A proof of the strong twin prime conjecture

Size: px
Start display at page:

Download "A proof of the strong twin prime conjecture"

Transcription

1 A roof of the strong twin rime conjecture Men-Jw Ho # (retired), Chou-Jung Hsu, *, Wi-Jne Ho b Dertment of Industril Mngement # Nn Ki University of Technology Nn-Tou 54, Tiwn b Dertment of Medicinl Botnicl nd Helth Alictions D-Yeh University Dcun Chnghu 559, Tiwn * Corresonding uthor Tel: et 57; F: E-mil ddress: jrsheu@nkutedutw

2 A roof of the strong twin rime conjecture Abstrct For integers nd k, let T;k denote the number of twin rime irs, k with distnce k nd (not k T;k for ll k Logiclly, ; roose sliding model to estimte g ; nd g ; ) Let g ; T denote the verge of T k should be function of g ; T We first, T Second, derive the reltions between T ;k T from the sieve structure Third, settle the errors cused by the deendence of rimes Keywords: Sieve, Twin rime, Sliding model Introduction For integers nd k, let T;k denote the number of twin rime irs, k with distnce k nd nother twin rime irs Note tht twin rime irs, 6 my involves, Here the distnce does not men g ectly Let C be the twin rime constnt We try to rove the conjecture roosed by Hrdy nd Littlewood [] in 93 tht (equivlently) T ; k ~ C () k ; 3 ln

3 Generl nottions Throughout this er, the following nottions denote s follows, y, k, i, n: Integers, * : Primes n : Multile of i : i -th rime 3 k N : Set of ositive integers not greter thn k 4 T;k : Denotes s bove Note tht it is for 5 T ; y : Averge of ; g T k for ll k y but not k 6 : Denotes the correction fctors for the deendence of rimes The suffies re ttched to the fctors only to distinguish vrious cses 7 : Number of rimes not greter thn Sliding model A sliding model is shown in Figure While the row (B) is sliding to the right ste by ste nd totlly by, ll intersections of the rimes in row (B) nd row (A) re twin rime irs The intersections for ste k re the twin rime irs with distnce k For emle, while sliding to the right, the intersections for ste =, 4, 6, re: Ste, 3,5, 5,7,,3, 7,9, Ste 4, 3, 7, 7,, 3,7, 9, 3, Ste 6, 5,, 7,3,,7, 3,9, 3

4 Figure Sliding model to form twin rime irs, for ste = 6 (A) ste = 6 (B) Totlly intersection (,7) Lemm Tg ; ~ ~ ln () Proof: According to the rime number theorem, t T ; k ~ dudt (3) k t ln tln u We give n roimte estimtion for the integrl Let Q q denote the number of intersections of rime q in row (B), while q slides to the right totlly by For 3 q 4 3 ~ ~ ~ ln ln ln ln ln, Q For n rbitrrily smll ositive rel, if, For q r with r, r r r r Qr r r~ ~ ln r ln r ln r ln r ~ ~ ~ ln r ln r ln ln Thus k t T ; k ~ dudt ~ t ln tln u g T ;k k ; ~ ~ ln T 4

5 With the roimte estimtion, we hve ; ~ ; ~ ; ~ ; Tg Tg Tg Tg ~ ~ 4 ln (4) We highlight the key concets used in the following discussions Key concet It imlies tht T; k with smll distnce is similr to tht with lrge one, lthough the rimes re infinitely srse s Logiclly, ; T k must be function of g ; T;k from the sieve structure to ehibit tht ; T In Section 6, we give derivtion of T k involves g ; T 3 Deendence of rimes For the sieves in this er, the difference between the intervl, nd, is ignored For Ertosthenes sieve, ~ ln (5) According to Mertens third theorem, e ~ 0, where is Euler s constnt The fctor is to correct the reltive errors cused by the deendence of rimes for Ertosthenes sieve Tht is, the ctul (corrected) frction of the crdinlity of the shifted set over is According to Lemm, we dd fctor ~0 ; Tg for () to hve 5

6 Lemm Let nd denote s bove Then Tg ; 3 (6) Proof: By (5), we hve Tg ; 3 Key concet Ignoring the errors cused by the deendence of rimes, for the number of rimes, roduct eression is derived from the sieve structure Since the roduct is logicl nd meningful, it should be n essentil comonent of in (5) The deendence of rimes my distort the meningful roduct derived from sieve, but it never violtes the nture of the sieve structure which sreds uniformly nd infinitely ll over the entire integer sequence For our trget conjecture, we derive some meningful roduct eressions from sieve, nd then dd fctor to correct the errors distorted by the deendence of rimes 4 First derivtion of T ; k from sieve Let the nottions for Lemm 3 denote s follows: Φ k: Ertosthenes sieve for k 0 N Φ k;k : Sieve to eliminte the elements, first the even numbers, second n k with 6

7 n for ll 3, from k N Φ kφ k;k : Denote tht we first do the sieve k 0 Φ k k from the shifted set of k ; Φ 0 sieve : Crdinlity of the shifted set of the sieve Φ Φ Lemm 3 T;k k k;k 0 Φ nd net do 0 Proof: If is rime which is not n k of ny, k is not n of ny Thus k, is twin rime ir Correction fctors By Key concet, we dd the correction fctors for the deendence of rimes to the result of Lemm 3 Since the correction fctor deends on how we eliminte the elements from k the fctor should be function of nd k, for T ; T ;k,k k, 3,k k 3, 3 k in Lemm 3 Thus N,, (7),k k Key concet 3 The fctor for correcting the errors cused by the deendence of rimes must be ttched to roduct, such s occur, corresonding to sieve rocess in which the errors 3 Eqution (7) imlies tht The correction fctor is ut in front of the corresonding roduct eression 7

8 First, we rocess the sieve corresonding to, nd then 3 k, 3 3 Let,k be the correction fctor for 3 k, 3 4 The correction fctor for k, 3, fter the sieve of hs been 3 done, is denoted s,k 5 Thus,k,k should be the correction fctor for while,k 3 is determined, nd,k,k,k,k Fictitious itertions These re the trnsformtions used in the following derivtions (8) In the roof of Lemm 4 below, eqution (7) will be multilied by k ; 3 k ; 3, which is ckge of fictitious itertions They re not substntil itertions, nd therefore hve nothing to do with the deendence of rimes Let R ; k be generl nottion in the following derivtions, nd R; k k ; 3 k ; 3 (9) Lemm 4 T ;k,k R; k 3 (0) 8

9 Proof: For (7), multilied by the fictitious itertions, k,k k 3, 3 T ;,,k k k ; 3 k ; 3,k, ;, k R k k () 3 3,k R; k 3 5 Second derivtion of T; k from sieve structure For 3, n 0, nd odd numbers, if is corime of 3, n must be corime of 3 However, n nd n only hve the chnce of to be corime of 3 For the distnce k, it revels the dvntges of the number of twin corime irs with k nd the disdvntges with k Let the nottions for Lemm 3 denote s follows: ; h, h k : Twin corime ir with distnce k, where h nd h k re corimes of H, ; k : Number of ; h, h k with distnce k, nd h H, ; : Averge of H, ; k for ll k g 9

10 Lemm 5 Let A k, k H, ; k k, k, B k, k H, ; k k, k Then A~ B, () A~ H g, ; B ~ H g, ;, nd Proof: By the dvntges of the number of twin corime irs with k, we hve A~ B AB B B Hg, ; ~ B B B B ~ Hg ;, H g, ; A~ B~ H g, ; Let the nottions denote s follows: y; m, m k : Twin corime ir with distnce k, where m nd m k re corimes of ll y M y, ; k : Number of y; m, m k 0 with distnce k, nd m M y, ; : Averge of M y, ; k for ll k g

11 Let be sufficiently smll ositive rel, nd y with ln y ln Thus the errors of the deendence of rimes for the itertions of ll y cn be ignored For the itertions of ll y, M y, ; k~ M y, ; k 3 ; 3 g y (3) k y For the itertions of ll, by Key concet, we dd fctor,k to correct the errors Recll tht R; k k ; 3 M, ; k,k M, ; k R; k Since g (4) 3 ; mm, k is equivlent to the twin rime ir, (4) is rewritten s T ;k,k T ; R ; k g (5) 3 Both of the dvntges nd disdvntges of, ; H k re reltive to g, ; H Actully, the formuls shown in Lemm 5 re indeendent for the sequentil itertions of 3, 5, 7,,, nd,k is not ccumulted u to constnt while getting lrge On the contrry, decresing s reltive devition, k, ~0 Since the indeendence of Lemm 5 is not elicit, we give Section 6 to rove it By Key concet 3,,k is the correction fctor of 3, which is the only roduct remined to shoulder the errors of deendence of rime

12 6 Correction fctor of 3 Let y with ln y ln We trnsform the roduct eression of sieves into summtion in order tht the frctions deleted by the itertions cn be hndled sertely * * * * y * * y* * * (6) 3* y 3* 3 * y* * 3* Lemm 6 Let,kdenote s bove Then k Proof: Let D, k,, ~0 * be the ctul frction deleted by the itertion of *, nd, k, * be the correction fctor for the itertion D, k, *, k, * * 3*,k = D, k, D, k, 3 * * 3* y y* For the itertion of *, the number of the elements deleted from is 3* N, k, 3* * * * *, nd

13 , k, * (7) 3* since ~0, with (7), we hve D k * * y* y *,, ~0,, * ~0, even without (7) y Actully, D k Thus *,k ~ D, k, ~ ~ C 3 Since * 3* y 3y ~ C, we hve k 3 By (8), , ~0 The roduct removes 3 from 3 ~ y y Thus the totl removes of for ll y become meningless, ie, D, k, * ~0 y * 3

14 7 Conclusions Recll tht R; k By (5) nd Lemm, we hve k ; 3, nd k T; k~ T g ; 3 k ; 3, ~0 ~ C ~C (8) k ; 3 k ; 3 ln By Lemm 4 nd dding the correction fctor,k T ;k,k R ; k 3, we hve,k,k 3 3 Comring (5) with (9),,k (9) 3,k Tg ; (0),k e Recll tht ~ nd ~0 By Lemm, Tg ; 3,k,k, k ~, k ~ e By Lemm 4, we hve e T; k~ 3 k ; 3 () 4

15 Etended conclusion Let y with ln y ln Let m be corime of ll y Let m i be the i -th m The seril corime distnce of m nd m d is defined s d T d denote the number of twin rime irs m, m d, in which m nd Let ; m d re rimes, with distnce m m nd d Since k ; y ~, T; d roch the sme for ll d m m References [] Hrdy, G H & J E Littlewood (93) Some roblems of rtitio numerorum III : On the eression of number s sum of rimes Act Mth 44, -70 5

USA Mathematical Talent Search Round 1 Solutions Year 25 Academic Year

USA Mathematical Talent Search Round 1 Solutions Year 25 Academic Year 1/1/5. Alex is trying to oen lock whose code is sequence tht is three letters long, with ech of the letters being one of A, B or C, ossibly reeted. The lock hs three buttons, lbeled A, B nd C. When the

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

Supplement 4 Permutations, Legendre symbol and quadratic reciprocity

Supplement 4 Permutations, Legendre symbol and quadratic reciprocity Sulement 4 Permuttions, Legendre symbol nd qudrtic recirocity 1. Permuttions. If S is nite set contining n elements then ermuttion of S is one to one ming of S onto S. Usully S is the set f1; ; :::; ng

More information

Chapter 6 Notes, Larson/Hostetler 3e

Chapter 6 Notes, Larson/Hostetler 3e Contents 6. Antiderivtives nd the Rules of Integrtion.......................... 6. Are nd the Definite Integrl.................................. 6.. Are............................................ 6. Reimnn

More information

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1

63. Representation of functions as power series Consider a power series. ( 1) n x 2n for all 1 < x < 1 3 9. SEQUENCES AND SERIES 63. Representtion of functions s power series Consider power series x 2 + x 4 x 6 + x 8 + = ( ) n x 2n It is geometric series with q = x 2 nd therefore it converges for ll q =

More information

Families of Solutions to Bernoulli ODEs

Families of Solutions to Bernoulli ODEs In the fmily of solutions to the differentil eqution y ry dx + = it is shown tht vrition of the initil condition y( 0 = cuses horizontl shift in the solution curve y = f ( x, rther thn the verticl shift

More information

On Arithmetic Functions

On Arithmetic Functions Globl ournl of Mthemticl Sciences: Theory nd Prcticl ISSN 0974-00 Volume 5, Number (0, 7- Interntionl Reserch Publiction House htt://wwwirhousecom On Arithmetic Functions Bhbesh Ds Dertment of Mthemtics,

More information

Quadratic reciprocity

Quadratic reciprocity Qudrtic recirocity Frncisc Bozgn Los Angeles Mth Circle Octoer 8, 01 1 Qudrtic Recirocity nd Legendre Symol In the eginning of this lecture, we recll some sic knowledge out modulr rithmetic: Definition

More information

ROTATION IN 3D WORLD RIGID BODY MOTION

ROTATION IN 3D WORLD RIGID BODY MOTION OTATION IN 3D WOLD IGID BODY MOTION igid Bod Motion Simultion igid bod motion Eqution of motion ff mmvv NN ddiiωω/dddd Angulr velocit Integrtion of rottion nd it s eression is necessr. Simultion nd Eression

More information

Integrals - Motivation

Integrals - Motivation Integrls - Motivtion When we looked t function s rte of chnge If f(x) is liner, the nswer is esy slope If f(x) is non-liner, we hd to work hrd limits derivtive A relted question is the re under f(x) (but

More information

Chapter 1: Fundamentals

Chapter 1: Fundamentals Chpter 1: Fundmentls 1.1 Rel Numbers Types of Rel Numbers: Nturl Numbers: {1, 2, 3,...}; These re the counting numbers. Integers: {... 3, 2, 1, 0, 1, 2, 3,...}; These re ll the nturl numbers, their negtives,

More information

k and v = v 1 j + u 3 i + v 2

k and v = v 1 j + u 3 i + v 2 ORTHOGONAL FUNCTIONS AND FOURIER SERIES Orthogonl functions A function cn e considered to e generliztion of vector. Thus the vector concets like the inner roduct nd orthogonlity of vectors cn e extended

More information

(9) P (x)u + Q(x)u + R(x)u =0

(9) P (x)u + Q(x)u + R(x)u =0 STURM-LIOUVILLE THEORY 7 2. Second order liner ordinry differentil equtions 2.1. Recll some sic results. A second order liner ordinry differentil eqution (ODE) hs the form (9) P (x)u + Q(x)u + R(x)u =0

More information

Quadratic Residues. Chapter Quadratic residues

Quadratic Residues. Chapter Quadratic residues Chter 8 Qudrtic Residues 8. Qudrtic residues Let n>be given ositive integer, nd gcd, n. We sy tht Z n is qudrtic residue mod n if the congruence x mod n is solvble. Otherwise, is clled qudrtic nonresidue

More information

Mathematics Number: Logarithms

Mathematics Number: Logarithms plce of mind F A C U L T Y O F E D U C A T I O N Deprtment of Curriculum nd Pedgogy Mthemtics Numer: Logrithms Science nd Mthemtics Eduction Reserch Group Supported y UBC Teching nd Lerning Enhncement

More information

PRIMES AND QUADRATIC RECIPROCITY

PRIMES AND QUADRATIC RECIPROCITY PRIMES AND QUADRATIC RECIPROCITY ANGELICA WONG Abstrct We discuss number theory with the ultimte gol of understnding udrtic recirocity We begin by discussing Fermt s Little Theorem, the Chinese Reminder

More information

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac

ARITHMETIC OPERATIONS. The real numbers have the following properties: a b c ab ac REVIEW OF ALGEBRA Here we review the bsic rules nd procedures of lgebr tht you need to know in order to be successful in clculus. ARITHMETIC OPERATIONS The rel numbers hve the following properties: b b

More information

5.7 Improper Integrals

5.7 Improper Integrals 458 pplictions of definite integrls 5.7 Improper Integrls In Section 5.4, we computed the work required to lift pylod of mss m from the surfce of moon of mss nd rdius R to height H bove the surfce of the

More information

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014

SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 2014 SOLUTIONS FOR ADMISSIONS TEST IN MATHEMATICS, COMPUTER SCIENCE AND JOINT SCHOOLS WEDNESDAY 5 NOVEMBER 014 Mrk Scheme: Ech prt of Question 1 is worth four mrks which re wrded solely for the correct nswer.

More information

Adding and Subtracting Rational Expressions

Adding and Subtracting Rational Expressions 6.4 Adding nd Subtrcting Rtionl Epressions Essentil Question How cn you determine the domin of the sum or difference of two rtionl epressions? You cn dd nd subtrct rtionl epressions in much the sme wy

More information

QUADRATIC RESIDUES MATH 372. FALL INSTRUCTOR: PROFESSOR AITKEN

QUADRATIC RESIDUES MATH 372. FALL INSTRUCTOR: PROFESSOR AITKEN QUADRATIC RESIDUES MATH 37 FALL 005 INSTRUCTOR: PROFESSOR AITKEN When is n integer sure modulo? When does udrtic eution hve roots modulo? These re the uestions tht will concern us in this hndout 1 The

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk bout solving systems of liner equtions. These re problems tht give couple of equtions with couple of unknowns, like: 6 2 3 7 4

More information

5.4. The Fundamental Theorem of Calculus. 356 Chapter 5: Integration. Mean Value Theorem for Definite Integrals

5.4. The Fundamental Theorem of Calculus. 356 Chapter 5: Integration. Mean Value Theorem for Definite Integrals 56 Chter 5: Integrtion 5.4 The Fundmentl Theorem of Clculus HISTORICA BIOGRAPHY Sir Isc Newton (64 77) In this section we resent the Fundmentl Theorem of Clculus, which is the centrl theorem of integrl

More information

LECTURE 10: JACOBI SYMBOL

LECTURE 10: JACOBI SYMBOL LECTURE 0: JACOBI SYMBOL The Jcobi symbol We wish to generlise the Legendre symbol to ccomodte comosite moduli Definition Let be n odd ositive integer, nd suose tht s, where the i re rime numbers not necessrily

More information

13: Diffusion in 2 Energy Groups

13: Diffusion in 2 Energy Groups 3: Diffusion in Energy Groups B. Rouben McMster University Course EP 4D3/6D3 Nucler Rector Anlysis (Rector Physics) 5 Sept.-Dec. 5 September Contents We study the diffusion eqution in two energy groups

More information

5: The Definite Integral

5: The Definite Integral 5: The Definite Integrl 5.: Estimting with Finite Sums Consider moving oject its velocity (meters per second) t ny time (seconds) is given y v t = t+. Cn we use this informtion to determine the distnce

More information

Infinite Geometric Series

Infinite Geometric Series Infinite Geometric Series Finite Geometric Series ( finite SUM) Let 0 < r < 1, nd let n be positive integer. Consider the finite sum It turns out there is simple lgebric expression tht is equivlent to

More information

5.1 How do we Measure Distance Traveled given Velocity? Student Notes

5.1 How do we Measure Distance Traveled given Velocity? Student Notes . How do we Mesure Distnce Trveled given Velocity? Student Notes EX ) The tle contins velocities of moving cr in ft/sec for time t in seconds: time (sec) 3 velocity (ft/sec) 3 A) Lel the x-xis & y-xis

More information

Multiplicative functions of polynomial values in short intervals

Multiplicative functions of polynomial values in short intervals ACTA ARITHMETICA LXII3 1992 Multilictive functions of olnomil vlues in short intervls b Mohn Nir Glsgow 1 Introduction Let dn denote the divisor function nd let P n be n irreducible olnomil of degree g

More information

Properties of Lorenz Curves for Transformed Income Distributions

Properties of Lorenz Curves for Transformed Income Distributions Theoreticl Economics etters 22 2 487-493 htt://ddoiorg/4236/tel22259 Published Online December 22 (htt://wwwscirporg/journl/tel) Proerties of orenz Curves for Trnsformed Income Distributions John Fellmn

More information

Math Calculus with Analytic Geometry II

Math Calculus with Analytic Geometry II orem of definite Mth 5.0 with Anlytic Geometry II Jnury 4, 0 orem of definite If < b then b f (x) dx = ( under f bove x-xis) ( bove f under x-xis) Exmple 8 0 3 9 x dx = π 3 4 = 9π 4 orem of definite Problem

More information

1.2. Linear Variable Coefficient Equations. y + b "! = a y + b " Remark: The case b = 0 and a non-constant can be solved with the same idea as above.

1.2. Linear Variable Coefficient Equations. y + b ! = a y + b  Remark: The case b = 0 and a non-constant can be solved with the same idea as above. 1 12 Liner Vrible Coefficient Equtions Section Objective(s): Review: Constnt Coefficient Equtions Solving Vrible Coefficient Equtions The Integrting Fctor Method The Bernoulli Eqution 121 Review: Constnt

More information

Taylor Polynomial Inequalities

Taylor Polynomial Inequalities Tylor Polynomil Inequlities Ben Glin September 17, 24 Abstrct There re instnces where we my wish to pproximte the vlue of complicted function round given point by constructing simpler function such s polynomil

More information

Hadamard-Type Inequalities for s Convex Functions I

Hadamard-Type Inequalities for s Convex Functions I Punjb University Journl of Mthemtics ISSN 6-56) Vol. ). 5-6 Hdmrd-Tye Ineulities for s Convex Functions I S. Hussin Dertment of Mthemtics Institute Of Sce Technology, Ner Rwt Toll Plz Islmbd Highwy, Islmbd

More information

Math 116 Calculus II

Math 116 Calculus II Mth 6 Clculus II Contents 5 Exponentil nd Logrithmic functions 5. Review........................................... 5.. Exponentil functions............................... 5.. Logrithmic functions...............................

More information

MATH SS124 Sec 39 Concepts summary with examples

MATH SS124 Sec 39 Concepts summary with examples This note is mde for students in MTH124 Section 39 to review most(not ll) topics I think we covered in this semester, nd there s exmples fter these concepts, go over this note nd try to solve those exmples

More information

On a Conjecture of Farhi

On a Conjecture of Farhi 47 6 Journl of Integer Sequences, Vol. 7 04, Article 4..8 On Conjecture of Frhi Soufine Mezroui, Abdelmlek Azizi, nd M hmmed Zine Lbortoire ACSA Dértement de Mthémtiques et Informtique Université Mohmmed

More information

Notes on length and conformal metrics

Notes on length and conformal metrics Notes on length nd conforml metrics We recll how to mesure the Eucliden distnce of n rc in the plne. Let α : [, b] R 2 be smooth (C ) rc. Tht is α(t) (x(t), y(t)) where x(t) nd y(t) re smooth rel vlued

More information

Antiderivatives Introduction

Antiderivatives Introduction Antierivtives 0. Introuction So fr much of the term hs been sent fining erivtives or rtes of chnge. But in some circumstnces we lrey know the rte of chnge n we wish to etermine the originl function. For

More information

1.9 C 2 inner variations

1.9 C 2 inner variations 46 CHAPTER 1. INDIRECT METHODS 1.9 C 2 inner vritions So fr, we hve restricted ttention to liner vritions. These re vritions of the form vx; ǫ = ux + ǫφx where φ is in some liner perturbtion clss P, for

More information

If deg(num) deg(denom), then we should use long-division of polynomials to rewrite: p(x) = s(x) + r(x) q(x), q(x)

If deg(num) deg(denom), then we should use long-division of polynomials to rewrite: p(x) = s(x) + r(x) q(x), q(x) Mth 50 The method of prtil frction decomposition (PFD is used to integrte some rtionl functions of the form p(x, where p/q is in lowest terms nd deg(num < deg(denom. q(x If deg(num deg(denom, then we should

More information

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique?

How do we solve these things, especially when they get complicated? How do we know when a system has a solution, and when is it unique? XII. LINEAR ALGEBRA: SOLVING SYSTEMS OF EQUATIONS Tody we re going to tlk out solving systems of liner equtions. These re prolems tht give couple of equtions with couple of unknowns, like: 6= x + x 7=

More information

7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=!

7.3 Problem 7.3. ~B(~x) = ~ k ~ E(~x)=! but we also have a reected wave. ~E(~x) = ~ E 2 e i~ k 2 ~x i!t. ~B R (~x) = ~ k R ~ E R (~x)=! 7. Problem 7. We hve two semi-innite slbs of dielectric mteril with nd equl indices of refrction n >, with n ir g (n ) of thickness d between them. Let the surfces be in the x; y lne, with the g being

More information

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), )

Euler, Ioachimescu and the trapezium rule. G.J.O. Jameson (Math. Gazette 96 (2012), ) Euler, Iochimescu nd the trpezium rule G.J.O. Jmeson (Mth. Gzette 96 (0), 36 4) The following results were estblished in recent Gzette rticle [, Theorems, 3, 4]. Given > 0 nd 0 < s

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!!

Before we can begin Ch. 3 on Radicals, we need to be familiar with perfect squares, cubes, etc. Try and do as many as you can without a calculator!!! Nme: Algebr II Honors Pre-Chpter Homework Before we cn begin Ch on Rdicls, we need to be fmilir with perfect squres, cubes, etc Try nd do s mny s you cn without clcultor!!! n The nth root of n n Be ble

More information

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as

Improper Integrals. Type I Improper Integrals How do we evaluate an integral such as Improper Integrls Two different types of integrls cn qulify s improper. The first type of improper integrl (which we will refer to s Type I) involves evluting n integrl over n infinite region. In the grph

More information

Econ 401A Version 3 John Riley. Homework 3 Due Tuesday, Nov 28. Answers. (a) Double both sides of the second equation and subtract the second equation

Econ 401A Version 3 John Riley. Homework 3 Due Tuesday, Nov 28. Answers. (a) Double both sides of the second equation and subtract the second equation Econ 40 Version John Riley Homeork Due uesdy, Nov 8 nsers nser to question () Double both sides of the second eqution nd subtrct the second eqution 60q 0q 0 60q 0q 0 b b 00q 0 hen q 0 (b) he vlue of the

More information

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS S.S. DRAGOMIR AND A. SOFO Abstrct. In this pper by utilising result given by Fink we obtin some new results relting to the trpezoidl inequlity

More information

Bernoulli Numbers Jeff Morton

Bernoulli Numbers Jeff Morton Bernoulli Numbers Jeff Morton. We re interested in the opertor e t k d k t k, which is to sy k tk. Applying this to some function f E to get e t f d k k tk d k f f + d k k tk dk f, we note tht since f

More information

SPE Improved Permeability Prediction Relations for Low Permeability Sands

SPE Improved Permeability Prediction Relations for Low Permeability Sands SPE 07954 Imroved Permebility Prediction Reltions for Low Permebility Snds Frncois-Andre Florence, Texs A&M University T.A. Blsingme, Texs A&M University Dertment of Petroleum Engineering Texs A&M University

More information

Lesson 1: Quadratic Equations

Lesson 1: Quadratic Equations Lesson 1: Qudrtic Equtions Qudrtic Eqution: The qudrtic eqution in form is. In this section, we will review 4 methods of qudrtic equtions, nd when it is most to use ech method. 1. 3.. 4. Method 1: Fctoring

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

Math 1B, lecture 4: Error bounds for numerical methods

Math 1B, lecture 4: Error bounds for numerical methods Mth B, lecture 4: Error bounds for numericl methods Nthn Pflueger 4 September 0 Introduction The five numericl methods descried in the previous lecture ll operte by the sme principle: they pproximte the

More information

1 Probability Density Functions

1 Probability Density Functions Lis Yn CS 9 Continuous Distributions Lecture Notes #9 July 6, 28 Bsed on chpter by Chris Piech So fr, ll rndom vribles we hve seen hve been discrete. In ll the cses we hve seen in CS 9, this ment tht our

More information

1 Part II: Numerical Integration

1 Part II: Numerical Integration Mth 4 Lb 1 Prt II: Numericl Integrtion This section includes severl techniques for getting pproimte numericl vlues for definite integrls without using ntiderivtives. Mthemticll, ect nswers re preferble

More information

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a).

The First Fundamental Theorem of Calculus. If f(x) is continuous on [a, b] and F (x) is any antiderivative. f(x) dx = F (b) F (a). The Fundmentl Theorems of Clculus Mth 4, Section 0, Spring 009 We now know enough bout definite integrls to give precise formultions of the Fundmentl Theorems of Clculus. We will lso look t some bsic emples

More information

Chapter 6 Techniques of Integration

Chapter 6 Techniques of Integration MA Techniques of Integrtion Asst.Prof.Dr.Suprnee Liswdi Chpter 6 Techniques of Integrtion Recll: Some importnt integrls tht we hve lernt so fr. Tle of Integrls n+ n d = + C n + e d = e + C ( n ) d = ln

More information

Math 8 Winter 2015 Applications of Integration

Math 8 Winter 2015 Applications of Integration Mth 8 Winter 205 Applictions of Integrtion Here re few importnt pplictions of integrtion. The pplictions you my see on n exm in this course include only the Net Chnge Theorem (which is relly just the Fundmentl

More information

INTRODUCTION TO INTEGRATION

INTRODUCTION TO INTEGRATION INTRODUCTION TO INTEGRATION 5.1 Ares nd Distnces Assume f(x) 0 on the intervl [, b]. Let A be the re under the grph of f(x). b We will obtin n pproximtion of A in the following three steps. STEP 1: Divide

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but...

Z b. f(x)dx. Yet in the above two cases we know what f(x) is. Sometimes, engineers want to calculate an area by computing I, but... Chpter 7 Numericl Methods 7. Introduction In mny cses the integrl f(x)dx cn be found by finding function F (x) such tht F 0 (x) =f(x), nd using f(x)dx = F (b) F () which is known s the nlyticl (exct) solution.

More information

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests.

The problems that follow illustrate the methods covered in class. They are typical of the types of problems that will be on the tests. ADVANCED CALCULUS PRACTICE PROBLEMS JAMES KEESLING The problems tht follow illustrte the methods covered in clss. They re typicl of the types of problems tht will be on the tests. 1. Riemnn Integrtion

More information

Chapter 8.2: The Integral

Chapter 8.2: The Integral Chpter 8.: The Integrl You cn think of Clculus s doule-wide triler. In one width of it lives differentil clculus. In the other hlf lives wht is clled integrl clculus. We hve lredy eplored few rooms in

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundmentl Theorem of Clculus Recll tht if f is nonnegtive nd continuous on [, ], then the re under its grph etween nd is the definite integrl A= f() d Now, for in the intervl [, ], let A() e the re under

More information

OPIAL S INEQUALITY AND OSCILLATION OF 2ND ORDER EQUATIONS. 1. Introduction We consider the second-order linear differential equation.

OPIAL S INEQUALITY AND OSCILLATION OF 2ND ORDER EQUATIONS. 1. Introduction We consider the second-order linear differential equation. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY Volume 5, Numer, Aril 997, Pges 3 9 S 000-993997)03907-5 OPIAL S INEQUALITY AND OSCILLATION OF ND ORDER EQUATIONS R C BROWN AND D B HINTON Communicted y

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

Review of Gaussian Quadrature method

Review of Gaussian Quadrature method Review of Gussin Qudrture method Nsser M. Asi Spring 006 compiled on Sundy Decemer 1, 017 t 09:1 PM 1 The prolem To find numericl vlue for the integrl of rel vlued function of rel vrile over specific rnge

More information

Math& 152 Section Integration by Parts

Math& 152 Section Integration by Parts Mth& 5 Section 7. - Integrtion by Prts Integrtion by prts is rule tht trnsforms the integrl of the product of two functions into other (idelly simpler) integrls. Recll from Clculus I tht given two differentible

More information

Math 135-2, Homework 1

Math 135-2, Homework 1 Mth 35-, Homework Solutions Problem 7. Find the generl solution of ech of the following equtions: ) 6y 8y + y q) y + 4y + 5y r) y + 4y 5y ) 6y 8y +y y e rx y re rx y r e rx 6r e rx 8re rx +e rx 6r 8r +)e

More information

1. On some properties of definite integrals. We prove

1. On some properties of definite integrals. We prove This short collection of notes is intended to complement the textbook Anlisi Mtemtic 2 by Crl Mdern, published by Città Studi Editore, [M]. We refer to [M] for nottion nd the logicl stremline of the rguments.

More information

8 Laplace s Method and Local Limit Theorems

8 Laplace s Method and Local Limit Theorems 8 Lplce s Method nd Locl Limit Theorems 8. Fourier Anlysis in Higher DImensions Most of the theorems of Fourier nlysis tht we hve proved hve nturl generliztions to higher dimensions, nd these cn be proved

More information

Euler-Maclaurin Summation Formula 1

Euler-Maclaurin Summation Formula 1 Jnury 9, Euler-Mclurin Summtion Formul Suppose tht f nd its derivtive re continuous functions on the closed intervl [, b]. Let ψ(x) {x}, where {x} x [x] is the frctionl prt of x. Lemm : If < b nd, b Z,

More information

Lecture 3 Gaussian Probability Distribution

Lecture 3 Gaussian Probability Distribution Introduction Lecture 3 Gussin Probbility Distribution Gussin probbility distribution is perhps the most used distribution in ll of science. lso clled bell shped curve or norml distribution Unlike the binomil

More information

Lecture 13 - Linking E, ϕ, and ρ

Lecture 13 - Linking E, ϕ, and ρ Lecture 13 - Linking E, ϕ, nd ρ A Puzzle... Inner-Surfce Chrge Density A positive point chrge q is locted off-center inside neutrl conducting sphericl shell. We know from Guss s lw tht the totl chrge on

More information

Chapter 1: Logarithmic functions and indices

Chapter 1: Logarithmic functions and indices Chpter : Logrithmic functions nd indices. You cn simplify epressions y using rules of indices m n m n m n m n ( m ) n mn m m m m n m m n Emple Simplify these epressions: 5 r r c 4 4 d 6 5 e ( ) f ( ) 4

More information

Principles of Real Analysis I Fall VI. Riemann Integration

Principles of Real Analysis I Fall VI. Riemann Integration 21-355 Principles of Rel Anlysis I Fll 2004 A. Definitions VI. Riemnn Integrtion Let, b R with < b be given. By prtition of [, b] we men finite set P [, b] with, b P. The set of ll prtitions of [, b] will

More information

Lecture 20: Numerical Integration III

Lecture 20: Numerical Integration III cs4: introduction to numericl nlysis /8/0 Lecture 0: Numericl Integrtion III Instructor: Professor Amos Ron Scribes: Mrk Cowlishw, Yunpeng Li, Nthnel Fillmore For the lst few lectures we hve discussed

More information

Thomas Whitham Sixth Form

Thomas Whitham Sixth Form Thoms Whithm Sith Form Pure Mthemtics Unit C Alger Trigonometry Geometry Clculus Vectors Trigonometry Compound ngle formule sin sin cos cos Pge A B sin Acos B cos Asin B A B sin Acos B cos Asin B A B cos

More information

Lecture 1: Introduction to integration theory and bounded variation

Lecture 1: Introduction to integration theory and bounded variation Lecture 1: Introduction to integrtion theory nd bounded vrition Wht is this course bout? Integrtion theory. The first question you might hve is why there is nything you need to lern bout integrtion. You

More information

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex

On Hermite-Hadamard type integral inequalities for functions whose second derivative are nonconvex Mly J Mt 34 93 3 On Hermite-Hdmrd tye integrl ineulities for functions whose second derivtive re nonconvex Mehmet Zeki SARIKAYA, Hkn Bozkurt nd Mehmet Eyü KİRİŞ b Dertment of Mthemtics, Fculty of Science

More information

SUMMER KNOWHOW STUDY AND LEARNING CENTRE

SUMMER KNOWHOW STUDY AND LEARNING CENTRE SUMMER KNOWHOW STUDY AND LEARNING CENTRE Indices & Logrithms 2 Contents Indices.2 Frctionl Indices.4 Logrithms 6 Exponentil equtions. Simplifying Surds 13 Opertions on Surds..16 Scientific Nottion..18

More information

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40

Section 5.1 #7, 10, 16, 21, 25; Section 5.2 #8, 9, 15, 20, 27, 30; Section 5.3 #4, 6, 9, 13, 16, 28, 31; Section 5.4 #7, 18, 21, 23, 25, 29, 40 Mth B Prof. Audrey Terrs HW # Solutions by Alex Eustis Due Tuesdy, Oct. 9 Section 5. #7,, 6,, 5; Section 5. #8, 9, 5,, 7, 3; Section 5.3 #4, 6, 9, 3, 6, 8, 3; Section 5.4 #7, 8,, 3, 5, 9, 4 5..7 Since

More information

MATH 144: Business Calculus Final Review

MATH 144: Business Calculus Final Review MATH 144: Business Clculus Finl Review 1 Skills 1. Clculte severl limits. 2. Find verticl nd horizontl symptotes for given rtionl function. 3. Clculte derivtive by definition. 4. Clculte severl derivtives

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl o Inequlities in Pure nd Applied Mthemtics http://jipm.vu.edu.u/ Volume 6, Issue 4, Article 6, 2005 MROMORPHIC UNCTION THAT SHARS ON SMALL UNCTION WITH ITS DRIVATIV QINCAI ZHAN SCHOOL O INORMATION

More information

Appendix to Notes 8 (a)

Appendix to Notes 8 (a) Appendix to Notes 8 () 13 Comprison of the Riemnn nd Lebesgue integrls. Recll Let f : [, b] R be bounded. Let D be prtition of [, b] such tht Let D = { = x 0 < x 1

More information

Chapter 3 Polynomials

Chapter 3 Polynomials Dr M DRAIEF As described in the introduction of Chpter 1, pplictions of solving liner equtions rise in number of different settings In prticulr, we will in this chpter focus on the problem of modelling

More information

AP Calculus Multiple Choice: BC Edition Solutions

AP Calculus Multiple Choice: BC Edition Solutions AP Clculus Multiple Choice: BC Edition Solutions J. Slon Mrch 8, 04 ) 0 dx ( x) is A) B) C) D) E) Divergent This function inside the integrl hs verticl symptotes t x =, nd the integrl bounds contin this

More information

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite

Goals: Determine how to calculate the area described by a function. Define the definite integral. Explore the relationship between the definite Unit #8 : The Integrl Gols: Determine how to clculte the re described by function. Define the definite integrl. Eplore the reltionship between the definite integrl nd re. Eplore wys to estimte the definite

More information

Designing Information Devices and Systems I Discussion 8B

Designing Information Devices and Systems I Discussion 8B Lst Updted: 2018-10-17 19:40 1 EECS 16A Fll 2018 Designing Informtion Devices nd Systems I Discussion 8B 1. Why Bother With Thévenin Anywy? () Find Thévenin eqiuvlent for the circuit shown elow. 2kΩ 5V

More information

Calculus II: Integrations and Series

Calculus II: Integrations and Series Clculus II: Integrtions nd Series August 7, 200 Integrls Suppose we hve generl function y = f(x) For simplicity, let f(x) > 0 nd f(x) continuous Denote F (x) = re under the grph of f in the intervl [,x]

More information

The Fundamental Theorem of Calculus

The Fundamental Theorem of Calculus The Fundmentl Theorem of Clculus MATH 151 Clculus for Mngement J. Robert Buchnn Deprtment of Mthemtics Fll 2018 Objectives Define nd evlute definite integrls using the concept of re. Evlute definite integrls

More information

arxiv:math/ v2 [math.ho] 16 Dec 2003

arxiv:math/ v2 [math.ho] 16 Dec 2003 rxiv:mth/0312293v2 [mth.ho] 16 Dec 2003 Clssicl Lebesgue Integrtion Theorems for the Riemnn Integrl Josh Isrlowitz 244 Ridge Rd. Rutherford, NJ 07070 jbi2@njit.edu Februry 1, 2008 Abstrct In this pper,

More information

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O

The area under the graph of f and above the x-axis between a and b is denoted by. f(x) dx. π O 1 Section 5. The Definite Integrl Suppose tht function f is continuous nd positive over n intervl [, ]. y = f(x) x The re under the grph of f nd ove the x-xis etween nd is denoted y f(x) dx nd clled the

More information

Heat flux and total heat

Heat flux and total heat Het flux nd totl het John McCun Mrch 14, 2017 1 Introduction Yesterdy (if I remember correctly) Ms. Prsd sked me question bout the condition of insulted boundry for the 1D het eqution, nd (bsed on glnce

More information

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3

UNIFORM CONVERGENCE. Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 UNIFORM CONVERGENCE Contents 1. Uniform Convergence 1 2. Properties of uniform convergence 3 Suppose f n : Ω R or f n : Ω C is sequence of rel or complex functions, nd f n f s n in some sense. Furthermore,

More information

How can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function?

How can we approximate the area of a region in the plane? What is an interpretation of the area under the graph of a velocity function? Mth 125 Summry Here re some thoughts I ws hving while considering wht to put on the first midterm. The core of your studying should be the ssigned homework problems: mke sure you relly understnd those

More information

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX M. ALOMARI A, M. DARUS A, AND S.S. DRAGOMIR B Astrct. In this er, some ineulities of Hermite-Hdmrd

More information

UniversitaireWiskundeCompetitie. Problem 2005/4-A We have k=1. Show that for every q Q satisfying 0 < q < 1, there exists a finite subset K N so that

UniversitaireWiskundeCompetitie. Problem 2005/4-A We have k=1. Show that for every q Q satisfying 0 < q < 1, there exists a finite subset K N so that Problemen/UWC NAW 5/7 nr juni 006 47 Problemen/UWC UniversitireWiskundeCompetitie Edition 005/4 For Session 005/4 we received submissions from Peter Vndendriessche, Vldislv Frnk, Arne Smeets, Jn vn de

More information

Approximation of functions belonging to the class L p (ω) β by linear operators

Approximation of functions belonging to the class L p (ω) β by linear operators ACTA ET COMMENTATIONES UNIVERSITATIS TARTUENSIS DE MATHEMATICA Volume 3, 9, Approximtion of functions belonging to the clss L p ω) β by liner opertors W lodzimierz Lenski nd Bogdn Szl Abstrct. We prove

More information