H-matrix theory and applications

Size: px
Start display at page:

Download "H-matrix theory and applications"

Transcription

1 MtTrd 205, Combr H-mtrx theory nd pplctons Mj Nedovć Unversty of Nov d, erb jont work wth Ljljn Cvetkovć

2 Contents! H-mtrces nd DD-property Benefts from H-subclsses! Brekng the DD Addtve nd multplctve condtons Prttonng the ndex set Recursve row sums Nonstrct condtons

3 H-mtrces nd DD-property A complex mtrx A=[j]nxn s n DDmtrx f for ech from N t holds tht > r A ( ) = j j N, j Deleted row sums Lévy-Desplnques: nonsngulr Lev

4 H-mtrces nd DD-property A complex mtrx A=[j]nxn s n DDmtrx f for ech from N t holds tht > r A ( ) = j j N, j A complex mtrx A=[j]nxn s n H-mtrx f nd only f there exsts dgonl nonsngulr Lev mtrx W such tht AW s n DD mtrx.

5 H-mtrces nd DD-property A complex mtrx A=[j]nxn s n DDmtrx f for ech from N t holds tht > r A ( ) = j j N, j H HH DD

6 H-mtrces nd DD-property A complex mtrx A=[j]nxn s n DDmtrx f for ech from N t holds tht > r A ( ) = j j N, j H HH DD?

7 ubclsses of H-mtrces & dgonl sclng chrcterztons Benefts:. Nonsngulrty result coverng wder mtrx clss 2. A tghter egenvlue ncluson re (not just for the observed clss) 3. A new bound for the mx-norm of the nverse for wder mtrx clss 4. A tghter bound for the mx-norm of the nverse for some DD mtrces 5. chur complement relted results (closure nd egenvlues) 6. Convergence re for relxton tertve methods 7. ub-drect sums 8. Bounds for determnnts

8 Brekng the DD Recursve row sums Addtve nd multplctve condtons DD Non-strct condtons Prttonng the ndex set

9 Brekng the DD Recursve row sums Addtve nd multplctve condtons DD Non-strct condtons Prttonng the ndex set

10 Brekng the DD Recursve row sums Addtve nd multplctve condtons DD Non-strct condtons Prttonng the ndex set

11 Brekng the DD Recursve row sums Addtve nd multplctve condtons DD Non-strct condtons Prttonng the ndex set

12 Ostrowsk, A. M. (937), Pupkov, V. A. (983), Hoffmn, A.J. (2000), Vrg, R.. : Geršgorn nd hs crcles (2004) Brekng the DD Recursve row sums Addtve nd Ostrowsk, multplctve Pupkov condtons DD Non-strct condtons Prttonng the ndex set

13 Go, Y.M., Xo, H.W. (992), Vrg, R.. (2004), Dshnc, L.., Zusmnovch, M.. (970), Kolotln, l. Yu.(200), Cvetkovć, Lj., Nedovć, M. (2009), (202), (203). Brekng the DD Recursve row sums Addtve nd Ostrowsk, multplctve Pupkov condtons DD Non-strct condtons Prttonng -DD, the ndex PH set

14 Mehmke, R., Nekrsov, P. (892), Gudkov, V.V. (965), zulc, T. (995), L, W. (998), Cvetkovć, Lj., Kostć, V., Nedovć, M. (204). Brekng the DD Recursve Nekrsovmtrces row sums Addtve nd Ostrowsk, multplctve Pupkov condtons DD Non-strct condtons Prttonng -DD, the ndex PH set

15 O. Tussky (948), Beuwens (976), zulc,t. (995), L, W. (998), Vrg, R.. (2004) Cvetkovć, Lj., Kostć, V. (2005) Brekng the DD Recursve Nekrsovmtrces row sums Addtve nd Ostrowsk, multplctve Pupkov condtons DD IDD, Non-strct CDD -IDD, condtons -CDD Prttonng -DD, the ndex PH set

16 O. Tussky (948), Beuwens (976), zulc,t. (995), L, W. (998), Vrg, R.. (2004) Cvetkovć, Lj., Kostć, V. (2005) Brekng the DD Recursve Nekrsovmtrces row sums H Addtve nd Ostrowsk, multplctve Pupkov condtons DD IDD, Non-strct CDD -IDD, condtons -CDD Prttonng -DD, the ndex PH set

17 I Addtve nd multplctve condtons Ostrowsk-mtrces multplctve condton: jj > r ( A) r ( A) j Pupkov-mtrces ddtve condton: > r ( A) + r ( A) ( A) > mn{mx { }, r } + jj j j j Ostrowsk, A. M. (937), Pupkov, V. A. (983), Hoffmn, A.J. (2000), Vrg, R.. : Geršgorn nd hs crcles (2004)

18 II Prttonng the ndex set -DD-mtrces Gven ny complex mtrx A=[j]nxn nd gven ny nonempty proper subset of N, A s n -DD mtrx f ( A) =, > r j j, j ( ) > r ( A) r ( A) ( r ( A) ) r ( A), j jj j j, Go, Y.M., Xo, H.W. LAA (992) Cvetkovć, Lj., Kostć, V., Vrg, R. ETNA (2004)

19 II Prttonng the ndex set! A mtrx A=[j]nxn s n -DD mtrx ff there exsts mtrx W n Ws such tht AW s n DD mtrx. W -DD-mtrces = W = dg( w, w,..., 2 wn ): w = γ > 0 for nd w = for γ.. γ N\.. DD

20 Dgonl sclng chrcterzton & clng mtrces γ.. γ N\.. DD We choose prmeter from the ntervl: I ( γ ( A) γ ( )), γ = 0, 2 A ( ) mx r ( A) γ A = r ( A), γ 2( A) = j mn jj r j rj ( A) ( A).

21 Dgonl sclng chrcterzton & clng mtrces -DD DD

22 Dgonl sclng chrcterzton & clng mtrces γ γ γ -DD T-DD DD γ γ γ γ

23 Dgonl sclng chrcterzton & clng mtrces γ γ γ -DD -DD T-DD DD γ γ γ γ

24 Dgonl sclng chrcterzton & clng mtrces γ γ γ -DD DD γ γ γ γ

25 Egenvlue loclzton ( ) ( ) { },, : A r z C z A = Γ ( ) ( ) ( ) ( ) ( ) ( ) ( ) { }.,, : j A A r r A r z A r z C z A V j j jj j = ( ) ( ) ( ) ( )., Γ = j j A V A A C A σ Cvetkovć, L., Kostć, V., Vrg R..: A new Geršgorn-type egenvlue ncluson set ETNA, Vrg R..: Geršgorn nd hs crcles, prnger, Berln, 2004.

26 chur complement A ( α) A( α,α ) A ( α) A( α,α ) A ( α,α) A( α ) 0 chur The chur complement of complex nxn mtrx A, wth respect to proper subset α of ndex set N={, 2,, n}, s denoted by A/ α nd defned to be: A ( α ) A( α, α )( A( α )) A( α, α )

27 chur complement A ( α) A( α,α ) DD A ( α,α) A( α ) A ( α) A( α,α ) 0 chur Crlson, D., Mrkhm, T. : chur complements of dgonlly domnnt mtrces. Czech. Mth. J. 29 (04) (979),

28 chur complement A ( α) A( α,α ) A ( α) A( α,α ) A ( α,α) A( α ) 0 chur DD Crlson, D., Mrkhm, T. : chur complements of dgonlly domnnt mtrces. Czech. Mth. J. 29 (04) (979),

29 chur complement A ( α) A( α,α ) Ostr A ( α,α) A( α ) A ( α) A( α,α ) 0 chur Crlson, D., Mrkhm, T. : chur complements of dgonlly domnnt mtrces. Czech. Mth. J. 29 (04) (979) L, B., Tstsomeros, M.J. : Doubly dgonlly domnnt mtrces. LAA 26 (997)

30 chur complement A ( α) A( α,α ) A ( α) A( α,α ) A ( α,α) A( α ) 0 chur Ostr Crlson, D., Mrkhm, T. : chur complements of dgonlly domnnt mtrces. Czech. Mth. J. 29 (04) (979) L, B., Tstsomeros, M.J. : Doubly dgonlly domnnt mtrces. LAA 26 (997)

31 chur complement A ( α) A( α,α ) $ A ( α,α) A( α ) A ( α) A( α,α ) 0 chur Crlson, D., Mrkhm, T. : chur complements of dgonlly domnnt mtrces. Czech. Mth. J. 29 (04) (979) L, B., Tstsomeros, M.J. : Doubly dgonlly domnnt mtrces. LAA 26 (997) Zhng, F. : The chur complement nd ts pplctons, prnger, NY, (2005).

32 chur complement A ( α) A( α,α ) A ( α) A( α,α ) A ( α,α) A( α ) $ 0 chur Crlson, D., Mrkhm, T. : chur complements of dgonlly domnnt mtrces. Czech. Mth. J. 29 (04) (979) L, B., Tstsomeros, M.J. : Doubly dgonlly domnnt mtrces. LAA 26 (997) Zhng, F. : The chur complement nd ts pplctons, prnger, NY, (2005).

33 chur complements of -DD A ( α) A( α,α ) -DD A ( α,α) A( α ) A ( α) A( α,α ) 0 chur Cvetkovć, Lj., Kostć, V., Kovčevć, M., zulc, T. : Further results on H-mtrces nd ther chur complements. AMC (2008) Lu, J., Hung, Y., Zhng, F. : The chur complements of generlzed doubly dgonlly domnnt mtrces. LAA (2004)

34 chur complements of -DD A ( α) A( α,α ) A ( α) A( α,α ) A ( α,α) A( α ) 0 -DD chur Cvetkovć, Lj., Kostć, V., Kovčevć, M., zulc, T. : Further results on H-mtrces nd ther chur complements. AMC (2008) Lu, J., Hung, Y., Zhng, F. : The chur complements of generlzed doubly dgonlly domnnt mtrces. LAA (2004)

35 chur complements of -DD Theorem. Let A=[j]nxn be n -DD mtrx. Then for ny nonempty proper subset α of N, A/ α s lso n -DD mtrx. More precsely, f A s n -DD mtrx, then A/ α s n (\ α)-dd mtrx. Theorem2. Let A=[j]nxn be n -DD mtrx. Then for ny nonempty proper subset α of N such tht s subset of α or N\ s subset of α, A/ α s n DD mtrx. Cvetkovć, Lj., Kostć, V., Kovčevć, M., zulc, T. : Further results on H-mtrces nd ther chur complements. AMC (2008) Cvetkovć, Lj., Nedovć, M. : pecl H-mtrces nd ther chur nd dgonl- chur complements. AMC (2009)

36 Egenvlues of the C ( α) A DD A( α,α ) A ( α,α) A( α ) σ ( A) Γ( A) = Γ ( A) ( A α) λ σ / ') = ( z C : z r A N N *) ( ) = j { } j N \ + ), -) Lu, J., Hung, Z., Zhng, J. : The domnnt degree nd dsc theorem for the chur complement. AMC (200)

37 Egenvlues of the C of -DD A DD, = α γ > σ R mx α r α ( A) r ( A), α ( A/ α ) = σ ( W AW )/ α ) Γj ( W AW ) j = γr α j α ( A) + r ( A). j j α, Weghted Geršgorn set for the chur complement mtrx Cvetkovć, Lj., Nedovć, M. : Egenvlue loclzton refnements for the chur complement. AMC (202) Cvetkovć, Lj., Nedovć, M. : Dgonl sclng n egenvlue loclzton for the chur complement. PAMM (203)

38 Egenvlues of the C! Let A be n DD mtrx wth rel dgonl entres nd let α be proper subset of N. Then, A/α nd A(N\α) hve the sme number of egenvlues whose rel prts re greter (less) thn w (resp. -w), where ( ) r A α w( A) = mn jj rj ( A) + mn rj ( A) j α α A ( α) A( α,α ) A ( α) A( α,α ) A ( α,α) A( α ) 0 C Lu, J., Hung, Z., Zhng, J. : The domnnt degree nd dsc theorem for the chur complement. AMC (200)

39 Egenvlues of the C of -DD! Let A be n -DD mtrx wth rel dgonl entres nd let α be proper subset of N. Then, A/ α nd A(N\α) hve the sme number of egenvlues whose rel prts re greter (less) thn w (resp. -w), where Remrks: w = ( AW ) w W Ths result covers wder clss of mtrces. By chngng the prmeter n the sclng mtrx we obtn more vertcl bounds wth the sme seprtng property. We cn pply t to n DD mtrx, observng tht t belongs to T-DD clss for ny T subset of N. Cvetkovć, Lj., Nedovć, M. : Egenvlue loclzton refnements for the chur complement. AMC (202)

40 Egenvlues of the C of -DD A ( α) A( α,α ) A ( α) A( α,α ) A ( α,α) A( α ) 0 C

41 Dshnc-Zusmnovch A mtrx A=[j]nxn s Dshnc-Zusmnovch (DZ) mtrx f there exsts n ndex n N such tht ( r ( A) + ) > r ( A), j, j N. jj j j j γ.. DD Dshnc, L.., Zusmnovch, M..: O nekotoryh krteryh regulyrnost mtrc loklzc spectr. Zh. vychsl. mtem. mtem. fz. (970) Dshnc, L.., Zusmnovch, M..: K voprosu o loklzc hrkterstcheskh chsel mtrcy. Zh. vychsl. mtem. mtem. fz. (970)

42 PH-mtrces π : 2,,..., l n x n l x l Aggregted mtrces Kolotln, L. Yu. : Dgonl domnnce chrcterzton of PM- nd PHmtrces. Journl of Mthemtcl cences (200)

43 PH-mtrces * * * * Kolotln, L. Yu. : Dgonl domnnce chrcterzton of PM- nd PHmtrces. Journl of Mthemtcl cences (200)

44 Nekrsov mtrces! A complex mtrx A=[j]nxn s DDmtrx f for ech from N t holds tht ( A) r( A) d > > r ( A) = j j N, j! A complex mtrx A=[j]nxn s Nekrsov-mtrx f for ech from N t holds tht ( A) h( A) d > h > h ( A) = ( A), h ( A) = r ( A) h ( A) n j= j j jj + j= + j,, = 2,3,..., n. A = D L U

45 Nekrsov mtrces A complex mtrx A=[j]nxn s Nekrsov-mtrx f for ech from N t holds tht h > ( A) h = ( A), h ( A) = r ( A) h ( A) n j= j = 2,3,..., n. j ( A) h( A) jj + j= + Nekrsov row sums j,, d > A = D L U

46 Nekrsov mtrces nd sclng Theorem. Let A=[j]nxn be Nekrsov mtrx wth nonzero Nekrsov row sums. Then, for dgonl postve mtrx D where d h = ε ( A), =,, n, nd ( ε ) n = s n ncresng sequence of numbers wth ε =, ε,, = 2,, n, h ( A) the mtrx AD s n DD mtrx. zulc, T., Cvetkovć, Lj., Nedovć, M. : clng technque for Nekrsov mtrces. AMC (205) (n prnt)

47 Nekrsov mtrces nd permuttons! Unlke DD nd H, Nekrsov clss s NOT closed under smlrty (smultneous) permuttons of rows nd columns!! Gven permutton mtrx P, complex mtrx A=[j]nxn s clled P-Nekrsov T T ( P AP) > h ( P AP) T T ( P AP) > h( P AP). d f, N, The unon of ll P-Nekrsov= Gudkov clss A = D L U

48 {P,P2} Nekrsov mtrces! uppose tht for the gven mtrx A=[j]nxn nd two gven permutton mtrces P nd P2 d { } ( ) ( ) P T, h A = P h P AP,,2. P P2 ( A) mn h ( A), h ( A) > k k = We cll such mtrx {P,P2} Nekrsov mtrx. k k k A A A2

49 {P,P2} Nekrsov mtrces o Theorem. Every {P, P2} Nekrsov mtrx s nonsngulr. o Theorem2. Every {P, P2} Nekrsov mtrx s n H mtrx. o Theorem3. Gven n rbtrry set of permutton mtrces Π = { } p k k n P = every Пn Nekrsov mtrx s nonsngulr, moreover, t s n H mtrx. Cvetkovć, Lj., Kostć, V., Nedovć, M. : Generlztons of Nekrsov mtrces nd pplctons. (204)

50 Mx-norm bounds for the nverse of {P,P2} Nekrsov mtrces o Theorem. uppose tht for gven set of permutton mtrces {P, P2}, complex mtrx A=[j]nxn, n>, s {P, P2} Nekrsov mtrx. Then, A P z mx mn N P h mn mn N P2 ( A) z ( A), P2 ( A) h ( A),, where z z = = j= ( A) r ( A), z ( A) ( A) +, = 2,3,..., n, T P T ( A) = [ z ( A),, z ( A) ], z ( A) = Pz( P AP). n j z j jj Cvetkovć, Lj., Kostć, V., Nedovć, M. : Generlztons of Nekrsov mtrces nd pplctons. (204)

51 Mx-norm bounds for the nverse of {P,P2} Nekrsov mtrces o Theorem2. uppose tht for gven set of permutton mtrces {P, P2}, complex mtrx A=[j]nxn, n>, s {P, P2} Nekrsov mtrx. Then, A mx N mn% N & { } { ( )} % P mn z P ( A), z 2 & ( A) ' ( P mn h P ( A), h 2 A, ' ( z z = = j= ( A) r ( A), z ( A) ( A) +, = 2,3,..., n, T P T ( A) = [ z ( A),, z ( A) ], z ( A) = Pz( P AP). n Cvetkovć, Lj., Kostć, V., Nedovć, M. : Generlztons of Nekrsov mtrces nd pplctons. (204) j z j jj

52 Numercl exmples o Observe the gven mtrx B nd permutton mtrces P nd P2. B = , 5 45 P = , 0 P 2 = I, h h P P 2 P P P ( B) = 45, h2 ( B) = 0.25, h3 ( B) = 6.607, h4 ( B) = 4.25, P2 P2 P2 ( B) = 45, h ( B) = 0.25, h ( B) = 7.857, h ( B) = o Notce tht B s Nekrsov mtrx. Cvetkovć, Lj., Kostć, V., Doroslovčk, K. : Mx-norm bounds for the nverse of - Nekrsov mtrces. (202)

53 Numercl exmples o Observe the gven mtrx B nd permutton mtrces P nd P2. B = , 5 45 P = , 0 P 2 = I, B B B = Although the gven mtrx I Nekrsov mtrx, n ths wy we obtned better bound for the norm of the nverse.

54 Nekrsov mtrces Gven ny mtrx A nd ny nonempty proper subset of N we sy tht A s n -Nekrsov mtrx f jj > > h h j ( A),, ( A), j, ( h ( A) ) h ( A) ( ) > h ( A) h ( A),, j. jj j h h j ( A) r ( A) = ( A) = j= j h j ( A) jj + n j j= +, j If there exsts nonempty proper subset of N such tht A s n - Nekrsov mtrx, then we sy tht A belongs to the clss of -Nekrsov mtrces.

55 Nekrsov mtrces Cvetkovć, Lj., Kostć, V., Rušk,. : A new subclss of H- mtrces. AMC (2009) W = W = dg( w, w,..., 2 wn ): w = γ > 0 for nd w = for γ.. γ N\.. Nekrsov

56 Nekrsov mtrces Cvetkovć, Lj., Kostć, V., Rušk,. : A new subclss of H- mtrces. AMC (2009) Cvetkovć, Lj., Nedovć, M. : pecl H-mtrces nd ther chur nd dgonl-chur complements. AMC (2009) zulc, T., Cvetkovć, Lj., Nedovć, M. : clng technque for Nekrsov mtrces. AMC (205) (n prnt)

57 Nonstrct condtons DD - mtrces IDD-mtrces ( A),,2,..., n. r = kk > r k ( A) for one k n N CDD-mtrces ( A),,2,..., n. r = r ( A) kk > k for one k n N rreducblty non-zero chns Olg Tussky (948) T. zulc (995)

58 Nonstrct condtons DD - mtrces IDD-mtrces ( A),,2,..., n. r = kk > r k ( A) for one k n N CDD-mtrces ( A),,2,..., n. r = r ( A) kk > k for one k n N rreducblty non-zero chns Olg Tussky (948) T. zulc (995) L, W. : On Nekrsov mtrces. LAA (998)

59 Nonstrct condtons -IDD Gven n rreducble complex mtrx A=[j]nxn, f there s nonempty proper subset of N such tht the followng condtons hold, where the lst nequlty becomes strct for t lest one pr of ndces n nd j n N\, then A s n H-mtrx. r ( A) =, j j, j ( ) r ( A) r ( A),, j. ( r ( A ) r ( A) jj j Cvetkovć, Lj., Kostć, V. : New crter for dentfyng H-mtrces. JCAM (2005) j

60 Nonstrct condtons -CDD Gven complex mtrx A=[j]nxn, f there s nonempty proper subset of N such tht the followng condtons hold, where the lst nequlty becomes strct for t lest one pr of ndces n nd j n N\, nd for every pr of ndces n nd j n N\ for whch equlty holds there exsts pr of ndces k n nd l n N\ for whch strct nequlty holds nd there s pth from to l nd from j to k, then A s n H-mtrx. r ( A) =, j j, j ( ) r ( A) r ( A),, j. ( r ( A ) r ( A) jj j Cvetkovć, Lj., Kostć, V. : New crter for dentfyng H-mtrces. JCAM (2005) j

61 Cvetkovć, Lj., Kostć, V., Kovčevć, M., zulc, T. : Further results on H-mtrces nd ther chur complements. AMC (2008) Cvetkovć, Lj., Nedovć, M. : pecl H-mtrces nd ther chur nd dgonl- chur complements. AMC (2009) Cvetkovć, Lj., Nedovć, M. : Egenvlue loclzton refnements for the chur complement. AMC (202) Cvetkovć, Lj., Nedovć, M. : Dgonl sclng n egenvlue loclzton for the chur complement. PAMM (203) Cvetkovć, Lj., Kostć, V., Nedovć, M. : Generlztons of Nekrsov mtrces nd pplctons. (204) zulc, T., Cvetkovć, Lj., Nedovć, M. : clng technque for Nekrsov mtrces. AMC (205) (n prnt)

62 Mt Trd Combr 205 THANK YOU FOR YOUR ATTENTION! HVALA NA PAŽNJI!

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar) Lecture 3 (5.3.2018) (trnslted nd slightly dpted from lecture notes by Mrtin Klzr) Riemnn integrl Now we define precisely the concept of the re, in prticulr, the re of figure U(, b, f) under the grph of

More information

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]:

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]: RGMIA Reserch Report Collecton, Vol., No. 1, 1999 http://sc.vu.edu.u/οrgm ON THE OSTROWSKI INTEGRAL INEQUALITY FOR LIPSCHITZIAN MAPPINGS AND APPLICATIONS S.S. Drgomr Abstrct. A generlzton of Ostrowsk's

More information

Math 4310 Solutions to homework 1 Due 9/1/16

Math 4310 Solutions to homework 1 Due 9/1/16 Mth 4310 Solutions to homework 1 Due 9/1/16 1. Use the Eucliden lgorithm to find the following gretest common divisors. () gcd(252, 180) = 36 (b) gcd(513, 187) = 1 (c) gcd(7684, 4148) = 68 252 = 180 1

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

Contents. Outline. Structured Rank Matrices Lecture 2: The theorem Proofs Examples related to structured ranks References. Structure Transport

Contents. Outline. Structured Rank Matrices Lecture 2: The theorem Proofs Examples related to structured ranks References. Structure Transport Contents Structured Rnk Mtrices Lecture 2: Mrc Vn Brel nd Rf Vndebril Dept. of Computer Science, K.U.Leuven, Belgium Chemnitz, Germny, 26-30 September 2011 1 Exmples relted to structured rnks 2 2 / 26

More information

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1 mercn Interntonl Journl of Reserch n cence Technology Engneerng & Mthemtcs vlble onlne t http://wwwsrnet IN (Prnt: 38-349 IN (Onlne: 38-3580 IN (CD-ROM: 38-369 IJRTEM s refereed ndexed peer-revewed multdscplnry

More information

Notes on convergence of an algebraic multigrid method

Notes on convergence of an algebraic multigrid method Appled Mthemtcs Letters 20 (2007) 335 340 www.elsever.com/locte/ml Notes on convergence of n lgebrc multgrd method Zhohu Hung,, Peln Sh b Stte Key Lbortory of Spce Wether, Center for Spce Scence nd Appled

More information

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed Proof tht f Votng s Perfect n One Dmenson, then the Frst Egenvector Extrcted from the Doule-Centered Trnsformed Agreement Score Mtrx hs the Sme Rn Orderng s the True Dt Keth T Poole Unversty of Houston

More information

A Family of Multivariate Abel Series Distributions. of Order k

A Family of Multivariate Abel Series Distributions. of Order k Appled Mthemtcl Scences, Vol. 2, 2008, no. 45, 2239-2246 A Fmly of Multvrte Abel Seres Dstrbutons of Order k Rupk Gupt & Kshore K. Ds 2 Fculty of Scence & Technology, The Icf Unversty, Agrtl, Trpur, Ind

More information

Convergence Theorems for Two Iterative Methods. A stationary iterative method for solving the linear system: (1.1)

Convergence Theorems for Two Iterative Methods. A stationary iterative method for solving the linear system: (1.1) Conrgnc Thors for Two Itrt Mthods A sttonry trt thod for solng th lnr syst: Ax = b (.) ploys n trton trx B nd constnt ctor c so tht for gn strtng stt x of x for = 2... x Bx c + = +. (.2) For such n trton

More information

Math 426: Probability Final Exam Practice

Math 426: Probability Final Exam Practice Mth 46: Probbility Finl Exm Prctice. Computtionl problems 4. Let T k (n) denote the number of prtitions of the set {,..., n} into k nonempty subsets, where k n. Argue tht T k (n) kt k (n ) + T k (n ) by

More information

Closure Properties of Regular Languages

Closure Properties of Regular Languages Closure Properties of Regulr Lnguges Regulr lnguges re closed under mny set opertions. Let L 1 nd L 2 e regulr lnguges. (1) L 1 L 2 (the union) is regulr. (2) L 1 L 2 (the conctention) is regulr. (3) L

More information

Path product and inverse M-matrices

Path product and inverse M-matrices Electronic Journl of Liner Algebr Volume 22 Volume 22 (2011) Article 42 2011 Pth product nd inverse M-mtrices Yn Zhu Cheng-Yi Zhng Jun Liu Follow this nd dditionl works t: http://repository.uwyo.edu/el

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4)

ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4) ON SIMPSON S INEQUALITY AND APPLICATIONS SS DRAGOMIR, RP AGARWAL, AND P CERONE Abstrct New neultes of Smpson type nd ther pplcton to udrture formule n Numercl Anlyss re gven Introducton The followng neulty

More information

Haddow s Experiment:

Haddow s Experiment: schemtc drwng of Hddow's expermentl set-up movng pston non-contctng moton sensor bems of sprng steel poston vres to djust frequences blocks of sold steel shker Hddow s Experment: terr frm Theoretcl nd

More information

ME 501A Seminar in Engineering Analysis Page 1

ME 501A Seminar in Engineering Analysis Page 1 Mtr Trsformtos usg Egevectors September 8, Mtr Trsformtos Usg Egevectors Lrry Cretto Mechcl Egeerg A Semr Egeerg Alyss September 8, Outle Revew lst lecture Trsformtos wth mtr of egevectors: = - A ermt

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

(e) if x = y + z and a divides any two of the integers x, y, or z, then a divides the remaining integer

(e) if x = y + z and a divides any two of the integers x, y, or z, then a divides the remaining integer Divisibility In this note we introduce the notion of divisibility for two integers nd b then we discuss the division lgorithm. First we give forml definition nd note some properties of the division opertion.

More information

Quadratic Forms. Quadratic Forms

Quadratic Forms. Quadratic Forms Qudrtic Forms Recll the Simon & Blume excerpt from n erlier lecture which sid tht the min tsk of clculus is to pproximte nonliner functions with liner functions. It s ctully more ccurte to sy tht we pproximte

More information

5.2 Exponent Properties Involving Quotients

5.2 Exponent Properties Involving Quotients 5. Eponent Properties Involving Quotients Lerning Objectives Use the quotient of powers property. Use the power of quotient property. Simplify epressions involving quotient properties of eponents. Use

More information

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS

FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Dol Bgyoko (0 FUNDAMENTALS ON ALGEBRA MATRICES AND DETERMINANTS Introducton Expressons of the form P(x o + x + x + + n x n re clled polynomls The coeffcents o,, n re ndependent of x nd the exponents 0,,,

More information

Harvard University Computer Science 121 Midterm October 23, 2012

Harvard University Computer Science 121 Midterm October 23, 2012 Hrvrd University Computer Science 121 Midterm Octoer 23, 2012 This is closed-ook exmintion. You my use ny result from lecture, Sipser, prolem sets, or section, s long s you quote it clerly. The lphet is

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Theoretical foundations of Gaussian quadrature

Theoretical foundations of Gaussian quadrature Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35

MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35 MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35 9. Modules over PID This week we re proving the fundmentl theorem for finitely generted modules over PID, nmely tht they re ll direct sums of cyclic modules.

More information

Lecture 2e Orthogonal Complement (pages )

Lecture 2e Orthogonal Complement (pages ) Lecture 2e Orthogonl Complement (pges -) We hve now seen tht n orthonorml sis is nice wy to descrie suspce, ut knowing tht we wnt n orthonorml sis doesn t mke one fll into our lp. In theory, the process

More information

Quantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes

Quantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes 1 Quntum Codes from Generlzed Reed-Solomon Codes nd Mtrx-Product Codes To Zhng nd Gennn Ge Abstrct rxv:1508.00978v1 [cs.it] 5 Aug 015 One of the centrl tsks n quntum error-correcton s to construct quntum

More information

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama

Homework 4. 0 ε 0. (00) ε 0 ε 0 (00) (11) CS 341: Foundations of Computer Science II Prof. Marvin Nakayama CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 4 1. UsetheproceduredescriedinLemm1.55toconverttheregulrexpression(((00) (11)) 01) into n NFA. Answer: 0 0 1 1 00 0 0 11 1 1 01 0 1 (00)

More information

COMPLEX NUMBER & QUADRATIC EQUATION

COMPLEX NUMBER & QUADRATIC EQUATION MCQ COMPLEX NUMBER & QUADRATIC EQUATION Syllus : Comple numers s ordered prs of rels, Representton of comple numers n the form + nd ther representton n plne, Argnd dgrm, lger of comple numers, modulus

More information

Elementary Linear Algebra

Elementary Linear Algebra Elementry Liner Algebr Anton & Rorres, 1 th Edition Lecture Set 5 Chpter 4: Prt II Generl Vector Spces 163 คณ ตศาสตร ว ศวกรรม 3 สาขาว ชาว ศวกรรมคอมพ วเตอร ป การศ กษา 1/2555 163 คณตศาสตรวศวกรรม 3 สาขาวชาวศวกรรมคอมพวเตอร

More information

Lecture notes. Fundamental inequalities: techniques and applications

Lecture notes. Fundamental inequalities: techniques and applications Lecture notes Fundmentl nequltes: technques nd pplctons Mnh Hong Duong Mthemtcs Insttute, Unversty of Wrwck Eml: m.h.duong@wrwck.c.uk Jnury 4, 07 Abstrct Inequltes re ubqutous n Mthemtcs (nd n rel lfe.

More information

4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX. be a real symmetric matrix. ; (where we choose θ π for.

4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX. be a real symmetric matrix. ; (where we choose θ π for. 4.5 JACOBI ITERATION FOR FINDING EIGENVALUES OF A REAL SYMMETRIC MATRIX Some reliminries: Let A be rel symmetric mtrix. Let Cos θ ; (where we choose θ π for Cos θ 4 purposes of convergence of the scheme)

More information

MSC: Primary 11A15, Secondary 11A07, 11E25 Keywords: Reciprocity law; octic residue; congruence; quartic Jacobi symbol

MSC: Primary 11A15, Secondary 11A07, 11E25 Keywords: Reciprocity law; octic residue; congruence; quartic Jacobi symbol Act Arth 159013, 1-5 Congruences for [/] mo ZHI-Hong Sun School of Mthemtcl Scences, Hun Norml Unverst, Hun, Jngsu 3001, PR Chn E-ml: zhhongsun@hoocom Homege: htt://wwwhtceucn/xsjl/szh Abstrct Let Z be

More information

Simple Gamma Rings With Involutions.

Simple Gamma Rings With Involutions. IOSR Journl of Mthemtics (IOSR-JM) ISSN: 2278-5728. Volume 4, Issue (Nov. - Dec. 2012), PP 40-48 Simple Gmm Rings With Involutions. 1 A.C. Pul nd 2 Md. Sbur Uddin 1 Deprtment of Mthemtics University of

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

MATRICES AND VECTORS SPACE

MATRICES AND VECTORS SPACE MATRICES AND VECTORS SPACE MATRICES AND MATRIX OPERATIONS SYSTEM OF LINEAR EQUATIONS DETERMINANTS VECTORS IN -SPACE AND -SPACE GENERAL VECTOR SPACES INNER PRODUCT SPACES EIGENVALUES, EIGENVECTORS LINEAR

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

MTH3101 Spring 2017 HW Assignment 6: Chap. 5: Sec. 65, #6-8; Sec. 68, #5, 7; Sec. 72, #8; Sec. 73, #5, 6. The due date for this assignment is 4/06/17.

MTH3101 Spring 2017 HW Assignment 6: Chap. 5: Sec. 65, #6-8; Sec. 68, #5, 7; Sec. 72, #8; Sec. 73, #5, 6. The due date for this assignment is 4/06/17. MTH30 Spring 07 HW Assignment 6: Chp. 5: Sec. 65, #6-8; Sec. 68, #5, 7; Sec. 7, #8; Sec. 73, #5, 6. The due dte for this ssignment is 4/06/7. Sec. 65: #6. Wht is the lrgest circle within which the Mclurin

More information

Presentation Problems 5

Presentation Problems 5 Presenttion Problems 5 21-355 A For these problems, ssume ll sets re subsets of R unless otherwise specified. 1. Let P nd Q be prtitions of [, b] such tht P Q. Then U(f, P ) U(f, Q) nd L(f, P ) L(f, Q).

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

Introduction To Matrices MCV 4UI Assignment #1

Introduction To Matrices MCV 4UI Assignment #1 Introduction To Mtrices MCV UI Assignment # INTRODUCTION: A mtrix plurl: mtrices) is rectngulr rry of numbers rrnged in rows nd columns Exmples: ) b) c) [ ] d) Ech number ppering in the rry is sid to be

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

Finite Automata-cont d

Finite Automata-cont d Automt Theory nd Forml Lnguges Professor Leslie Lnder Lecture # 6 Finite Automt-cont d The Pumping Lemm WEB SITE: http://ingwe.inghmton.edu/ ~lnder/cs573.html Septemer 18, 2000 Exmple 1 Consider L = {ww

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

Introduction to Group Theory

Introduction to Group Theory Introduction to Group Theory Let G be n rbitrry set of elements, typiclly denoted s, b, c,, tht is, let G = {, b, c, }. A binry opertion in G is rule tht ssocites with ech ordered pir (,b) of elements

More information

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache INITE NEUTROSOPHIC COMPLEX NUMBERS W. B. Vsnth Kndsmy lorentn Smrndche ZIP PUBLISHING Oho 11 Ths book cn be ordered from: Zp Publshng 1313 Chespeke Ave. Columbus, Oho 31, USA Toll ree: (61) 85-71 E-ml:

More information

MTH 122 Fall 2008 Essex County College Division of Mathematics Handout Version 10 1 October 14, 2008

MTH 122 Fall 2008 Essex County College Division of Mathematics Handout Version 10 1 October 14, 2008 MTH 22 Fll 28 Essex County College Division of Mthemtics Hndout Version October 4, 28 Arc Length Everyone should be fmilir with the distnce formul tht ws introduced in elementry lgebr. It is bsic formul

More information

MATH 409 Advanced Calculus I Lecture 18: Darboux sums. The Riemann integral.

MATH 409 Advanced Calculus I Lecture 18: Darboux sums. The Riemann integral. MATH 409 Advnced Clculus I Lecture 18: Drboux sums. The Riemnn integrl. Prtitions of n intervl Definition. A prtition of closed bounded intervl [, b] is finite subset P [,b] tht includes the endpoints

More information

ψ ij has the eigenvalue

ψ ij has the eigenvalue Moller Plesset Perturbton Theory In Moller-Plesset (MP) perturbton theory one tes the unperturbed Hmltonn for n tom or molecule s the sum of the one prtcle Foc opertors H F() where the egenfunctons of

More information

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members Onlne Appendx to Mndtng Behvorl Conformty n Socl Groups wth Conformst Members Peter Grzl Andrze Bnk (Correspondng uthor) Deprtment of Economcs, The Wllms School, Wshngton nd Lee Unversty, Lexngton, 4450

More information

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 ) Chpter Introducton to Algebr Dr. Chh-Peng L 李 Outlne Groups Felds Bnry Feld Arthetc Constructon of Glos Feld Bsc Propertes of Glos Feld Coputtons Usng Glos Feld Arthetc Vector Spces Groups 3 Let G be set

More information

STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS

STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS STURM-LIOUVILLE BOUNDARY VALUE PROBLEMS Throughout, we let [, b] be bounded intervl in R. C 2 ([, b]) denotes the spce of functions with derivtives of second order continuous up to the endpoints. Cc 2

More information

Symbolic enumeration methods for unlabelled structures

Symbolic enumeration methods for unlabelled structures Go & Šjn, Comintoril Enumertion Notes 4 Symolic enumertion methods for unlelled structures Definition A comintoril clss is finite or denumerle set on which size function is defined, stisfying the following

More information

Christian Aebi Collège Calvin, Geneva, Switzerland

Christian Aebi Collège Calvin, Geneva, Switzerland #A7 INTEGERS 12 (2012) A PROPERTY OF TWIN PRIMES Chrstan Aeb Collège Calvn, Geneva, Swtzerland chrstan.aeb@edu.ge.ch Grant Carns Department of Mathematcs, La Trobe Unversty, Melbourne, Australa G.Carns@latrobe.edu.au

More information

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 UNIFORM CONVERGENCE Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 Suppose f n : Ω R or f n : Ω C is sequence of rel or complex functions, nd f n f s n in some sense. Furthermore,

More information

Homework 3 Solutions

Homework 3 Solutions CS 341: Foundtions of Computer Science II Prof. Mrvin Nkym Homework 3 Solutions 1. Give NFAs with the specified numer of sttes recognizing ech of the following lnguges. In ll cses, the lphet is Σ = {,1}.

More information

Chapter 1: Fundamentals

Chapter 1: Fundamentals Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962).

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962). 005 Vectors nd Tensors R. Shnkr Subrmnn Good Sources R. rs, Vectors, Tensors, nd the Equtons of Flud Mechncs, Prentce Hll (96). nd ppendces n () R. B. Brd, W. E. Stewrt, nd E. N. Lghtfoot, Trnsport Phenomen,

More information

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 32, N o 1, 2003, pp 11 20 THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR TEODORA CĂTINAŞ Abstrct We extend the Sheprd opertor by

More information

Graph Theory. Dr. Saad El-Zanati, Faculty Mentor Ryan Bunge Graduate Assistant Illinois State University REU. Graph Theory

Graph Theory. Dr. Saad El-Zanati, Faculty Mentor Ryan Bunge Graduate Assistant Illinois State University REU. Graph Theory Grph Theory Gibson, Ngel, Stnley, Zle Specil Types of Bckground Motivtion Grph Theory Dniel Gibson, Concordi University Jckelyn Ngel, Dominicn University Benjmin Stnley, New Mexico Stte University Allison

More information

p (i.e., the set of all nonnegative real numbers). Similarly, Z will denote the set of all

p (i.e., the set of all nonnegative real numbers). Similarly, Z will denote the set of all th Prelmnry E 689 Lecture Notes by B. Yo 0. Prelmnry Notton themtcl Prelmnres It s ssumed tht the reder s fmlr wth the noton of set nd ts elementry oertons, nd wth some bsc logc oertors, e.g. x A : x s

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

Math 61CM - Solutions to homework 9

Math 61CM - Solutions to homework 9 Mth 61CM - Solutions to homework 9 Cédric De Groote November 30 th, 2018 Problem 1: Recll tht the left limit of function f t point c is defined s follows: lim f(x) = l x c if for ny > 0 there exists δ

More information

Perron Vectors of an Irreducible Nonnegative Interval Matrix

Perron Vectors of an Irreducible Nonnegative Interval Matrix Perron Vectors of an Irreducble Nonnegatve Interval Matrx Jr Rohn August 4 2005 Abstract As s well known an rreducble nonnegatve matrx possesses a unquely determned Perron vector. As the man result of

More information

Multiple view geometry

Multiple view geometry EECS 442 Computer vson Multple vew geometry Perspectve Structure from Moton - Perspectve structure from moton prolem - mgutes - lgerc methods - Fctorzton methods - Bundle djustment - Self-clrton Redng:

More information

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1

n f(x i ) x. i=1 In section 4.2, we defined the definite integral of f from x = a to x = b as n f(x i ) x; f(x) dx = lim i=1 The Fundmentl Theorem of Clculus As we continue to study the re problem, let s think bck to wht we know bout computing res of regions enclosed by curves. If we wnt to find the re of the region below the

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

37 Kragujevac J. Math. 23 (2001) A NOTE ON DENSITY OF THE ZEROS OF ff-orthogonal POLYNOMIALS Gradimir V. Milovanović a and Miodrag M. Spalević

37 Kragujevac J. Math. 23 (2001) A NOTE ON DENSITY OF THE ZEROS OF ff-orthogonal POLYNOMIALS Gradimir V. Milovanović a and Miodrag M. Spalević 37 Krgujevc J. Mth. 23 (2001) 37 43. A NOTE ON DENSITY OF THE ZEROS OF ff-orthogonal POLYNOMIALS Grdimir V. Milovnović nd Miodrg M. Splević b Fculty of Electronic Engineering, Deprtment of Mthemtics, University

More information

First day August 1, Problems and Solutions

First day August 1, Problems and Solutions FOURTH INTERNATIONAL COMPETITION FOR UNIVERSITY STUDENTS IN MATHEMATICS July 30 August 4, 997, Plovdv, BULGARIA Frst day August, 997 Problems and Solutons Problem. Let {ε n } n= be a sequence of postve

More information

along the vector 5 a) Find the plane s coordinate after 1 hour. b) Find the plane s coordinate after 2 hours. c) Find the plane s coordinate

along the vector 5 a) Find the plane s coordinate after 1 hour. b) Find the plane s coordinate after 2 hours. c) Find the plane s coordinate L8 VECTOR EQUATIONS OF LINES HL Mth - Sntowski Vector eqution of line 1 A plne strts journey t the point (4,1) moves ech hour long the vector. ) Find the plne s coordinte fter 1 hour. b) Find the plne

More information

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals.

MATH 409 Advanced Calculus I Lecture 19: Riemann sums. Properties of integrals. MATH 409 Advnced Clculus I Lecture 19: Riemnn sums. Properties of integrls. Drboux sums Let P = {x 0,x 1,...,x n } be prtition of n intervl [,b], where x 0 = < x 1 < < x n = b. Let f : [,b] R be bounded

More information

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert Demnd Demnd nd Comrtve Sttcs ECON 370: Mcroeconomc Theory Summer 004 Rce Unversty Stnley Glbert Usng the tools we hve develoed u to ths ont, we cn now determne demnd for n ndvdul consumer We seek demnd

More information

S. S. Dragomir. 2, we have the inequality. b a

S. S. Dragomir. 2, we have the inequality. b a Bull Koren Mth Soc 005 No pp 3 30 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Abstrct Compnions of Ostrowski s integrl ineulity for bsolutely

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

p(t) dt + i 1 re it ireit dt =

p(t) dt + i 1 re it ireit dt = Note: This mteril is contined in Kreyszig, Chpter 13. Complex integrtion We will define integrls of complex functions long curves in C. (This is bit similr to [relvlued] line integrls P dx + Q dy in R2.)

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES GUANG-HUI CAI Receved 24 September 2004; Revsed 3 My 2005; Accepted 3 My 2005 To derve Bum-Ktz-type result, we estblsh

More information

Convert the NFA into DFA

Convert the NFA into DFA Convert the NF into F For ech NF we cn find F ccepting the sme lnguge. The numer of sttes of the F could e exponentil in the numer of sttes of the NF, ut in prctice this worst cse occurs rrely. lgorithm:

More information

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4

Intermediate Math Circles Wednesday, November 14, 2018 Finite Automata II. Nickolas Rollick a b b. a b 4 Intermedite Mth Circles Wednesdy, Novemer 14, 2018 Finite Automt II Nickols Rollick nrollick@uwterloo.c Regulr Lnguges Lst time, we were introduced to the ide of DFA (deterministic finite utomton), one

More information

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve.

The Fundamental Theorem of Calculus. The Total Change Theorem and the Area Under a Curve. Clculus Li Vs The Fundmentl Theorem of Clculus. The Totl Chnge Theorem nd the Are Under Curve. Recll the following fct from Clculus course. If continuous function f(x) represents the rte of chnge of F

More information

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b.

We partition C into n small arcs by forming a partition of [a, b] by picking s i as follows: a = s 0 < s 1 < < s n = b. Mth 255 - Vector lculus II Notes 4.2 Pth nd Line Integrls We begin with discussion of pth integrls (the book clls them sclr line integrls). We will do this for function of two vribles, but these ides cn

More information

Formal Languages and Automata

Formal Languages and Automata Moile Computing nd Softwre Engineering p. 1/5 Forml Lnguges nd Automt Chpter 2 Finite Automt Chun-Ming Liu cmliu@csie.ntut.edu.tw Deprtment of Computer Science nd Informtion Engineering Ntionl Tipei University

More information

Lecture 08: Feb. 08, 2019

Lecture 08: Feb. 08, 2019 4CS4-6:Theory of Computtion(Closure on Reg. Lngs., regex to NDFA, DFA to regex) Prof. K.R. Chowdhry Lecture 08: Fe. 08, 2019 : Professor of CS Disclimer: These notes hve not een sujected to the usul scrutiny

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

Vectors , (0,0). 5. A vector is commonly denoted by putting an arrow above its symbol, as in the picture above. Here are some 3-dimensional vectors:

Vectors , (0,0). 5. A vector is commonly denoted by putting an arrow above its symbol, as in the picture above. Here are some 3-dimensional vectors: Vectors 1-23-2018 I ll look t vectors from n lgeric point of view nd geometric point of view. Algericlly, vector is n ordered list of (usully) rel numers. Here re some 2-dimensionl vectors: (2, 3), ( )

More information

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1

MATH34032: Green s Functions, Integral Equations and the Calculus of Variations 1 MATH34032: Green s Functions, Integrl Equtions nd the Clculus of Vritions 1 Section 1 Function spces nd opertors Here we gives some brief detils nd definitions, prticulrly relting to opertors. For further

More information

HW3, Math 307. CSUF. Spring 2007.

HW3, Math 307. CSUF. Spring 2007. HW, Mth 7. CSUF. Spring 7. Nsser M. Abbsi Spring 7 Compiled on November 5, 8 t 8:8m public Contents Section.6, problem Section.6, problem Section.6, problem 5 Section.6, problem 7 6 5 Section.6, problem

More information

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008

Math 520 Final Exam Topic Outline Sections 1 3 (Xiao/Dumas/Liaw) Spring 2008 Mth 520 Finl Exm Topic Outline Sections 1 3 (Xio/Dums/Liw) Spring 2008 The finl exm will be held on Tuesdy, My 13, 2-5pm in 117 McMilln Wht will be covered The finl exm will cover the mteril from ll of

More information

MATH FIELD DAY Contestants Insructions Team Essay. 1. Your team has forty minutes to answer this set of questions.

MATH FIELD DAY Contestants Insructions Team Essay. 1. Your team has forty minutes to answer this set of questions. MATH FIELD DAY 2012 Contestnts Insructions Tem Essy 1. Your tem hs forty minutes to nswer this set of questions. 2. All nswers must be justified with complete explntions. Your nswers should be cler, grmmticlly

More information

Things to Memorize: A Partial List. January 27, 2017

Things to Memorize: A Partial List. January 27, 2017 Things to Memorize: A Prtil List Jnury 27, 2017 Chpter 2 Vectors - Bsic Fcts A vector hs mgnitude (lso clled size/length/norm) nd direction. It does not hve fixed position, so the sme vector cn e moved

More information

Riemann Sums and Riemann Integrals

Riemann Sums and Riemann Integrals Riemnn Sums nd Riemnn Integrls Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University August 26, 2013 Outline 1 Riemnn Sums 2 Riemnn Integrls 3 Properties

More information

SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set

SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL (1 + µ(f n )) f(x) =. But we don t need the exact bound.) Set SOLUTIONS FOR ANALYSIS QUALIFYING EXAM, FALL 28 Nottion: N {, 2, 3,...}. (Tht is, N.. Let (X, M be mesurble spce with σ-finite positive mesure µ. Prove tht there is finite positive mesure ν on (X, M such

More information