MSC: Primary 11A15, Secondary 11A07, 11E25 Keywords: Reciprocity law; octic residue; congruence; quartic Jacobi symbol

Size: px
Start display at page:

Download "MSC: Primary 11A15, Secondary 11A07, 11E25 Keywords: Reciprocity law; octic residue; congruence; quartic Jacobi symbol"

Transcription

1 Act Arth , 1-5 Congruences for [/] mo ZHI-Hong Sun School of Mthemtcl Scences, Hun Norml Unverst, Hun, Jngsu 3001, PR Chn E-ml: Homege: htt://wwwhtceucn/xsjl/szh Abstrct Let Z be the set of ntegers, n let m, n be the gretest common vsor of ntegers m n n Let 1 mo be rme, Z, n c + x + wth c,, x, Z n c 1 mo Suose tht c, x + 1 or, x + c s ower of In the er, b usng the urtc recroct lw we etermne [/] mo n terms of c,, x n, where [ ] s the gretest nteger functon Hence we rtll solve some conjectures ose b the uthor n two revous ers MSC: Prmr 11A15, Seconr 11A07, 11E5 Kewors: Recroct lw; octc resue; congruence; urtc Jcob smbol 1 Introucton Let Z be the set of ntegers, 1 n Z[] + b, b Z} For n ostve o number m n Z let m be the urtc Jcob smbol We lso ssume 1 1 For our convenence we lso efne m m Then for n two o numbers m n n wth m > 0 or n > 0 we hve the followng generl urtc recroct lw: m m 1 n 1 n 1 n m For, b, c, Z wth c n, one cn efne the urtc Jcob smbol +b c+ s n [S] From [IR] we know tht +b c+ b c +b 1 c+, where x mens the comlex conjugte of x In Secton we lst mn roertes of the urtc Jcob smbol See lso [IR], [BEW] n [S] For rme k + 1 c + x + 3 wth k, c,, x, Z n c 1 mo, n [HW] n [H], b usng cclotomc numbers n Jcob sums Huson n Wllms rove tht ±1 mo f c ± mo 3, ± c mo f ± 1 mo 3 Let be rme of the form k + 1, Z, n Suose tht c + x + wth c,, x, Z n c 1 mo In [S] n [S5] the uthor ose mn conjectures on [/] mo n terms of c,, x n, where [ ] s the The uthor s suorte b the Ntonl Nturl Scences Founton of Chn No

2 gretest nteger functon For m, n Z let m, n be the gretest common vsor of m n n For m Z wth m α m 0 m 0 we s tht α m In the er, b evelong the clculton technue of urtc Jcob smbols we rtll solve mn conjectures from [S] n [S5], n estblsh new recroct lws for urtc n octc resues on conton tht c, x + 1 or, x + c α For the hstor of clsscl recroct lws, see [Lem] Suose r 0, t 0 n mo Assume c, x + 1 or 0, x + c 1 We then hve the followng tcl results 11 If 1 mo, s rme n + b wth, b Z, then x m c + b 1 mo c c b b m mo 1 If 7 mo s rme, then 1 [/] c m mo f 1 mo, 1 x 1 c m x mo f 5 mo c +1 m mo 13 If 1 mo, + b,, b Z, n, b 1, then 1 + x c m mo f n x, c m mo f n x, 1 b x+ c m 1 mo f n x, Bsc lemms 1 b x 1 c m 1 mo f n x c + b/x m b + Lemm 1 [S, Prooston 1] Let, b Z wth n b Then + b +b b / n b 1 1 b 1/ f b, 1 1 b 1 1 f b Lemm [S, Prooston ] Let, b Z wth n b Then 1 + b 1 b n 1 + b 1 b

3 Lemm 3 [S, Prooston 3] Let, b, c, Z wth c, b n If +b n c+ re reltvel rme elements of Z[], we hve the followng generl lw of urtc recroct: In rtculr, f b, then + b 1 b c 1 + +b 1 + b b + b Lemm [E], [S1, Lemm 1] Let, b, m Z wth m n m, +b 1 Then + b m + b m Lemm 5 [S3, Lemm 3] Let, b Z wth n b For n nteger x wth x, + b 1 we hve x + b x + b Lemm 6 Let, b Z wth b n, b 1 Then Proof B Lemms 1 n 3, b + b + b + b b 1 f b, + b 1 1 f b b + b + b 1 1 b + b + b 1 1 b 1 1 b b/ f b, 1 1 f b + b Thus the lemm s rove For gven o rme let Z enote the set of those rtonl numbers whose enomntor s not vsble b Followng [S1,S] we efne Q r k k Z, k + 3 r} for r 0, 1,, 3

4 Lemm 7 [S1, Theorem 3] Let be n o rme, r 0, 1,, 3}, k Z n k mo If 1 mo n t 1 mo wth t Z, then k Q r f n onl f k+t k t 1/ t r mo If 3 mo, then k Q r f n onl f k k+ +1/ r mo Lemm Let be n o rme, k Z n n k + 1 mo wth n Z n nn mo Then k+ nn+1 Proof For k 0 mo we hve k So the result s true Now ssume k 0 mo Then n 1 n+1 n 1 k 1 n so n 1 n+1 k+ B Lemm, k +1 1 n so k+ ±1 B [S1, Theorem ], k+ 1 k Q 0 nn+1 1 Hence k+ nn+1 Lemm 9 Suose c,, m, x Z, m, x c + mo m n m, xx + 1 Then xx + m m Proof Suose tht s rme vsor of m Then xx + If, then x c + 1 mo Thus, lng Lemm we obtn c + When, we hve c n so c Hence, m m x 1 + x xx + x xx + 1 xx + xx +, m m where n the roucts runs over ll rme vsors of m The roof s now comlete Lemm 10 Suose c,, x,, Z, c 1 mo,, c + x +, t 0, 0 1 mo n 0, xx + 1 If x, then c +x c+ If x, then c +x+ / 1 c x+ t t 1 c+ Proof Snce c + x + xx + + we see tht c + x +, 0 1 For even x we hve, c + x + 1 mo n so c + x + xx + c + x xx +

5 For o x we hve c + x + mo n so c + x + / t 0 c + x + 1 c +x+ / 1 t c + x + / / 0 1 c x+ t xx c x+ t xx Snce x c + mo 0, usng Lemms 9, 3 n we see tht xx t 1 t 1 Now combnng ll the bove we obtn the result Lemm 11 Let be rme of the form k + 1 n c + wth c, Z Suose Z, n x + wth x, Z Then x +, c x +, n, c + x + x +, c, x + + c x +, c Proof Snce x, we see tht x, 1 If x, then n so Ths contrcts the fct x, 1 Hence x Snce x, c + x + x, c + x, 1 n x + c c + x + xx +, we see tht x +, c x +, x + x +, n, c + x + xx +, c + x + x +, c + x + x +, c x + x +, c, c x +, c + x + x + x +, c x +, c, Thus the lemm s rove x +, c, c x +, c + x + x + x +, c c x +, c + x + Lemm 1 Let be rme of the form k + 1 n c + wth c, Z n c Suose Z,, x +, x, Z n x/ c+ 1 [ ]+n k Then 1 n [/] c k mo f 1 mo, 1 n c k x mo f 5 mo Proof It s cler tht c, 1, n so x 1 x/ 1 [ ]+n k 1 [ ]+n k mo c 5

6 Thus x 1 1 [ ]+n c k mo n so [ ] 1 [ ] [ ] 1 [ ] x [ ] 1 n c k mo f 1, 1 n c k x mo f 5 Ths roves the lemm 3 Determnton of [/] mo usng c+x+ or Theorem 31 Let be rme of the form k + 1, Z, n Suose tht c + x + wth c,, x, Z, c 1 mo, r 0, 0 1 mo, c, x + 1, x, 1 mo n c/x++ k If 1 mo, then 1 If 5 mo, then x c k mo f 1 mo, x c k+1 mo f 5 mo x c k+1 x x c k x mo f 1 mo, mo f 5 mo Proof Suose m x + n x s x 0 x 0 Snce x we hve 1 mo As c, x + 1, b Lemm 11 we hve, x + 1 n, c + x + 1 Note tht x, We lso hve x, 1 Usng Lemms 1-5, 10 n the fct tht n 1 for, n Z wth n n, n 1 we see tht c + x + k c + x + c + x + xx + + c + x + c + x + c + x + xx c + x + n xx + c + x + c + x + m+s+1 x0 x + / m x+ m+s+1 1 x 0 x+/m +1 x+ c + x + c + x + 1 x 0 x+/m +1 x+ x+ m+s+1 x 0 x 0 x + / m c x + / m 1 x 0 x+/m +1 x+ x+ m+s+1 1 x 0 1 x0 1 x 0 x+/m +1 x+ x+ m+s+1 1 x 0 1 s 1 x 0 x+/m +1 x+ x+ m+s+1 1 x 0 1 s x 6 x

7 Therefore, Observe tht n k 1 x 0 x+/m +1 x+ + x x+ m+s+1 s x/ x 1 f x, 1 f x x+ s m+s+1 x+ m+1 x s 1 m+1x+ x s m+1x+ 1 1 x+ f x, 1 m+1x+ f x From the bove we obtn x/ 31 x 0 x+/ 1 m +1 x+ + x + 1 m+1x+ + x+ k+1 f x, 1 x 0 x+/m +1 x+ + x m+1x+ k f x When x +, we hve 1 m+1x+ 1 x+ For 1 mo we hve, x n x + For 1 mo n 5 mo, we hve x,, x +, m 1 n 1 x 0 x+/+1 1 x 0+ x For 5 mo n 1 mo, we hve, x, x + n m For 5 mo, we see tht, x, x +, m 1 n 1 x 0 x+/+1 1 x x 0+ 0 x x + x 0 +1 Now, from the bove n 31 we euce tht x/ x k f 1 mo, x k+1 f 1 mo n 5 mo, x k+1 f 5 mo n 1 mo, x k f 5 mo Ths together wth Lemm 1 els the result Lemm 31 Let be rme of the form k + 1, Z, n Suose tht c + x + wth c,, x, Z, c 1 mo, r 0, t 0, mo, c, x + 1 n x Assume tht c/x++ k Then 1 x/ 1 [ ]+ x x x c +k f 1, 1 [ +1 ]+ + x x 1 x c +k 1 f 5 7

8 Proof As c, x + 1, b Lemm 11 we hve 0, x + 1 n 0, c + x + 1 Note tht x, We lso hve x, 1 It s esl seen tht c + x x + ± c ±x + c n so x + ± c ±x + c c + x + + Set ε x 1 Snce 1 we see tht x + ε mo n εx + c Usng Lemms 1-5, 10 n the bove we see tht n c + x + k ε x++εc + εx+ c x++εc + εx+ c 1 1 ε εx+ c x++εc + εx+ c x++εc + εx+ c c + x + xx + x++εc + εx+ c x++εc + εx+ c xx + x++εc + εx+ c x++εc + εx+ c x++εc/ 1 εx+ c 1 1 xx++1 εx+ c 1 c x+ t t 1 x++εc + εx+ c c + x + / x++εc + εx+ c xx + Obvousl 1b 1 b b, 1 x++εc 1 εx++c ε 1 εx+ c + 1 ε n so x++εc εx+ c 1 1 εx+ c + 1 ε εx+ c εx+ c 1 1+ε εx+ c εx+ c Also, 1 xx++1 1 x 1 + x n 1 c x+ 1 εx+ c Thus, x++εc/ 1 εx+ c 1 1 xx++1 εx+ c 1 c x+ t t 1 1+ε εx+ c εx+ c 1 εx+ c +1 1 εx+ c t t 1 1 ε + +t εx+ c εx+ c + t

9 It s esl seen tht x++εc + εx+ c xx + x + + εc + εx + c x + + εc + εx + c x x + + εc + ε c εc c ε ε x x + x x + ε 5+ε xx + x 1 + xx + x 5+ε 1 + x 1 1 xx + xx + x 1 x+x 1 5+ε 1 / xx+ 1 1 x 1 x Now combnng ll the bove we euce tht 3 It s cler tht k ε + 1 εx+ c ε + εx+ c +t εx+ c + t 1 x+x 1 5+ε + x 1 1 / xx+ 1 x/ 1 εx+ c 1 εx+ c εx++c 1 x+ c 1 +x 1 f 1 n so 0 mo, n 1 +x ε f 5 n so mo 1 x x / xx / x f 1 n so, Snce x + ε mo n 1 εx+ c + 1/ xx+ 1 + t 1 0 x+1 ε f 5 n so mo 1 1 we lso hve 1 1/ xx+ 1 εx+ c 1 1/ xx+ 1 + t 1 1/ xx+ 1 εx+ 1 1x 1/ x c 1 + t 1 1/ xx+ 1 + c x 1/ x + c 1 + t 1 + c 1 + t c 1x 1/ x f 1, ε 1 c 1 c 1x 1/ x ε + c 1 c 1x 1/ x +1 f 5 9

10 Note tht 1 c 1 1 c [ ] From the bove n 3 we euce the result Theorem 3 Let be rme of the form k + 1, Z, n Suose tht c + x + wth c,, x, Z, c 1 mo, r 0, t 0, mo, c, x + 1, x n c/x++ k If 1 mo, then 1 If 5 mo, then c k mo f 1 mo, x 1 + c k 1 mo f 3 mo, x 1 + c k 1 mo f 5 mo, c k mo f 7 mo x 1 c k 1 x 1 +5 c k 1 x 1 +3 c k x x 1 c k x mo f 1 mo, mo f 3 mo, mo f 5 mo, mo f 7 mo Proof Suose c 1 x 1/ x n m c 1 x 1/ x Then m n m+1 c xc + x As c xc + x we see tht m+1 We frst ssume 1 mo Snce n we hve m 3 n m 3 Thus, 1x 1/ x c 1 1x 1/ x c 1 m Ths s lso true when c 1 x 1/ x From the bove n Lemm 31 we euce tht x/ x 1 + k f ±1 mo, + k 1 f ±3 mo Now lng Lemm 1 we euce Suose 5 mo As 0 0 we get m Clerl mo Thus 3 mo f m, 5 mo f m 3, 1 mo f m > 3 10

11 For 1 mo we hve c 1 x 1 x n 1x 1/ x c 1 1x 1/ x c 1 m Ths s lso true when c 1 x 1/ x Thus, usng Lemm 31 we euce tht 5 x/ x 1 k 1 f 1 mo, k f 5 mo Now lng Lemm 1 we euce the result n the cse 5 mo n 1 mo For 3 mo we hve c 1 x 1/ x n so x c c x x/ x c 1 x 1 x c x +1 mo Thus, 1x 1/ x c +3 mo n so 1 x 1/ x c +3 Usng Lemm 31 we see tht k 1 f 3 mo, x 1 k f 7 mo Now lng Lemm 1 we obtn the result n the cse 5 mo n 3 mo Summrzng ll the bove we rove the theorem Remrk 31 We note tht the k n Theorems 31-3 eens onl on c x+ mo Corollr 31 Let 1, 9 mo 60 be rme n so c + x + 15 wth c,, x, Z Suose c 1 mo, r 0, t 0, mo n c, x + 1 If 1 mo, then 15 1 If 5 mo, then mo f c x+ 1 mo f c x+ ± 1 c mo f c x+ 1 x 1 1 x 1 1 x 1 x mo f c x+ x mo f c x+ cx mo f c 11 x+ 0, ±1 mo 15, ± mo 15, ±5, ±6 mo 15 0, ±1 mo 15, ± mo 15, ±5, ±6 mo 15

12 Proof Clerl x s o Thus, uttng 15 n Theorem 3 n notng tht see [S1, Exmle 1] n + n + n we euce the result 1 f n 0, ±1 mo 15, 1 f n ± mo 15, f n ±5, ±6 mo 15 For exmle, snce mo 15 we hve , 5, n mo 61 Theorem 33 Let be rme of the form k + 1, Z, n Suose tht c + x + wth c,, x, Z, c 1 mo, r 0, t 0, mo, 0, x + c 1 n / k If 1 mo, then 1 If 5 mo, then 5 1 +[ x ] c k mo f x, 1 1 x c k mo f x 1 [ x+ ] c k 1 x 1 +3 x+1 c k 1 x 1 3 x+1 c k x mo f x n so 1 mo, mo f x n 1 mo, mo f 3 mo Proof Suose x s x 0 x 0 n m x + c As x + c, 0 1, b Lemm 11 we hve 0, x + c 1 n 0, x + c + 1 Note tht x, We lso hve x, 1 If m < r, usng Lemms 1-5 n the fct 1 for Z wth, 1 we see tht 33 x + c m + m m m+1 + m m m+1 m + m c + x m+1 + m m 1 + m m + m

13 If m r, then clerl 3 x + c r r + r If m > r, usng Lemms 1-5 we see tht 35 x + c r r 1 1 r r+1 r r 1 + r r r r 1 1 x + c + xx + c r+1 r r 1 1 m r 1 xx + c r r + r+1 r+1 r + r x + c + / r B conserng the three cses m < r, m r n m > r n lng lemms n Secton, one m euce the result fter ong horrble long clcultons We onl rove the result n the cse m < r nclung x n x 1 The remnng two cses cn be rove smlrl For the etls n the cses m r n m > r, see the uthor s fourth verson of Qurtc, octc resues n bnr urtc forms n rxv: Now suose m < r Then c + x + m m xx + c + + x + c + m m xx + c + m m m+s+1 x 0 x + c/ m + m m + m m + m m 1 m 1/ m+1 m+s+1 1 x m 1 m+1 + m m x 0 1 m 1/ m+1 m+s+1 1 m +x 0 x + m+1 x 0 m Clerl m n m x + x 0 x 0 1 x0 1 1 x 0 1 x0 x 1 13 s m + m m x 0 1 s x

14 Thus, c + x m + m 1 m +x 0 m+1 + x m 1/ m+1 m+s+1 s m x As x + c + / m 1 + / m+1 mo n x c + mo 0, usng Lemm 9 we see tht x + c + / m t 0 x + c + / m 1 t x + c + m+1 1 t xx + c m t + c m t + c m t m t 0 m+1 1 t 1 m t t 1 m+1 1 m+1 t t 1 From the bove n 33 we euce tht 36 x + c m+1 1 m +x 0 m+1 + x 0 1 m 1 m 1/ m+1 m+s+1 s 1 m+1 t t x/ If m 0, then x + c, x, n so 1 mo Thus, from 36 we euce tht x + c x +1 x/ x + c Snce k, c 1+ x 1 x 1 x n c 1 + x x +c x x +1 1 [ x+ ]+[ ], x + c from the bove n the fct 0 1 mo we erve tht x/ 1 x + x +1 1 [ 1 [ ]+ x x+ [ x+ ]+[ ] k ]+ k 1 [ ]+ +[ x ] k f 1 mo, 1 [ ]+[ x+ ] k 1 f 5 mo 1

15 Now lng Lemm 1 we obtn the result n the cse m 0 If m 1 < r, then x 1 mo, s 0, n 1 mo x 1 mo we hve n so Thus, 1 c x + c x + c x + c c + + mo Snce n so c mo Therefore 1 mo n 1 c c c Hence, from 36 we euce tht x + c x x/ x/ Snce k, we get x/ c k Now lng Lemm 1 we obtn c k mo s sserte Now we ssume m < r Then x 3 mo, s 0, n so 1 mo Snce x + c + cx + c we see tht m+1 r m 1 0 m 1 x + c x + c + c m m As m n r m + 1 m +, we must hve m+1, m + 1, t m+1 n m 1 + c mo Thus m 3, m c m 1 + m c 1 + m 1 + mo n so mo Therefore, b 36 we hve m x + c m+1 m+1 c 1 + m 1 1 t x/ + m+1 1 c 1 +m 3 x/ Note tht 1 c 1 1 c 1 1 1, k n 1 f m > 3, 1 f t >, 1 m 3 1 f m f t We then get x/ c k Recll tht Alng Lemm 1 we obtn 1 1 c k 1 +1 the cse m < r Summrzng ll the bove we rove the theorem 15 + c k mo Ths roves the result n

16 New recroct lws for urtc n octc resues Theorem 1 Let n be rmes such tht 1 mo n 3 mo Suose c + x +, c,, x, Z, c 1 mo, r 0, t 0, mo n c x +1 m mo Assume c, x + 1 or 0, x + c 1 Then 1 [/] + +1 x 1 c m mo f 1 mo, 1 3 x 1 c m x mo f 5 mo Proof Snce 1 mo n 3 mo we see tht x n x s o We frst ssume c, x + 1 B Lemm 11 we hve, x + c + x + 1 It s esl seen tht c/x+ c/x++ c x+ c+x+ c x mo Thus, for k 0, 1,, 3, usng Lemm 7 we get c + x + Snce c x +1 k c c x + Q x+ k c x+ + c +1 k mo x +1 k mo c x +1 m mo, from the bove we euce tht c + x + m k mo 1 +5 m+1 f 3 mo, 1 +1 m f 7 mo Now, lng Theorem 3 we erve the result Now we ssume 0, 1 B Lemm 11,,, + 1 It s esl seen tht + c x mo Thus, for k 0, 1,, 3, usng Lemm 7 we get x + c k x + c Q k + x + c x + c c +1 x k mo +1 +k mo k mo c +1 x k mo Snce c x +1 m mo, from the bove we euce tht +1 m 1 +1 m Now lng Theorem 33 we euce the result The roof s now comlete 16

17 Corollr 1 Let 1 mo n 3 mo be rmes such tht c + x + wth c,, x, Z n c Suose c 1 mo, r 0, t 0 n mo Assume c, + x 1 or 0, x + c 1 If 1 mo, then 1 If 5 mo, then ± 1 x 1 + mo f x ±c mo, x 1 + c mo f x ± mo 5 ± x mo 1 3 cx mo f x ±c mo, f x ± mo Proof If x ±c mo, then n so c x +1 ±1 +1 ±1 mo If x ± mo, then c n so c x mo Now lng Theorem 1 we euce the result We note tht Corollr 1 rtll settles [S5, Conjecture 3] For exmle, let be rme such tht 13 mo n hence c + x + 3 wth c,, x, Z Suose c 1 mo, r 0, t 0 n mo If c, x + 1 or 0, x + c 1, then 3 5 ± x cx Ths rtll solves [S, Conjecture 91] mo f x ±c mo 3, mo f x ± mo 3 Theorem Let n be rmes such tht 1 mo, 7 mo, c + x +, c,, x, Z, c 1 mo, r 0, t 0 n mo Assume c, x + 1 or 0, x + c 1 Suose c c+ +1 m mo Then 1 [/] c m mo f 1 mo, 1 x 1 c m x mo f 5 mo Proof Observe tht c c c c x + +1 c x +1 mo The result follows from Theorem 1 We note tht f, then the m n Theorem eens onl on c 17 mo

18 Corollr Let 1 mo n 7 mo be rmes such tht c + x + wth c,, x, Z n cc Suose c 1 mo, r 0, t 0 n mo Assume c, x+ 1 or 0, 1 If 1 mo, then mo f c, 1 mo f, ± c mo f 16 7 n c ± mo, mo f n c ± mo If 5 mo, then x 1 1 x 1 x x ± x x 1 x mo f c, mo f, cx mo mo f 16 7 n c ± mo, f n c ± mo Proof Clerl 1 mo f c, c 1 mo f, mo f c mo, mo f c mo Thus the result follows from Theorem Theorem 3 Let n be stnct rmes of the form k + 1, c + x +, + b,, b, c,, x, Z, c 1 mo, r 0, t 0 n mo Assume c, x + 1 or 0, x + c 1 Suose c+b x 1 b m mo If 1 mo, then 1 If 5 mo, then 5 x+ 1 +[ ] c m mo f x, 1 1 x c m mo f x 1 [ x ] c m+1 x mo f x, 1 +3 x 1 c m+1 x mo f x 1

19 Proof Clerl x We frst ssume c, x + 1 B Lemm 11,, x + c + x + 1 It s esl seen tht c+bx+ c bx+ c+b x b mo Thus, for k 0, 1,, 3, usng Lemm 7 we get c + x + k c x + Q k c + bx + c bx + c + b b x c + b 1 x 1 1 c x+ + b 1 c x+ b b k mo b k mo b k 1 mo Snce c+b x Now the result follows from Theorems 31 n 3 mmetel 1 b m mo, from the bove we get c+x+ b k mo 1 m+ Suose 0, x + c 1 B Lemm 11,, x + c + x + c 1 It s esl seen tht b +b c+b x mo Thus, for k 0, 1,, 3, usng Lemm 7 we get x + c k x + c Q k bx + c + bx + c c + b 1 x 1 + b b 1 b b 1 +k mo b k mo k mo c + b x 1 b k mo Snce c+b x 1 b m mo, b the bove we get 1 m Thus, lng Theorem 33 n the fct x x c mo for even x we erve the result The roof s now comlete Corollr 3 Let 1 mo n 5 mo be rmes such tht c + x + wth c,, x, Z n c Suose c 1 mo, r 0, t 0 n mo Assume c, x + 1 or 0, x + c 1 If 1 mo, then 1 ± 1 + x+ mo f x n x ±c mo, ± 1 + x 1 + mo f x n x ±c mo, ± x+ c ± x 1 + c mo f x n x ± mo, mo f x n x ± mo 19

20 If 5 mo, then 5 ±δx cx mo 1 5 δx x where δx 1 or 1 ccorng s x or not f x ±c mo, mo f x ± mo, Proof If x ±c mo, then n so c+b x 1 c x 1 ±1 1 ±1 mo If x ± mo, then c n so c+b ± b 1 ± 1 5 b euce the result x 1 b x 1 mo Now uttng the bove wth Theorem 3 we Theorem Let n be stnct rmes such tht 1 mo, 1 mo, c + x +, + b,, b, c,, x, Z, c 1 mo, r 0, t 0 n mo Assume c, x+ 1 or 0, 1 Suose c+b c b 1 b m mo If 1 mo, then If 5 mo, then x m mo c 1 x c m+1 x 1 x+1 c m+1 x mo f x, mo f x Proof Observe tht b mo, x mo n so c + b 1 c b 1 c + b c b 1 1 c + b 1 c + b x 1 mo The result follows from Theorem 3 We note tht f, then the m n Theorem eens onl on c mo Corollr Let 1 mo n 1 mo be stnct rmes such tht c + x + wth c,, x, Z n cc Suose c 1 mo, r 0, t 0 n mo Assume c, x+ 1 or 0, 1 If 1 mo, then x mo f c, 1 + x mo f, x mo f 16 1 n c ± mo, ± x c mo f 16 9 n c ± mo 0

21 If 5 mo n εx 1 x or 1 x+1 ccorng s x or x, then εx cx εx cx mo f c, mo f, εx cx εx x mo f 16 1 n c ± mo, mo f 16 9 n c ± mo Proof Suose tht + b wth, b Z Then clerl c + b 1 c b 1 1 mo f c, 1 mo f, mo f 16 1 n c ± mo, ± b mo f 16 9 n c ± mo Thus the result follows from Theorem Corollr 5 Let 1 mo be rme such tht 17 n c + x + 17 wth c,, x, Z Suose c 1 mo, r 0, t 0 n mo Assume c, x + 1 or 0, x + c 1 If 1 mo, then then x mo f 17 c, 1 + x mo f c ± mo 17, ± 1 + x c mo f c ±5, ±10 mo 17 If 5 mo n εx 1 x or 1 x+1 ccorng s x or x, 17 5 εx cx εx cx ±εx x mo f 17 c, mo f c ± mo 17, mo f c ±5, ±10 mo 17 Proof Snce n 17 1 ±5+ ± ±10+ ±10 mo 17, from Theorem n Corollr we euce the result Theorem 5 Let 1 mo be rme, c + x + +b +b,, b, c,, x, Z, 0,,, b 1, c 1 mo, r 0, t 0 n mo Assume c, x + 1 or 0, x + c 1 Suose c+b/x b+ m 1

22 If 1 mo, then + b x c m mo f n x, 1 + c m mo f n x, 1 b x c m 1 mo f n x, 1 b x 1 c m 1 mo f n x If 5 mo, then + b 5 1 x c m 1 x 1 x+1 c m 1 x 1 x + b+1 c m x 1 b 1 c m x mo f n x, mo f n x, mo f n x, mo f n x Proof Set +b Then clerl n We frst ssume c, x+ 1 B Lemm 11,, x +, c + x + 1 Snce c x+ c+x+ c x mo, we see tht c/x + + c + x + c + x + c + x + b + b c + x + c x + c + x + c x + b + b + b + b + c x+ c+x+ 1 c 1 x c /x 1 b + b + b + b + b c + b/x 1 1 b+1 b + b + b + b m 1 b+1 b m 1 b+1 + b 1 m 1 b m 1 b+1 +[ ] m 1 Ths together wth Theorems 31 n 3 els the result uner the conton c, x+ 1 Now we ssume 0, 1 B Lemm 11,,, + 1

23 Snce + c x mo, usng Lemm 6 we see tht /x + c x + c x + c x + c b + b x + c + x + c x + c + x + c b + b + b + b c 1 x c /x 1 b + b + b + b + 1 c + b/x 1 1 b + b + b + m 1 b 1 m 1 b+1 1 m f, 1 1 m m f Combnng ths wth Theorem 33 we euce the result uner the conton 0, x + c 1 The roof s now comlete Remrk 1 Let be rme of the form k + 1, Z,,, n c + x + wth c,, x, Z, c 1 mo, r 0 n 0 1 mo, we conjecture tht one cn lws choose the sgn of x such tht c, x + 1 or 0, x + c 1 Thus the conton c, x + 1 or 0, x + c 1 n Theorems 1-5 n Corollres 1-5 cn be cncele See lso relte conjectures n [S] n [S5] References [BEW] BC Bernt, RJ Evns n KS Wllms, Guss n Jcob Sums, Wle, New York, 199 [E] RJ Evns, Resuct of rmes, Rock Mountn J Mth , [H] RH Huson, Dohntne etermntons of 3 1/ n 5 1/, Pcfc J Mth , 9-55 [HW] RH Huson n KS Wllms, Some new resuct crter, Pcfc J Mth , [IR] K Ireln n M Rosen, A Clsscl Introucton to Moern Number Theor, n e, Srnger, New York, 1990 [Lem] F Lemmermeer, Recroct Lws: From Euler to Esensten, Srnger, Berln, 000 [S1] ZH Sun, Sulements to the theor of urtc resues, Act Arth , [S] ZH Sun, Qurtc resues n bnr urtc forms, J Number Theor , 10-5 [S3] ZH Sun, On the urtc chrcter of urtc unts, J Number Theor 1 00, [S] ZH Sun, Qurtc, octc resues n Lucs seuences, J Number Theor , [S5] ZH Sun, Congruences for A + A + mb 1/ n b + + b 1/ mo, Act Arth ,

Numbers Related to Bernoulli-Goss Numbers

Numbers Related to Bernoulli-Goss Numbers ursh Journl of Anlyss n Nuber heory, 4, Vol., No., -8 Avlble onlne t htt://ubs.sceub.co/tnt///4 Scence n Eucton Publshng OI:.69/tnt---4 Nubers Relte to Bernoull-Goss Nubers Mohe Oul ouh Benough * érteent

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

plays an important role in many fields of mathematics. This sequence has nice number-theoretic properties; for example, E.

plays an important role in many fields of mathematics. This sequence has nice number-theoretic properties; for example, E. Tiwnese J. Mth. 17013, no., 13-143. FIBONACCI NUMBERS MODULO CUBES OF PRIMES Zhi-Wei Sun Dertment of Mthemtics, Nnjing University Nnjing 10093, Peole s Reublic of Chin zwsun@nju.edu.cn htt://mth.nju.edu.cn/

More information

Moment estimates for chaoses generated by symmetric random variables with logarithmically convex tails

Moment estimates for chaoses generated by symmetric random variables with logarithmically convex tails Moment estmtes for choses generted by symmetrc rndom vrbles wth logrthmclly convex tls Konrd Kolesko Rf l Lt l Abstrct We derve two-sded estmtes for rndom multlner forms (rndom choses) generted by ndeendent

More information

Supplement 4 Permutations, Legendre symbol and quadratic reciprocity

Supplement 4 Permutations, Legendre symbol and quadratic reciprocity Sulement 4 Permuttions, Legendre symbol nd qudrtic recirocity 1. Permuttions. If S is nite set contining n elements then ermuttion of S is one to one ming of S onto S. Usully S is the set f1; ; :::; ng

More information

Quadratic reciprocity

Quadratic reciprocity Qudrtic recirocity Frncisc Bozgn Los Angeles Mth Circle Octoer 8, 01 1 Qudrtic Recirocity nd Legendre Symol In the eginning of this lecture, we recll some sic knowledge out modulr rithmetic: Definition

More information

arxiv: v9 [math.nt] 8 Jun 2010

arxiv: v9 [math.nt] 8 Jun 2010 Int. J. Number Theory, in ress. ON SOME NEW CONGRUENCES FOR BINOMIAL COEFFICIENTS rxiv:0709.665v9 [mth.nt] 8 Jun 200 Zhi-Wei Sun Roberto Turso 2 Dertment of Mthemtics, Nning University Nning 2009, Peole

More information

On a Conjecture of Farhi

On a Conjecture of Farhi 47 6 Journl of Integer Sequences, Vol. 7 04, Article 4..8 On Conjecture of Frhi Soufine Mezroui, Abdelmlek Azizi, nd M hmmed Zine Lbortoire ACSA Dértement de Mthémtiques et Informtique Université Mohmmed

More information

MOLECULAR TOPOLOGICAL INDEX OF C 4 C 8 (R) AND C 4 C 8 (S) NANOTORUS

MOLECULAR TOPOLOGICAL INDEX OF C 4 C 8 (R) AND C 4 C 8 (S) NANOTORUS Dgest Journal of Nanomaterals an Bostructures ol No December 9 69-698 MOLECULAR TOPOLOICAL INDEX OF C C 8 R AND C C 8 S NANOTORUS ABBAS HEYDARI Deartment of Mathematcs Islamc Aza Unverst of Ara Ara 85-567

More information

arxiv: v6 [math.nt] 20 Jan 2016

arxiv: v6 [math.nt] 20 Jan 2016 EXPONENTIALLY S-NUMBERS rxiv:50.0594v6 [mth.nt] 20 Jn 206 VLADIMIR SHEVELEV Abstrct. Let S be the set of ll finite or infinite incresing sequences of ositive integers. For sequence S = {sn)},n, from S,

More information

Some Results on Cubic Residues

Some Results on Cubic Residues Interntionl Journl of Algebr, Vol. 9, 015, no. 5, 45-49 HIKARI Ltd, www.m-hikri.com htt://dx.doi.org/10.1988/ij.015.555 Some Results on Cubic Residues Dilek Nmlı Blıkesir Üniversiresi Fen-Edebiyt Fkültesi

More information

PRIMES AND QUADRATIC RECIPROCITY

PRIMES AND QUADRATIC RECIPROCITY PRIMES AND QUADRATIC RECIPROCITY ANGELICA WONG Abstrct We discuss number theory with the ultimte gol of understnding udrtic recirocity We begin by discussing Fermt s Little Theorem, the Chinese Reminder

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

McGill University Math 354: Honors Analysis 3 Fall 2012 Solutions to selected Exercises. g(x) 2 dx 1 2 a

McGill University Math 354: Honors Analysis 3 Fall 2012 Solutions to selected Exercises. g(x) 2 dx 1 2 a McGill University Mth 354: Honors Anlysis 3 Fll 2012 Assignment 1 Solutions to selected Exercises Exercise 1. (i) Verify the identity for ny two sets of comlex numers { 1,..., n } nd { 1,..., n } ( n )

More information

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex Mly J Mt 34 93 3 On Hermite-Hdmrd tye integrl ineulities for functions whose second derivtive re nonconvex Mehmet Zeki SARIKAYA, Hkn Bozkurt nd Mehmet Eyü KİRİŞ b Dertment of Mthemtics, Fculty of Science

More information

Duke Math Meet

Duke Math Meet Duke Mth Meet 01-14 Power Round Qudrtic Residues nd Prime Numers For integers nd, we write to indicte tht evenly divides, nd to indicte tht does not divide For exmle, 4 nd 4 Let e rime numer An integer

More information

PARTIAL QUOTIENTS AND DISTRIBUTION OF SEQUENCES. Department of Mathematics University of California Riverside, CA

PARTIAL QUOTIENTS AND DISTRIBUTION OF SEQUENCES. Department of Mathematics University of California Riverside, CA PARTIAL QUOTIETS AD DISTRIBUTIO OF SEQUECES 1 Me-Chu Chang Deartment of Mathematcs Unversty of Calforna Rversde, CA 92521 mcc@math.ucr.edu Abstract. In ths aer we establsh average bounds on the artal quotents

More information

Statistics and Probability Letters

Statistics and Probability Letters Sttstcs nd Probblty Letters 79 (2009) 105 111 Contents lsts vlble t ScenceDrect Sttstcs nd Probblty Letters journl homepge: www.elsever.com/locte/stpro Lmtng behvour of movng verge processes under ϕ-mxng

More information

A NOTE ON THE DISCRETE FOURIER RESTRICTION PROBLEM

A NOTE ON THE DISCRETE FOURIER RESTRICTION PROBLEM A NOTE ON THE DISCRETE FOURIER RESTRICTION PROBLEM XUDONG LAI AND YONG DING arxv:171001481v1 [mathap] 4 Oct 017 Abstract In ths aer we establsh a general dscrete Fourer restrcton theorem As an alcaton

More information

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship

5.4, 6.1, 6.2 Handout. As we ve discussed, the integral is in some way the opposite of taking a derivative. The exact relationship 5.4, 6.1, 6.2 Hnout As we ve iscusse, the integrl is in some wy the opposite of tking erivtive. The exct reltionship is given by the Funmentl Theorem of Clculus: The Funmentl Theorem of Clculus: If f is

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

Quadratic Residues. Chapter Quadratic residues

Quadratic Residues. Chapter Quadratic residues Chter 8 Qudrtic Residues 8. Qudrtic residues Let n>be given ositive integer, nd gcd, n. We sy tht Z n is qudrtic residue mod n if the congruence x mod n is solvble. Otherwise, is clled qudrtic nonresidue

More information

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert

Demand. Demand and Comparative Statics. Graphically. Marshallian Demand. ECON 370: Microeconomic Theory Summer 2004 Rice University Stanley Gilbert Demnd Demnd nd Comrtve Sttcs ECON 370: Mcroeconomc Theory Summer 004 Rce Unversty Stnley Glbert Usng the tools we hve develoed u to ths ont, we cn now determne demnd for n ndvdul consumer We seek demnd

More information

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX M. ALOMARI A, M. DARUS A, AND S.S. DRAGOMIR B Astrct. In this er, some ineulities of Hermite-Hdmrd

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

Some circular summation formulas for theta functions

Some circular summation formulas for theta functions Ci et l. Boundr Vlue Prolems 013, 013:59 R E S E A R C H Open Access Some circulr summtion formuls for thet functions Yi Ci, Si Chen nd Qiu-Ming Luo * * Correspondence: luomth007@163.com Deprtment of Mthemtics,

More information

Math Solutions to homework 1

Math Solutions to homework 1 Mth 75 - Solutions to homework Cédric De Groote October 5, 07 Problem, prt : This problem explores the reltionship between norms nd inner products Let X be rel vector spce ) Suppose tht is norm on X tht

More information

Approximation of functions belonging to the class L p (ω) β by linear operators

Approximation of functions belonging to the class L p (ω) β by linear operators ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 3, 9, Approximtion of functions belonging to the clss L p ω) β by liner opertors W lodzimierz Lenski nd Bogdn Szl Abstrct. We prove

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

A proof of the strong twin prime conjecture

A proof of the strong twin prime conjecture A roof of the strong twin rime conjecture Men-Jw Ho # (retired), Chou-Jung Hsu, *, Wi-Jne Ho b Dertment of Industril Mngement # Nn Ki University of Technology Nn-Tou 54, Tiwn b Dertment of Medicinl Botnicl

More information

SMARANDACHE TYPE FUNCTION OBTAINED BY DUALITY

SMARANDACHE TYPE FUNCTION OBTAINED BY DUALITY SMARANDACHE TYPE FUNCTION OBTAINED BY DUALITY C Dumtrescu, N Vîrlan, Şt Zamfr, E Răescu, N Răescu, FSmaranache Deartment of Mathematcs, Unversty of Craova, Romana Abstract In ths aer we extene the Smaranache

More information

ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4)

ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4) ON SIMPSON S INEQUALITY AND APPLICATIONS SS DRAGOMIR, RP AGARWAL, AND P CERONE Abstrct New neultes of Smpson type nd ther pplcton to udrture formule n Numercl Anlyss re gven Introducton The followng neulty

More information

Hadamard-Type Inequalities for s Convex Functions I

Hadamard-Type Inequalities for s Convex Functions I Punjb University Journl of Mthemtics ISSN 6-56) Vol. ). 5-6 Hdmrd-Tye Ineulities for s Convex Functions I S. Hussin Dertment of Mthemtics Institute Of Sce Technology, Ner Rwt Toll Plz Islmbd Highwy, Islmbd

More information

p (i.e., the set of all nonnegative real numbers). Similarly, Z will denote the set of all

p (i.e., the set of all nonnegative real numbers). Similarly, Z will denote the set of all th Prelmnry E 689 Lecture Notes by B. Yo 0. Prelmnry Notton themtcl Prelmnres It s ssumed tht the reder s fmlr wth the noton of set nd ts elementry oertons, nd wth some bsc logc oertors, e.g. x A : x s

More information

Multiplicative functions of polynomial values in short intervals

Multiplicative functions of polynomial values in short intervals ACTA ARITHMETICA LXII3 1992 Multilictive functions of olnomil vlues in short intervls b Mohn Nir Glsgow 1 Introduction Let dn denote the divisor function nd let P n be n irreducible olnomil of degree g

More information

QUADRATIC RESIDUES MATH 372. FALL INSTRUCTOR: PROFESSOR AITKEN

QUADRATIC RESIDUES MATH 372. FALL INSTRUCTOR: PROFESSOR AITKEN QUADRATIC RESIDUES MATH 37 FALL 005 INSTRUCTOR: PROFESSOR AITKEN When is n integer sure modulo? When does udrtic eution hve roots modulo? These re the uestions tht will concern us in this hndout 1 The

More information

Some congruences related to harmonic numbers and the terms of the second order sequences

Some congruences related to harmonic numbers and the terms of the second order sequences Mathematca Moravca Vol. 0: 06, 3 37 Some congruences related to harmonc numbers the terms of the second order sequences Neşe Ömür Sbel Koaral Abstract. In ths aer, wth hels of some combnatoral denttes,

More information

Legendre polynomials and Jacobsthal sums

Legendre polynomials and Jacobsthal sums Legendre olynomials and Jacobsthal sums Zhi-Hong Sun( Huaiyin Normal University( htt://www.hytc.edu.cn/xsjl/szh Notation: Z the set of integers, N the set of ositive integers, [x] the greatest integer

More information

S. S. Dragomir. 2, we have the inequality. b a

S. S. Dragomir. 2, we have the inequality. b a Bull Koren Mth Soc 005 No pp 3 30 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Abstrct Compnions of Ostrowski s integrl ineulity for bsolutely

More information

REPRESENTATION THEORY OF PSL 2 (q)

REPRESENTATION THEORY OF PSL 2 (q) REPRESENTATION THEORY OF PSL (q) YAQIAO LI Following re notes from book [1]. The im is to show the qusirndomness of PSL (q), i.e., the group hs no low dimensionl representtion. 1. Representtion Theory

More information

GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES ARE GENERALIZED s-convex IN THE SECOND SENSE

GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES ARE GENERALIZED s-convex IN THE SECOND SENSE Journl of Alied Mthemtics nd Comuttionl Mechnics 6, 5(4), - wwwmcmczl -ISSN 99-9965 DOI: 75/jmcm64 e-issn 353-588 GENERALIZED OSTROWSKI TYPE INEQUALITIES FOR FUNCTIONS WHOSE LOCAL FRACTIONAL DERIVATIVES

More information

Some integral inequalities on time scales

Some integral inequalities on time scales Al Mth Mech -Engl Ed 2008 29(1:23 29 DOI 101007/s10483-008-0104- c Editoril Committee of Al Mth Mech nd Sringer-Verlg 2008 Alied Mthemtics nd Mechnics (English Edition Some integrl ineulities on time scles

More information

LECTURE 10: JACOBI SYMBOL

LECTURE 10: JACOBI SYMBOL LECTURE 0: JACOBI SYMBOL The Jcobi symbol We wish to generlise the Legendre symbol to ccomodte comosite moduli Definition Let be n odd ositive integer, nd suose tht s, where the i re rime numbers not necessrily

More information

Some new integral inequalities for n-times differentiable convex and concave functions

Some new integral inequalities for n-times differentiable convex and concave functions Avilble online t wwwisr-ublictionscom/jns J Nonliner Sci Al, 10 017, 6141 6148 Reserch Article Journl Homege: wwwtjnscom - wwwisr-ublictionscom/jns Some new integrl ineulities for n-times differentible

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

On some inequalities for s-convex functions and applications

On some inequalities for s-convex functions and applications Özdemir et l Journl of Ineulities nd Alictions 3, 3:333 htt://wwwjournlofineulitiesndlictionscom/content/3//333 R E S E A R C H Oen Access On some ineulities for s-convex functions nd lictions Muhmet Emin

More information

DIRECT CURRENT CIRCUITS

DIRECT CURRENT CIRCUITS DRECT CURRENT CUTS ELECTRC POWER Consider the circuit shown in the Figure where bttery is connected to resistor R. A positive chrge dq will gin potentil energy s it moves from point to point b through

More information

Rectangular group congruences on an epigroup

Rectangular group congruences on an epigroup cholrs Journl of Engineering nd Technology (JET) ch J Eng Tech, 015; 3(9):73-736 cholrs Acdemic nd cientific Pulisher (An Interntionl Pulisher for Acdemic nd cientific Resources) wwwsspulishercom IN 31-435X

More information

A New Method for Solving Fuzzy Volterra Integro-Differential Equations

A New Method for Solving Fuzzy Volterra Integro-Differential Equations Astrln Jornl of Bsc n Apple Scences, 5(4: 54-64, 2 ISS 99-878 A ew Metho for Solvng Fzzy Volterr Integro-Dfferentl Eqtons T. Allhvrnloo, 2 A. Amrtemoor, M. Khezerloo, S. Khezerloo Deprtment of Mthemtcs,

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION

KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION Fixed Point Theory, 13(2012), No. 1, 285-291 http://www.mth.ubbcluj.ro/ nodecj/sfptcj.html KRASNOSEL SKII TYPE FIXED POINT THEOREM FOR NONLINEAR EXPANSION FULI WANG AND FENG WANG School of Mthemtics nd

More information

Acceptance Double Sampling Plan with Fuzzy Parameter

Acceptance Double Sampling Plan with Fuzzy Parameter ccetnce Double Smlng Pln wth Fuzzy Prmeter Bhrm Seghour-Gleh, Gholmhossen Yr, Ezztllh Blou Jmhneh,* Dertment of Sttstcs, Fculty of Bsc Scence, Unversty of Mznrn Bblosr, Irn Seghour@umz.c.r Irn Unversty

More information

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar) Lecture 3 (5.3.2018) (trnslted nd slightly dpted from lecture notes by Mrtin Klzr) Riemnn integrl Now we define precisely the concept of the re, in prticulr, the re of figure U(, b, f) under the grph of

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS S.S. DRAGOMIR AND A. SOFO Abstrct. In this pper by utilising result given by Fink we obtin some new results relting to the trpezoidl inequlity

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

International Jour. of Diff. Eq. and Appl., 3, N1, (2001),

International Jour. of Diff. Eq. and Appl., 3, N1, (2001), Interntionl Jour. of Diff. Eq. nd Appl., 3, N1, (2001), 31-37. 1 New proof of Weyl s theorem A.G. Rmm Mthemtics Deprtment, Knss Stte University, Mnhttn, KS 66506-2602, USA rmm@mth.ksu.edu http://www.mth.ksu.edu/

More information

Lecture notes. Fundamental inequalities: techniques and applications

Lecture notes. Fundamental inequalities: techniques and applications Lecture notes Fundmentl inequlities: techniques nd pplictions Mnh Hong Duong Mthemtics Institute, University of Wrwick Emil: m.h.duong@wrwick.c.uk Februry 8, 207 2 Abstrct Inequlities re ubiquitous in

More information

(e) if x = y + z and a divides any two of the integers x, y, or z, then a divides the remaining integer

(e) if x = y + z and a divides any two of the integers x, y, or z, then a divides the remaining integer Divisibility In this note we introduce the notion of divisibility for two integers nd b then we discuss the division lgorithm. First we give forml definition nd note some properties of the division opertion.

More information

ON THE HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATOR

ON THE HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATOR Krgujevc ournl of Mthemtics Volume 44(3) (), Pges 369 37. ON THE HERMITE-HADAMARD TYPE INEQUALITIES FOR FRACTIONAL INTEGRAL OPERATOR H. YALDIZ AND M. Z. SARIKAYA Abstrct. In this er, using generl clss

More information

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN: 07-060X Print ISSN: 735-855 Online Bulletin of the Irnin Mthemticl Society Vol 3 07, No, pp 09 5 Title: Some extended Simpson-type ineulities nd pplictions Authors: K-C Hsu, S-R Hwng nd K-L Tseng

More information

Congruences involving Bernoulli and Euler numbers Zhi-Hong Sun

Congruences involving Bernoulli and Euler numbers Zhi-Hong Sun The aer will aear in Journal of Nuber Theory. Congruences involving Bernoulli Euler nubers Zhi-Hong Sun Deartent of Matheatics, Huaiyin Teachers College, Huaian, Jiangsu 300, PR China Received January

More information

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality: FACTA UNIVERSITATIS NIŠ) Ser Mth Inform 9 00) 6 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Dedicted to Prof G Mstroinni for his 65th birthdy

More information

USA Mathematical Talent Search Round 1 Solutions Year 25 Academic Year

USA Mathematical Talent Search Round 1 Solutions Year 25 Academic Year 1/1/5. Alex is trying to oen lock whose code is sequence tht is three letters long, with ech of the letters being one of A, B or C, ossibly reeted. The lock hs three buttons, lbeled A, B nd C. When the

More information

Stats & Summary

Stats & Summary Stts 443.3 & 85.3 Summr The Woodbur Theorem BCD B C D B D where the verses C C D B, d est. Block Mtrces Let the m mtr m q q m be rttoed to sub-mtrces,,,, Smlrl rtto the m k mtr B B B mk m B B l kl Product

More information

Review of Riemann Integral

Review of Riemann Integral 1 Review of Riemnn Integrl In this chpter we review the definition of Riemnn integrl of bounded function f : [, b] R, nd point out its limittions so s to be convinced of the necessity of more generl integrl.

More information

MA Handout 2: Notation and Background Concepts from Analysis

MA Handout 2: Notation and Background Concepts from Analysis MA350059 Hndout 2: Nottion nd Bckground Concepts from Anlysis This hndout summrises some nottion we will use nd lso gives recp of some concepts from other units (MA20023: PDEs nd CM, MA20218: Anlysis 2A,

More information

are fractions which may or may not be reduced to lowest terms, the mediant of ( a

are fractions which may or may not be reduced to lowest terms, the mediant of ( a GENERATING STERN BROCOT TYPE RATIONAL NUMBERS WITH MEDIANTS HAROLD REITER AND ARTHUR HOLSHOUSER Abstrct. The Stern Brocot tree is method of generting or orgnizing ll frctions in the intervl (0, 1 b strting

More information

J. Number Theory 130(2010), no. 4, SOME CURIOUS CONGRUENCES MODULO PRIMES

J. Number Theory 130(2010), no. 4, SOME CURIOUS CONGRUENCES MODULO PRIMES J. Number Theory 30(200, no. 4, 930 935. SOME CURIOUS CONGRUENCES MODULO PRIMES L-Lu Zhao and Zh-We Sun Department of Mathematcs, Nanjng Unversty Nanjng 20093, People s Republc of Chna zhaollu@gmal.com,

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

The margin is too narrow to contain a truly remarkable proof.

The margin is too narrow to contain a truly remarkable proof. The mrgin is too nrrow to contin trul remrkble proof. Pierre de Fermt B For HP & KP Abstrct. The im of this pper is to tr for Fermt s lost proof. Introduction In bout 637 Pierre de Fermt, French mthemticin,

More information

Properties of the Riemann Integral

Properties of the Riemann Integral Properties of the Riemnn Integrl Jmes K. Peterson Deprtment of Biologicl Sciences nd Deprtment of Mthemticl Sciences Clemson University Februry 15, 2018 Outline 1 Some Infimum nd Supremum Properties 2

More information

Integral points on the rational curve

Integral points on the rational curve Integrl points on the rtionl curve y x bx c x ;, b, c integers. Konstntine Zeltor Mthemtics University of Wisconsin - Mrinette 750 W. Byshore Street Mrinette, WI 5443-453 Also: Konstntine Zeltor P.O. Box

More information

Frobenius numbers of generalized Fibonacci semigroups

Frobenius numbers of generalized Fibonacci semigroups Frobenius numbers of generlized Fiboncci semigroups Gretchen L. Mtthews 1 Deprtment of Mthemticl Sciences, Clemson University, Clemson, SC 29634-0975, USA gmtthe@clemson.edu Received:, Accepted:, Published:

More information

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES Volume 8 (2007), Issue 4, Article 93, 13 pp. ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES A. ČIVLJAK, LJ. DEDIĆ, AND M. MATIĆ AMERICAN COLLEGE OF MANAGEMENT AND TECHNOLOGY ROCHESTER INSTITUTE OF TECHNOLOGY

More information

(II.G) PRIME POWER MODULI AND POWER RESIDUES

(II.G) PRIME POWER MODULI AND POWER RESIDUES II.G PRIME POWER MODULI AND POWER RESIDUES I II.C, we used the Chiese Remider Theorem to reduce cogrueces modulo m r i i to cogrueces modulo r i i. For exmles d roblems, we stuck with r i 1 becuse we hd

More information

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 ) Chpter Introducton to Algebr Dr. Chh-Peng L 李 Outlne Groups Felds Bnry Feld Arthetc Constructon of Glos Feld Bsc Propertes of Glos Feld Coputtons Usng Glos Feld Arthetc Vector Spces Groups 3 Let G be set

More information

Integration Techniques

Integration Techniques Integrtion Techniques. Integrtion of Trigonometric Functions Exmple. Evlute cos x. Recll tht cos x = cos x. Hence, cos x Exmple. Evlute = ( + cos x) = (x + sin x) + C = x + 4 sin x + C. cos 3 x. Let u

More information

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones.

Review on Integration (Secs ) Review: Sec Origins of Calculus. Riemann Sums. New functions from old ones. Mth 20B Integrl Clculus Lecture Review on Integrtion (Secs. 5. - 5.3) Remrks on the course. Slide Review: Sec. 5.-5.3 Origins of Clculus. Riemnn Sums. New functions from old ones. A mthemticl description

More information

IN GAUSSIAN INTEGERS X 3 + Y 3 = Z 3 HAS ONLY TRIVIAL SOLUTIONS A NEW APPROACH

IN GAUSSIAN INTEGERS X 3 + Y 3 = Z 3 HAS ONLY TRIVIAL SOLUTIONS A NEW APPROACH INTEGERS: ELECTRONIC JOURNAL OF COMBINATORIAL NUMBER THEORY 8 (2008), #A2 IN GAUSSIAN INTEGERS X + Y = Z HAS ONLY TRIVIAL SOLUTIONS A NEW APPROACH Elis Lmpkis Lmpropoulou (Term), Kiprissi, T.K: 24500,

More information

Analytical classical dynamics

Analytical classical dynamics Analytcal classcal ynamcs by Youun Hu Insttute of plasma physcs, Chnese Acaemy of Scences Emal: yhu@pp.cas.cn Abstract These notes were ntally wrtten when I rea tzpatrck s book[] an were later revse to

More information

DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp Natalija Sergejeva. Department of Mathematics and Natural Sciences Parades 1 LV-5400 Daugavpils, Latvia

DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp Natalija Sergejeva. Department of Mathematics and Natural Sciences Parades 1 LV-5400 Daugavpils, Latvia DISCRETE AND CONTINUOUS Website: www.aimsciences.org DYNAMICAL SYSTEMS SUPPLEMENT 2007 pp. 920 926 ON THE UNUSUAL FUČÍK SPECTRUM Ntlij Sergejev Deprtment of Mthemtics nd Nturl Sciences Prdes 1 LV-5400

More information

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014 SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 014 Mrk Scheme: Ech prt of Question 1 is worth four mrks which re wrded solely for the correct nswer.

More information

Chapter 1: Fundamentals

Chapter 1: Fundamentals Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,

More information

The mth Ratio Convergence Test and Other Unconventional Convergence Tests

The mth Ratio Convergence Test and Other Unconventional Convergence Tests The mth Rtio Convergence Test nd Other Unconventionl Convergence Tests Kyle Blckburn My 14, 2012 Contents 1 Introduction 2 2 Definitions, Lemms, nd Theorems 2 2.1 Defintions.............................

More information

Asymptotic Behavior of the Solutions of a Class of Rational Difference Equations

Asymptotic Behavior of the Solutions of a Class of Rational Difference Equations Interntionl Journl of Difference Equtions ISSN 0973-6069, Volume 5, Number 2, pp. 233 249 200) http://cmpus.mst.edu/ijde Asymptotic Behvior of the Solutions of Clss of Rtionl Difference Equtions G. Ppschinopoulos

More information

Analytical Methods Exam: Preparatory Exercises

Analytical Methods Exam: Preparatory Exercises Anlyticl Methods Exm: Preprtory Exercises Question. Wht does it men tht (X, F, µ) is mesure spce? Show tht µ is monotone, tht is: if E F re mesurble sets then µ(e) µ(f). Question. Discuss if ech of the

More information

A NOTE ON PREPARACOMPACTNESS

A NOTE ON PREPARACOMPACTNESS Volume 1, 1976 Pges 253 260 http://topology.uburn.edu/tp/ A NOTE ON PREPARACOMPACTNE by J. C. mith Topology Proceedings Web: http://topology.uburn.edu/tp/ Mil: Topology Proceedings Deprtment of Mthemtics

More information

7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=!

7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=! 7. Problem 7. We hve two semi-innite slbs of dielectric mteril with nd equl indices of refrction n >, with n ir g (n ) of thickness d between them. Let the surfces be in the x; y lne, with the g being

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

Quantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes

Quantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes 1 Quntum Codes from Generlzed Reed-Solomon Codes nd Mtrx-Product Codes To Zhng nd Gennn Ge Abstrct rxv:1508.00978v1 [cs.it] 5 Aug 015 One of the centrl tsks n quntum error-correcton s to construct quntum

More information

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1 Int. Journl of Mth. Anlysis, Vol. 7, 2013, no. 41, 2039-2048 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/10.12988/ijm.2013.3499 On the Generlized Weighted Qusi-Arithmetic Integrl Men 1 Hui Sun School

More information

H-matrix theory and applications

H-matrix theory and applications MtTrd 205, Combr H-mtrx theory nd pplctons Mj Nedovć Unversty of Nov d, erb jont work wth Ljljn Cvetkovć Contents! H-mtrces nd DD-property Benefts from H-subclsses! Brekng the DD Addtve nd multplctve condtons

More information

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs Applied Mthemticl Sciences, Vol. 2, 2008, no. 8, 353-362 New Integrl Inequlities for n-time Differentible Functions with Applictions for pdfs Aristides I. Kechriniotis Technologicl Eductionl Institute

More information

On the degree of regularity of generalized van der Waerden triples

On the degree of regularity of generalized van der Waerden triples On the degree of regulrity of generlized vn der Werden triples Jcob Fox Msschusetts Institute of Technology, Cmbridge, MA 02139, USA Rdoš Rdoičić Deprtment of Mthemtics, Rutgers, The Stte University of

More information

HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE DERIVATIVES ARE (α, m)-convex

HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE DERIVATIVES ARE (α, m)-convex HERMITE-HADAMARD TYPE INEQUALITIES FOR FUNCTIONS WHOSE DERIVATIVES ARE (α -CONVEX İMDAT İŞCAN Dertent of Mthetics Fculty of Science nd Arts Giresun University 8 Giresun Turkey idtiscn@giresunedutr Abstrct:

More information

Positive Solutions of Operator Equations on Half-Line

Positive Solutions of Operator Equations on Half-Line Int. Journl of Mth. Anlysis, Vol. 3, 29, no. 5, 211-22 Positive Solutions of Opertor Equtions on Hlf-Line Bohe Wng 1 School of Mthemtics Shndong Administrtion Institute Jinn, 2514, P.R. Chin sdusuh@163.com

More information

REGULARITY OF NONLOCAL MINIMAL CONES IN DIMENSION 2

REGULARITY OF NONLOCAL MINIMAL CONES IN DIMENSION 2 EGULAITY OF NONLOCAL MINIMAL CONES IN DIMENSION 2 OVIDIU SAVIN AND ENICO VALDINOCI Abstrct. We show tht the only nonlocl s-miniml cones in 2 re the trivil ones for ll s 0, 1). As consequence we obtin tht

More information

Kronecker-Jacobi symbol and Quadratic Reciprocity. Q b /Q p

Kronecker-Jacobi symbol and Quadratic Reciprocity. Q b /Q p Kronecker-Jcoi symol nd Qudrtic Recirocity Let Q e the field of rtionl numers, nd let Q, 0. For ositive rime integer, the Artin symol Q /Q hs the vlue 1 if Q is the slitting field of in Q, 0 if is rmified

More information