework for inferring salient structure is the procedure that simultaneously interpolates smooth curves, or surfaces, or region

More information

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method

1. Gradient method. gradient method, first-order methods. quadratic bounds on convex functions. analysis of gradient method L. Vandenberghe EE236C (Spring 2016) 1. Gradient method gradient method, first-order methods quadratic bounds on convex functions analysis of gradient method 1-1 Approximate course outline First-order

More information

Formulas that must be memorized:

Formulas that must be memorized: Formulas that must be memorized: Position, Velocity, Acceleration Speed is increasing when v(t) and a(t) have the same signs. Speed is decreasing when v(t) and a(t) have different signs. Section I: Limits

More information

CSC384: Intro to Artificial Intelligence Knowledge Representation II. Required Readings: 9.1, 9.2, and 9.5 Announcements:

CSC384: Intro to Artificial Intelligence Knowledge Representation II. Required Readings: 9.1, 9.2, and 9.5 Announcements: CSC384: Intro to Artificial Intelligence Knowledge Representation II Required Readings: 9.1, 9.2, and 9.5 Announcements: 1 Models Examples. Environment A Language (Syntax) Constants: a,b,c,e Functions:

More information

1 Computing with constraints

1 Computing with constraints Notes for 2017-04-26 1 Computing with constraints Recall that our basic problem is minimize φ(x) s.t. x Ω where the feasible set Ω is defined by equality and inequality conditions Ω = {x R n : c i (x)

More information

Introduction to Controls

Introduction to Controls EE 474 Review Exam 1 Name Answer each of the questions. Show your work. Note were essay-type answers are requested. Answer with complete sentences. Incomplete sentences will count heavily against the grade.

More information

Torsion of Solid Sections. Introduction

Torsion of Solid Sections. Introduction Introduction Torque is a common load in aircraft structures In torsion of circular sections, shear strain is a linear function of radial distance Plane sections are assumed to rotate as rigid bodies These

More information

MPC Infeasibility Handling

MPC Infeasibility Handling MPC Handling Thomas Wiese, TU Munich, KU Leuven supervised by H.J. Ferreau, Prof. M. Diehl (both KUL) and Dr. H. Gräb (TUM) October 9, 2008 1 / 42 MPC General MPC Strategies 2 / 42 Linear Discrete-Time

More information

Lecture: Convex Optimization Problems

Lecture: Convex Optimization Problems 1/36 Lecture: Convex Optimization Problems http://bicmr.pku.edu.cn/~wenzw/opt-2015-fall.html Acknowledgement: this slides is based on Prof. Lieven Vandenberghe s lecture notes Introduction 2/36 optimization

More information

Stepping Motors. Chapter 11 L E L F L D

Stepping Motors. Chapter 11 L E L F L D Chapter 11 Stepping Motors In the synchronous motor, the combination of sinusoidally distributed windings and sinusoidally time varying current produces a smoothly rotating magnetic field. We can eliminate

More information

557. Radial correction controllers of gyroscopic stabilizer

557. Radial correction controllers of gyroscopic stabilizer 557. Radial correction controllers of gyroscopic stabilizer M. Sivčák 1, J. Škoda, Technical University in Liberec, Studentská, Liberec, Czech Republic e-mail: 1 michal.sivcak@tul.cz; jan.skoda@pevnosti.cz

More information

Lecture 7: Passive Learning

Lecture 7: Passive Learning CS 880: Advanced Complexity Theory 2/8/2008 Lecture 7: Passive Learning Instructor: Dieter van Melkebeek Scribe: Tom Watson In the previous lectures, we studied harmonic analysis as a tool for analyzing

More information

CDS 101/110a: Lecture 8-1 Frequency Domain Design

CDS 101/110a: Lecture 8-1 Frequency Domain Design CDS 11/11a: Lecture 8-1 Frequency Domain Design Richard M. Murray 17 November 28 Goals: Describe canonical control design problem and standard performance measures Show how to use loop shaping to achieve

More information

Fundamentals of Unconstrained Optimization

Fundamentals of Unconstrained Optimization dalmau@cimat.mx Centro de Investigación en Matemáticas CIMAT A.C. Mexico Enero 2016 Outline Introduction 1 Introduction 2 3 4 Optimization Problem min f (x) x Ω where f (x) is a real-valued function The

More information

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI

Chapter 7 Control. Part Classical Control. Mobile Robotics - Prof Alonzo Kelly, CMU RI Chapter 7 Control 7.1 Classical Control Part 1 1 7.1 Classical Control Outline 7.1.1 Introduction 7.1.2 Virtual Spring Damper 7.1.3 Feedback Control 7.1.4 Model Referenced and Feedforward Control Summary

More information

7.3 State Space Averaging!

7.3 State Space Averaging! 7.3 State Space Averaging! A formal method for deriving the small-signal ac equations of a switching converter! Equivalent to the modeling method of the previous sections! Uses the state-space matrix description

More information

Virtual Work & Energy Methods. External Energy-Work Transformation

Virtual Work & Energy Methods. External Energy-Work Transformation External Energy-Work Transformation Virtual Work Many structural problems are statically determinate (support reactions & internal forces can be found by simple statics) Other methods are required when

More information

MODEL: R7FN. Remote I/O R7 Series FLEX NETWORK I/O MODULE

MODEL: R7FN. Remote I/O R7 Series FLEX NETWORK I/O MODULE MODEL: RFN Remote I/O R Series FLEX NETWORK I/O MODULE /C0: Rubber coating EX-FACTORY SETTING /SET: Preset according to the Ordering Information Sheet (No. ESU-0-x) ORDERING INFORMATION Basic module: RFN-[]-R[]

More information

Evolutionary Multiobjective. Optimization Methods for the Shape Design of Industrial Electromagnetic Devices. P. Di Barba, University of Pavia, Italy

Evolutionary Multiobjective. Optimization Methods for the Shape Design of Industrial Electromagnetic Devices. P. Di Barba, University of Pavia, Italy Evolutionary Multiobjective Optimization Methods for the Shape Design of Industrial Electromagnetic Devices P. Di Barba, University of Pavia, Italy INTRODUCTION Evolutionary Multiobjective Optimization

More information

CHAPTER 8A- RATIONAL FUNCTIONS AND RADICAL FUNCTIONS Section Multiplying and Dividing Rational Expressions

CHAPTER 8A- RATIONAL FUNCTIONS AND RADICAL FUNCTIONS Section Multiplying and Dividing Rational Expressions Name Objectives: Period CHAPTER 8A- RATIONAL FUNCTIONS AND RADICAL FUNCTIONS Section 8.3 - Multiplying and Dividing Rational Expressions Multiply and divide rational expressions. Simplify rational expressions,

More information

A Hybrid Method for the Wave Equation. beilina

A Hybrid Method for the Wave Equation.   beilina A Hybrid Method for the Wave Equation http://www.math.unibas.ch/ beilina 1 The mathematical model The model problem is the wave equation 2 u t 2 = (a 2 u) + f, x Ω R 3, t > 0, (1) u(x, 0) = 0, x Ω, (2)

More information

Adaptive Control of Variable-Speed Variable-Pitch Wind Turbines Using RBF Neural Network

Adaptive Control of Variable-Speed Variable-Pitch Wind Turbines Using RBF Neural Network Schulich School of Engineering Department of Mechanical and Manufacturing Engineering Adaptive Control of Variable-Speed Variable-Pitch Wind Turbines Using RBF Neural Network By: Hamidreza Jafarnejadsani,

More information

Lab 3: Model based Position Control of a Cart

Lab 3: Model based Position Control of a Cart I. Objective Lab 3: Model based Position Control of a Cart The goal of this lab is to help understand the methodology to design a controller using the given plant dynamics. Specifically, we would do position

More information

Real-Time and Embedded Systems (M) Lecture 5

Real-Time and Embedded Systems (M) Lecture 5 Priority-driven Scheduling of Periodic Tasks (1) Real-Time and Embedded Systems (M) Lecture 5 Lecture Outline Assumptions Fixed-priority algorithms Rate monotonic Deadline monotonic Dynamic-priority algorithms

More information

A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN

A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN A SIMPLIFIED ANALYSIS OF NONLINEAR LONGITUDINAL DYNAMICS AND CONCEPTUAL CONTROL SYSTEM DESIGN ROBBIE BUNGE 1. Introduction The longitudinal dynamics of fixed-wing aircraft are a case in which classical

More information

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University

A Gentle Introduction to Gradient Boosting. Cheng Li College of Computer and Information Science Northeastern University A Gentle Introduction to Gradient Boosting Cheng Li chengli@ccs.neu.edu College of Computer and Information Science Northeastern University Gradient Boosting a powerful machine learning algorithm it can

More information

Optimization Problems

Optimization Problems Optimization Problems The goal in an optimization problem is to find the point at which the minimum (or maximum) of a real, scalar function f occurs and, usually, to find the value of the function at that

More information

UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics Thursday, August 30, 2018

UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics Thursday, August 30, 2018 UNIVERSITY OF MASSACHUSETTS Department of Mathematics and Statistics Basic Exam - Applied Statistics Thursday, August 30, 2018 Work all problems. 60 points are needed to pass at the Masters Level and 75

More information

R O B U S T E N E R G Y M AN AG E M E N T S Y S T E M F O R I S O L AT E D M I C R O G R I D S

R O B U S T E N E R G Y M AN AG E M E N T S Y S T E M F O R I S O L AT E D M I C R O G R I D S ROBUST ENERGY MANAGEMENT SYSTEM FOR ISOLATED MICROGRIDS Jose Daniel La r a Claudio Cañizares Ka nka r Bhattacharya D e p a r t m e n t o f E l e c t r i c a l a n d C o m p u t e r E n g i n e e r i n

More information

Prediction and Prevention of Tripped Rollovers

Prediction and Prevention of Tripped Rollovers Prediction and Prevention of Tripped Rollovers Final Report Prepared by: Gridsada Phanomchoeng Rajesh Rajamani Department of Mechanical Engineering University of Minnesota CTS 12-33 Technical Report Documentation

More information

Projection methods to solve SDP

Projection methods to solve SDP Projection methods to solve SDP Franz Rendl http://www.math.uni-klu.ac.at Alpen-Adria-Universität Klagenfurt Austria F. Rendl, Oberwolfach Seminar, May 2010 p.1/32 Overview Augmented Primal-Dual Method

More information

Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem

Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem Improvements to Benders' decomposition: systematic classification and performance comparison in a Transmission Expansion Planning problem Sara Lumbreras & Andrés Ramos July 2013 Agenda Motivation improvement

More information

19.1 Problem setup: Sparse linear regression

19.1 Problem setup: Sparse linear regression ECE598: Information-theoretic methods in high-dimensional statistics Spring 2016 Lecture 19: Minimax rates for sparse linear regression Lecturer: Yihong Wu Scribe: Subhadeep Paul, April 13/14, 2016 In

More information

Multi Rotor Scalability

Multi Rotor Scalability Multi Rotor Scalability With the rapid growth in popularity of quad copters and drones in general, there has been a small group of enthusiasts who propose full scale quad copter designs (usable payload

More information