ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4)

Size: px
Start display at page:

Download "ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4)"

Transcription

1 ON SIMPSON S INEQUALITY AND APPLICATIONS SS DRAGOMIR, RP AGARWAL, AND P CERONE Abstrct New neultes of Smpson type nd ther pplcton to udrture formule n Numercl Anlyss re gven Introducton The followng neulty s well known n the lterture s Smpson s neulty : f x dx b f + f b + b + f f 4 b 5, 880 where the mppng f :, b R s ssumed to be four tmes contnuously dfferentble on the ntervl, b nd for the fourth dervtve to be bounded on, b, tht s, f 4 : sup f 4 x < x,b Now, f we ssume tht I n : x 0 < x < < x < x n b s prtton of the ntervl, b nd f s s bove, then we hve the clsscl Smpson s udrture formul: f x dx A S f, I n + R S f, I n where A S f, I n s the Smpson rule A S f, I n : f x + f x + h + x + x + f h nd the remnder term R S f, I n stsfes the estmte R S f, I n 880 f 4 4 where h : x + x for 0,, n When we hve n eudstnt prttonng of, b gven by 5 I n : x : + b n, 0,, n; Dte: Aprl, Mthemtcs Subject Clssfcton Prmry D 5, D 0; Secondry 4 A 55, 4 A 99 Key words nd phrses Smpson s Ineulty, Qudrture Formule h 5

2 SS DRAGOMIR, RP AGARWAL, AND P CERONE then we hve the formul where 7 A S,n f : b n f x dx A S,n f + R S,n f b + f n f + b n nd the remnder stsfes the estmton 8 + b n + + f + b n, R S,n f b n 4 f 4 + For some other ntegrl neultes see the recent book nd the ppers -4 nd 5-7 The mn purpose of ths survey pper s to pont out some very recent developments on Smpson s neulty for whch the remnder s expressed n terms of lower dervtves thn the fourth It s well known tht f the mppng f s nether four tmes dfferentble nor s the fourth dervtve f 4 bounded on, b, then we cnnot pply the clsscl Smpson udrture formul, whch, ctully, s one of the most used udrture formule n prctcl pplctons The frst secton of our pper dels wth n upper bound for the remnder n Smpson s neulty for the clss of functons of bounded vrton The second secton provdes some estmtes for the remnder when f s Lpschtzn mppng whle the thrd secton s concerned wth the sme problem for bsolutely contnuous mppngs whose dervtves re n the Lebesgue spces L p, b The fourth secton s devoted to the pplcton of celebrted result due to Grüss to estmtng the remnder n Smpson udrture rule n terms of the supremum nd nfmum of the frst dervtve The ffth secton dels wth generl convex combnton of trpezod nd nteror pont udrture formul from whch, n prtculr, we cn obtn the clsscl Smpson rule The lst secton contns some results relted to Smpson, trpezod nd md pont formule for monotonc mppngs nd some pplctons for probblty dstrbuton functons Lst, but not lest, we would lke to menton tht every secton contns specl subsecton n whch the theoretcl results re ppled for the specl mens of two postve numbers: dentrc men, logrthmc men, p-logrthmc men etcnd provdes mprovements nd relted results to the clsscl seuence of neultes H G L I A, where H, G, L, I nd A re defned n the seuel

3 SIMPSON S INEQUALITY Smpson s Ineulty for Mppngs of Bounded Vrton Smpson s Ineulty The followng result holds Theorem Let f :, b R be mppng of bounded vrton on, b Then we hve the neulty f x dx b b b f, f + f b + f + b where b f denotes the totl vrton of f on the ntervl, b The constnt s the best possble Proof hve: where Usng the ntegrton by prts formul for Remnn-Steltjes ntegrl we s x df x b s x : f + f b + f + b x 5+b, x, +b x +5b, x +b, b f x dx, Indeed, +b s x df x x 5 + b x 5 + b b f x df x + x + 5b +b +b + x + 5b f + f b + b + f f x df x b +b f x dx, f x dx b s seuence of d- nd the dentty s proved Now, ssume tht n : x n 0 < x n < < x n < xn n vsons wth ν n 0 s n, where ν n : mx {0,,} nd ξ n x n, x n + x n + xn If p :, b R s contnuous on, b nd v :, b R s

4 4 SS DRAGOMIR, RP AGARWAL, AND P CERONE of bounded vrton on, b, then p x dv x lm ν n 0 lm ν n 0 mx x,b p p p x sup n ξ n ξ n v v v b mx p x v x,b x n + x n + x n + v v v x n x n x n Applyng the neulty for p x s x nd v x f x we get b 4 s x df x mx s x f x,b Tkng nto ccount the fct tht the mppng s s monotonc nondecresng on the ntervls, +b nd +b, b nd nd we deduce tht s b, + b s 0 b, + b s b s b b, mx s x b x,b Now, usng the neulty 4 nd the dentty we deduce the desred result Now, for the best constnt Assume tht the followng neulty holds f x dx b f + f b + f wth constnt C > 0 Let us choose the mppng f :, b R gven by f x, +b f x f x +b + b b C b f +b, b

5 SIMPSON S INEQUALITY 5 Then we hve nd f x dx b b f + f b + f b f 4 b + b 4 b Now, usng the bove neulty, we get 4C b 4 b whch mples tht C nd then s the best possble constnt n It s nturl to consder the followng corollry whch follows from dentty Corollry Suppose tht f :, b R s dfferentble mppng whose dervtve s contnuous on, b nd f : Then we hve the neulty 5 f x dx b f b f x dx < f + f b + f + b The followng corollry for Smpson s composte formul holds: Corollry Let f :, b R be mppng of bounded vrton on, b nd I h prtton of, b Then we hve the Smpson s udrture formul nd the remnder term R S f, I h stsfes the estmte: where γ h : mx {h 0,, n } R S f, I h b γ h f, The cse of eudstnt prttonng s emboded n the followng corollry: Corollry Let I n be n eudstnt prttonng of, b nd f be s n Theorem Then we hve the formul nd the remnder stsfes the estmte: 7 R S,n f b n b f Remrk If we wnt to pproxmte the ntegrl f x dx by Smpson s formul A S,n f wth n ccurcy less tht ε > 0, we need t lest n ε N ponts for the dvson I n, where b n ε : ε b f + nd r denotes the nteger prt of r R

6 SS DRAGOMIR, RP AGARWAL, AND P CERONE Comments If the mppng f :, b R s nether four tme dfferentble nor the fourth dervtve s bounded on, b, then we cnnot pply the clsscl estmton n Smpson s formul usng the fourth dervtve But f we ssume tht f s of bounded vrton, then we cn use nsted the formul We gve here clss of mppngs whch re of bounded vrton but whch hve the fourth dervtve unbounded on the gven ntervl Let f p :, b R, f p x : x p where p, 4 Then obvously nd f p x : p x p, x, b f p 4 p p p p x x 4 p, x, b It s cler tht f p s of bounded vrton nd but lm x + f p 4 x + b f b p <, Applctons for Specl mens Let us recll the followng mens: The rthmetc men A A, b : + b,, b 0; The geometrc men The hrmonc men 4 The logrthmc men 5 The dentrc men G G, b : b,, b 0; H H, b : +,, b > 0; b L L, b : I I, b : e b,, b > 0, b; ln b ln b b b,, b > 0, b; The p-logrthmc men b p+ p+ p L p L p, b :, p R\ {, 0},, b > 0, b p + b It s well known tht L p s monotonc nondecresng over p R wth L : L nd L 0 : I In prtculr, we hve the followng neultes H G L I A Usng Theorem, some new neultes re derved for the bove mens

7 SIMPSON S INEQUALITY 7 Let f :, b R 0 < < b, f x x p, p R\ {, 0} Then nd f x dx L p, b, b f + f b A p, b p, + b f A p, b f p b L p p, p R\ {, 0, } Usng the neulty 5 we get Lp p, b A p, b p Ap, b p Let f :, b R 0 < < b, f x x Then nd Lp f x dx L, b, b f + f b H, b, + b f A, b f Usng the neulty 5 we get AH AL HL b G, b b G LHA Let f :, b R 0 < < b, f x ln x Then nd f x dx ln I, b, b f + f b ln G, b, + b f ln A, b f Usng the neulty 5 we obtn ln I G A b L, b b L p b

8 8 SS DRAGOMIR, RP AGARWAL, AND P CERONE Smpson s Ineulty for Lpschtzn Mppngs Smpson s Ineulty The followng result holds : Theorem Let f :, b R be n L Lpschtzn mppng on, b Then we hve the neulty f x dx b f + f b + b + f 5 L b Proof Usng the ntegrton by prts formul for Remnn-Steltjes ntegrl we hve see lso the proof of Theorem tht s x df x b f + f b + f + b f x dx where s x : x 5+b, x, +b x +5b, x +b, b b s seuence of d- Now, ssume tht n : x n 0 < x n < < x n < xn n vsons wth ν n 0 s n, where ν n : mx {0,,} nd ξ n x n, x n + R s L-Lpschtzn on, b, then x n + xn If p :, b R s Remnn ntegrble on, b nd v :, b p x dv x lm p ν n 0 lm ν n 0 ξ n pξ n v x n + v x n + xn L lm pξ n x n + ν n 0 xn L p x dx x n v x n + v x n + xn x n Applyng the neulty for p x s x nd v x f x we get 4 s x df x L s x dx

9 SIMPSON S INEQUALITY 9 Let us compute s x dx +b 5+b +5b + +b x 5 + b dx b x dx + + 5b +b x dx + x + 5b dx x 5 + b +b 5+b +5b x + 5b dx dx 5 b Now, usng the neulty 4 nd the dentty we deduce the desred result Corollry 4 Suppose tht f :, b R s dfferentble mppng whose dervtve s contnuous on, b Then we hve the neulty f x dx b f + f b + b 5 + f 5 f b The followng corollry for Smpson s composte formul holds: Corollry 5 Let f :, b R be n L Lpschtzn mppng on, b nd I h prtton of, b Then we hve the Smpson s udrture formul nd the remnder term R S f, I h stsfes the estmton: R S f, I h 5 L h The cse of eudstnt prttonng s emboded n the followng corollry: Corollry Let I n be n eudstnt prttonng of, b nd f be s n Theorem Then we hve the formul nd the remnder stsfes the estmton: 7 R S,n f 5 L n b Remrk If we wnt to pproxmte the ntegrl f x dx by Smpson s formul A S,n f wth n ccurcy less tht ε > 0, we need t lest n ε N ponts for the dvson I n, where 5 n ε : L b + ε nd r denotes the nteger prt of r R Comments If the mppng f :, b R s nether four tme dfferentble nor the fourth dervtve s bounded on, b, then we cn not pply the clsscl estmton n Smpson s formul usng the fourth dervtve But f we ssume tht f s Lpschtzn, then we cn use nsted the formul We gve here clss of mppngs whch re lpschtzn but hvng the fourth dervtve unbounded on the gven ntervl

10 0 SS DRAGOMIR, RP AGARWAL, AND P CERONE nd Let f p :, b R, f p x : x p where p, 4 Then obvously f p x : p x p, x, b f p 4 p p p p x x 4 p, x, b It s cler tht f p s Lpschtzn wth the constnt but lm x + f p 4 x + L p b p <, Applctons for Specl Mens Usng Theorem, we now pont out some new neultes for the specl mens defned n the prevous secton Let f :, b R 0 < < b, f x x p, p R\ {, 0} Then pb p f p f δ p, b : p p f p, \ {, 0} Usng the neulty 5 we get L p p, b A p, b p Ap, b 5 5 δ p, b b Let f :, b R 0 < < b, f x x Then Usng the neulty 5 we get f HA LA LH 5 b LAH Let f :, b R 0 < < b, f x ln x Then f Usng the neulty 5 we get ln I 5 b G A 4 Smpson s Ineulty n Terms of the p-norm 4 Smpson s neulty The followng result holds 4: Theorem Let f :, b R be n bsolutely contnuous mppng on, b whose dervtve belongs to L p, b Then we hve the neulty f x dx b f + f b + b 4 + f + + b + f + p, where p +, p >

11 SIMPSON S INEQUALITY Proof Usng the ntegrton by prts formul for bsolutely contnuous mppngs, we hve: 4 s x f x dx b f + f b + f + b f x dx where s x : x 5+b, x, +b x +5b, x +b, b Indeed, +b s x f x dx x 5 + b x 5 + b b f x f x dx + x + 5b +b +b + x + 5b f + f b + b + f f x f x dx b +b f x dx, f x dx nd the dentty s proved Applyng Hölder s ntegrl neulty we obtn 4 s x f x dx s x dx f p

12 SS DRAGOMIR, RP AGARWAL, AND P CERONE Let us compute s x dx +b x 5 + b dx + x + 5b +b dx 5+b +b 5 + b x dx + x 5 + b dx 5+b +5b + 5b b + x dx + x + 5b dx +b +5b 5+b b x + x 5 + b b + + 5b x + x + 5b + b +b +5b b + b b b + + b + + b + 5b b + + +b 5+b Now, usng the neulty 4 nd the dentty 4 we deduce the desred result 4 The followng corollry for Smpson s composte formul holds: Corollry 7 Let f nd I h be s bove Then we hve Smpson s rule nd the remnder R S f, I h stsfes the estmte 44 R S f, I h f p h + Proof Apply Theorem on the ntervl x, x + 0,, n to obtn x+ x f x dx h f x + f x + x + x + + f x+ f t p p dt + + f + p h + x

13 SIMPSON S INEQUALITY Summng the bove neultes over from 0 to, usng the generlzed trngle neulty nd Hölder s dscrete neulty, we get R S f, I h x+ f x dx h x nd the corollry s proved h + f x + f x + x + x + + f x+ x h + f p h + f t p p dt, x+ x p p f t p p dt The cse of eudstnt prttonng s emboded n the followng corollry: Corollry 8 Let f be s bove nd f I n s n eudstnt prttonng of, b, then we hve the estmte R S,n f + + b + f n + p Remrk If we wnt to pproxmte the ntegrl f x dx by Smpson s formul A S,n f wth n ccurcy less tht ε > 0, we need t lest n ε N ponts for the dvson I n, where + + n ε : b + f ε + p + nd r denotes the nteger prt of r R Comments If the mppng f :, b R s nether four tme dfferentble nor the fourth dervtve s bounded on, b, then we cn not pply the clsscl estmton n Smpson s formul usng the fourth dervtve But f we ssume tht f L p, b, then we cn use the formul 44 nsted We gve here clss of mppngs whose frst dervtves belong to L p, b but hvng the fourth dervtves unbounded on the gven ntervl Let f s :, b R, f s x : x s where s, 4 Then obvously f s x : s x s, x, b nd f s 4 s s s s x x 4 s, x, b It s cler tht lm x + f s 4 x +, but f s p s b s + p s p+ p <

14 4 SS DRAGOMIR, RP AGARWAL, AND P CERONE 4 Applctons for Specl Mens See Secton for the defnton of the mens Let f :, b R 0 < < b, f x x s, s R\ {, 0} Then nd b f x dx L s s, b, + b f A s, b, f + f b A s, b s f p s L s s p b p Usng the neulty 4 we get Ls s, b As, b s As, b + + s L s + s p, b b where p +, p > Let f :, b R 0 < < b, f x x Then nd b f x dx L, b, f + b A, b, f + f b H, b f p L p, b b p Usng the neulty 4 we get HA LA LH + AHL + L p + b p Let f :, b R 0 < < b, f x ln x Then nd b f x dx ln I, b, + b f ln A, b, f + f b ln A, b f p L p, b b p

15 SIMPSON S INEQUALITY 5 Usng the neulty 4, we obtn ln I + + L G / A / p, b b + 5 Grüss Ineulty for the Smpson Formul 5 Some Prelmnry results The followng ntegrl neulty whch estblshes connecton between the ntegrl of the product of two functons nd the product of the ntegrls of the two functons s well known n lterture s Grüss neulty 5, p 9: Theorem 4 Let f, g :, b R be two ntegrble functons such tht ϕ f x Φ nd γ g x Γ for ll x, b; ϕ, Φ, γ nd Γ re constnts Then we hve the neulty b f x g x dx b 5 f x dx g x dx b b b φ ϕ Γ γ, 4 nd the neulty s shrp n the sense tht the constnt 4 cn not be replced by smller one In 98, Ostrowsk cf, for exmple, p 48 proved the followng neulty whch gves n pproxmton of the ntegrl b f t dt s follows: Theorem 5 Let f :, b R be dfferentble mppng on, b whose dervtve f :, b R s bounded on, b, e, f : sup t,b f t dt < T hen: 5 f x b for ll x, b f t dt 4 + x +b b b f, In the recent pper, SS Drgomr nd S Wng proved the followng verson of Ostrowsk s neulty by usng the Grüss neulty 5 Theorem Let f : I R R be dfferentble mppng n the nteror of I nd let, b nti wth < b If f L, b nd γ f x Γ for ll x, b, then we hve the followng neulty: f x f b f 5 f t dt b b for ll x, b b Γ γ, 4 x + b

16 SS DRAGOMIR, RP AGARWAL, AND P CERONE They lso ppled ths result for specl mens nd n Numercl Integrton obtnng some udrture formule generlzng the md-pont udrture rule nd the trpezod rule Note tht the error bounds they obtned re n terms of the frst dervtve whch re prtculrly useful n the cse when f does not exst or s very lrge t some ponts n, b For other relted results see the ppers 7-7 In ths secton of our pper we gve generlzton of the bove neulty whch contns s prtculr cse the clsscl Smpson formul Applcton for specl mens nd n Numercl Integrton re lso gven 5 An Integrl Ineulty of Grüss Type For ny rel numbers A, B, let us consder the functon { t + A p t p x t t b + B f t x x < t b It s cler tht p x hs the followng propertes It hs the jump t pont t x nd p x B A b dp x t dt + p x δ t x b Let M x : sup t,b p x t nd m x : nf t,b p x t Then the dfference M x m x cn be evluted s follows : For B A 0, we hve M x m x p x For B A > 0, the followng three cses re possble If 0 B A b, then x + b for x + B A ; M x m x p x for + B A < x b B A ; x for b B A < x b If b < B A b, then x + b for x < b B A ; M x m x B A for b B A x < + B A ; x for + B A x b If B A > b, then M x m x p x The followng neulty of Ostrowsk type holds Theorem 7 Let f :, b R be dfferentble mppng on, b whose dervtve stsfes the ssumpton 54 γ f t Γ for ll t, b,

17 SIMPSON S INEQUALITY 7 where γ, Γ re gven rel numbers Then we hve the neulty: 55 C A f + b B + A f x + B C f b where 4 Γ γ M x m x b, C x : x x + A x b x b + B, b nd A, B, M x nd m x re s bove, x, b Proof 5 Usng the Grüss neulty 5, we cn stte tht b p x t f f b f t dt b b b 4 Γ γ M x m x, for ll x, b Integrtng the frst term by prts we obtn: 57 Also, s p x t f t dt Bf b Af p x t dt f t dt + p x f x p x t dt x x + A x b x b + B, then 5 gves the neulty: Bf b Af b 4 Γ γ M x m x, f t dt + p x f x whch s clerly euvlent wth the desred result 55 C x f t dt f b f b Remrk 4 Settng n 55, A B 0 nd tkng nto ccount, by the property b, tht M x m x b, we obtn the neulty 5 by Drgomr nd Wng The followng corollry s nterestng: Corollry 9 Let A, B rel numbers so tht 0 B A b If f s s bove, then we hve the neulty 58 B A f + b B A f Γ γ b B + A b 4 Proof Consder x +b Then, from 55, + b x b, + B A f b f t dt

18 8 SS DRAGOMIR, RP AGARWAL, AND P CERONE nd x b b C x A + B, x + B A, b B A By property b we hve M x m x b B A Applyng Theorem 7 for x +b, we get esly 58 Remrk 5 If we choose n the bove corollry B A b, then we get f + f b + b b 59 + f b f t dt 8 Γ γ b, whch s the rthmetc men of the md-pont nd trpezod formule Remrk If we choose n 58 B A, then we get the md-pont neulty + b b 50 b f f t dt Γ γ b 4 dscovered by SS Drgomr nd S Wng n the pper see Corollry Remrk 7 If we choose n 58 B A b, then we obtn the celebrted Smpson s formul + b b 5 f + 4f + f b f t dt Γ γ b, for whch we hve n estmton n terms of the frst dervtve not s n the clsscl cse n whch the forth dervtve s reured s follows: + b b 5 f + 4f + f b f t dt f b 5 The method of evluton of the error for the Smpson rule consdered bove cn be ppled for ny udrture formul of Newton - Cotes type For exmple, to get the nlogous evluton of the error for the Newton-Cotes rule of order t s suffcent to replce the functon p x t n by the functon t A f t + h; p x t : t +b + A+B f + h < t b h; t b B f b h < t b; where B A b 4, h b

19 SIMPSON S INEQUALITY 9 5 Applctons for Specl Mens See Secton for the defnton of the mens Consder the mppng f x x p p >, x > 0 Then Γ γ b p L p p for, b R wth 0 < < b Conseuently, we hve the neulty Ap, b + A p, b p L p p, b b p L p p Consder the mppng f x x, x > 0 Then Γ γ b b A, b b G 4, b for 0 < < b Conseuently we hve the neulty: A, b + H, b L, b b A, b G 4, b whch s euvlent to HL + AL AH b A HL G 4 Consder the mppng f x ln x, x > 0 Then we hve Γ γ b G for, b R wth 0 < < b Conseuently, we hve the neulty ln A + ln G ln I whch s euvlent to ln A G I b G, b G 54 Estmton of Error Bounds n Smpson s Rule The followng theorem holds Theorem 8 Let f :, b R be dfferentble mppng on, b whose dervtve stsfes the condton γ f t Γ for ll t, b ; where γ, Γ re gven rel numbers Then we hve 5 f t dt S n I n, f + R n I n, f

20 0 SS DRAGOMIR, RP AGARWAL, AND P CERONE where 54 I h s the prtton gven by S n I n, f h f x + 4f x + h + f x +, o I n : x 0 < x < < x < x n b h : x + x, 0,, n nd the remnder term R n I n, f stsfes the estmton: R n I n, f Γ γ 55 h Proof Let us set n 5 x, b x +, h x + x nd x + h x + x + where 0,, n Then we hve the estmton: h f x + 4f x + h + f x + x + for ll 0,, n After summng nd usng the trngle neulty, we obtn h b f x + 4f x + h + f x + Γ γ h, whch proves the reured estmton x f t dt Γ γ h, f t dt Corollry 0 Under the bove ssumptons nd f we put f : sup t,b f t <, then we hve the followng estmton of the remnder term n Smpson s formul R n I n, f 4 f 5 h The clsscl error estmtes bsed on the Tylor expnson for the Smpson s rule nvolve the forth dervtve f 4 In the cse tht f 4 does not exsts or s very lrge t some ponts n, b, the clsscl estmtes cn not be ppled, nd thus 55 nd 5 provde lterntve error estmtes for the Smpson s rule A Convex Combnton The followng generlzton of Ostrowsk s neulty holds 9:

21 SIMPSON S INEQUALITY Theorem 9 Let f :, b R be bsolutely contnuous on, b, nd whose dervtve f :, b R s bounded on, b Denote f : ess sup t,b f x < Then 4 b δ + δ + f + f b f t dt f x δ + for ll δ 0, nd + δ b x b δ b x + b Proof Let us defne the mppng p :, b R gven by t + δ b, t, x p x, t : t b δ b, t x, b Integrtng by prts, we hve: x δ b p x, t f t dt t + δ b f t dt + f + f b x + δ f x δ b f t b δ b f t dt f t dt On the other hnd, p x, t f t dt p x, t f t dt f p x, t dt x f t + δ b b dt + t b δ b dt : f L Now, let us observe tht r p t dt p t dt + r x t dt p + r 4 p r + for ll r, p, such tht p r Usng the prevous dentty, we hve tht x t + δ b dt 4 x + + δ b + x r + p

22 SS DRAGOMIR, RP AGARWAL, AND P CERONE nd Then we get L x + b x b 4 t b δ b dt x 4 b x + b δ b x + b δ + δ + nd the theorem s thus proved + δ b x + b x b x + δ b Remrk 8 If we choose n, δ 0, we get Ostrowsk s neulty b If we choose n, δ nd x +b we get the trpezod neulty: f + f b f t dt b 4 b f Corollry Under the bove ssumptons, we hve the neulty: f t dt f + f b f x + b 8 b + x + b f for ll x b+, nd, n prtculr, the followng mxture of the trpezod 4, +b 4 neulty nd md-pont neulty: 4 f t dt f 8 b f + b + f + f b b Fnlly, we lso hve the followng generlzton of Smpson s neulty: Corollry Under the bove ssumptons, we hve b f t dt f + 4f x + f b b 5 b + x + b f for ll x b+5 4, +5b 4, nd, n prtculr, the Smpson s neulty f t dt + b 5 f + 4f + f b b 5 b f

23 SIMPSON S INEQUALITY Applctons n Numercl Integrton The followng pproxmton of the ntegrl f x dx holds 9 Theorem 0 Let f :, b R be n bsolutely contnuous mppng on, b whose dervtve s bounded on, b If I n : x 0 < x < < x < x n b s prtton of, b nd h : x + x, 0,, n, then we hve: where 7 f x dx A δ I n, ξ, δ, f + R δ I n, ξ, δ, f A δ I n, ξ, δ, f δ f ξ h + δ f x + f x + δ 0,, x + δ h ξ x + δ h, 0,, n ; nd the remnder term stsfes the estmton: 8 R δ I n, ξ, δ, f f δ + δ h + ξ 4 x + x + h, Proof Applyng Theorem 9 on the ntervl x, x +, 0,, n we get h δ f ξ + f x + f x + x+ δ f x dx x δ + δ h 4 + ξ x + x + f for ll δ 0, nd ξ x, x +, 0,, n Summng over from 0 to n nd usng the trngle neulty we get the estmton 8 Remrk 9 If we choose δ 0, then we get the udrture formul 9 f x dx A T I n, ξ, f + R T I n, ξ, f where A T I n, ξ, f s the Remnn s sum, e, A T I n, ξ, f : f ξ h, ξ x, x +, 0,, n ; nd the remnder term stsfes the estmte see lso 8: R T I n, ξ, f f h 4 + ξ x + x + 0 b If we choose δ, then we get the trpezod formul f x dx A T I n, f + R T I n, f

24 4 SS DRAGOMIR, RP AGARWAL, AND P CERONE where A T I n, f s the trpezodl rule A T I n, f f x + f x + nd the remnder terms stsfes the estmton R T I n, f f h 4 Corollry Under the bove ssumptons we hve where h f x dx B T I n, ξ, f + Q T I n, ξ, f B T I n, ξ, f x+ + x ξ 4 f ξ h +, x + x + 4 f x + f x + h,, nd the remnder term stsfes the estmton Q T I n, ξ, f f h + ξ 8 x + x + 4 In prtculr, we hve 5 where B T I n, f f x dx B T I n, f + Q T I n, f x + x + f nd Q T I n, f stsfes the estmton: Q T I n, f f 8 h + h f x + f x + h Fnlly, we hve the followng generlzton of Smpson s neulty whose remnder term s estmted by the use of the frst dervtve only Corollry 4 Under the bove ssumptons we hve: 7 where f x dx S T I n, ξ, f + W T I n, ξ, f S T I n, ξ, f f ξ h + f x + f x + h, x+ + 5x ξ, x + 5x +,

25 SIMPSON S INEQUALITY 5 nd the remnder term W T I n, ξ, f stsfes the bound: W T I n, ξ, f f 5 h + ξ x + x + 8 nd, n prtculr, the Smpson s rule: 9 where f x dx S T I n, f + W T I n, f S T I n, f x + x + f h + f x + f x + h nd the remnder term stsfes the estmton: 0 W T I n, f 5 f h Applctons for Specl Mens Now, let us reconsder the neulty n the followng euvlent form: f + f b δ f x + δ f t dt b δ + δ x +b b + f 4 b for ll δ 0, nd x, b such tht b b + δ x b δ Consder the mppng f : 0, 0,, f x x p, p R\ {, 0} Then, for 0 < < b, we hve { f p b p f p > p p f p, \ {, 0}, nd then, by, we deduce tht: δ x p + δ A p, b p L p p, b { δ + δ b + 4 x A b } δ p, b where { p b δ p, b : p f p > p p f p, \ {, 0} nd δ 0,, x + δ b, b δ b Consder the mppng f : 0, 0,, f x x nd 0 < < b We hve: f

26 SS DRAGOMIR, RP AGARWAL, AND P CERONE nd then by, we deduce, for ll δ 0,, nd +δ b x b δ b tht: δ δl + Lxδ xδ xδl δ + δ b + 4 x A b Consder the mppng f : 0, R, f x ln x nd 0 < < b We hve: f, nd then, by, we deduce tht x δ ln G δ δ + δ b + I 4 x A, b for ll δ 0,, nd x + δ b, b δ b 7 A Generlzton for Monotonc Mppngs In 0, SS Drgomr estblshed the followng Ostrowsk type neulty for monotonc mppngs Theorem Let f :, b R be monotonc nondecresng mppng on, b Then for ll x, b, we hve the neulty: f x f x dx b x + b f x + b sgnt xftdt x f x f + b x f b f x b + x +b f b f b All the neultes re shrp nd the constnt s the best possble one In ths secton we shll obtn generlzton of ths result whch lso contns the trpezod nd Smpson type neultes The followng result holds 8:

27 SIMPSON S INEQUALITY 7 Theorem Let f :, b R be monotonc nondecresng mppng on, b nd t, t, t, b be such tht t < t < Then 7 f x dx t f + b t f b + t t ft b t f b + t t t ft t f + b t f b ft + t t ft ft + t t ft ft + t ft ft mx {t, t t, t t, b t } f b f T x f x dx where sgnt x, for x, t T x sgnt x, for x t, b Proof Usng ntegrton by prts formul for Remnn-Steltjes ntegrl we hve s x df x t f + b t f b + t t ft f x d x where Indeed, x t, x, t s x x t, x t, b s x df x t x t df x + x t f x t t x t df x + x t ft b t f x d x t f + b t f b + t t ft Assume tht A n : x n 0 < x n < < x n < xn n dvsons wth νa n 0 s n, where νa n : ξ n x n, x n + f x dx b s seuence of mx x n,, xn nd If p :, b R s contnuous mppng on, b nd v s

28 8 SS DRAGOMIR, RP AGARWAL, AND P CERONE monotonc nondecresng on, b, then 7 p x dv x lm pξ n vx n + νan vxn lm pξ n vx n + vxn νan lm pξ n vx n + νan vxn p x dv x Applyng the neulty 7 for p x s x nd v x f x, x, b we cn stte: s x df x t s x df x t xdf x + t xf x t + t xf x t t + t t + t x t df x + t t t t t xdf x + t f x dx + x t f x t t f x dx + t b f x dx + x t f x t + f x dx t f + t t ft t t ft + b t f b + T x f x dx t t x t df x whch s the frst neulty n 7 If f :, b R s monotonc nondecresng n, b, we cn lso stte t f x dx ft t, t t f x dx ft t t,

29 SIMPSON S INEQUALITY 9 nd So, We hve t t t f x dx ft t t, T x f x dx t f x dx ft b t t t f x dx f x dx + f x dx f x dx t t t ft t ft t t + ft t t ft b t t f + t t ft t t ft b t f b + T x f x dx t f + t t ft t t ft + b t f b + t ft t t ft + t t ft b t ft t ft f + t t ft ft + t t ft ft + b t f b ft mx {t, t t, t t, b t } f b f The theorem s thus proved Remrk 0 For t 0, t x, t b, generlzed trpezod neulty s obtned nd we get Theorem from the bove Theorem For t t t x Theorem becomes: Corollry 5 Let f be defned s n Theorem Then 7 ftdt x f + b xf b b xf b x f + sgnx tftdt b x f b f x + x f x f b + x + b f b f All the neultes n 7 re shrp nd the constnt s the best possble

30 0 SS DRAGOMIR, RP AGARWAL, AND P CERONE Proof We only need to prove tht the constnt the mppng f 0 :, b R gven by s the best possble one Choose 0, f x, b, f 0 x, f x b Then, f 0 s monotonc nondecresng on, b, nd for x we hve ftdt x f + b xf b b xf b x f + sgnt xftdt b x f b f x + x f x f b C b + x + b f b f C + b whch prove the shrpness of the frst two neultes nd the fct tht C cnnot be less thn For x +b we get the trpezod neulty Corollry Let f :, b R be monotonc nondecresng mppng on, b Then 74 f + f b ftdt b b b f b f sgn t + b ftdt b f b f The constnt fctor s the best n both neultes

31 SIMPSON S INEQUALITY Corollry 7 Let f be s n Theorem 9 nd p, R + wth p > Then f x dx b f + f b + p + b f p + where b f b f + p + p + b f b f + p pb + b f p + p + { mx, p T x T x f x dx f } b f b f p + sgn p+b p+ x p + b p +, f x, +b sgn pb+ p+ x, f x +b, b Proof Set n Theorem : t p+b p+, t +b, t +pb p+ Remrk Of specl nterest s the cse p 5 nd where we get from Corollry 7 the followng result of Smpson type; f x dx f + f b + b b + f b f b f + b f b f + f T x f x dx 5b + f 5 + b b f b f, where T x { sgn 5+b x x, +b, sgn +5b x, x +b, b Remrk For p we get Corollry from Corollry 7 7 An Ineulty for the Cumultve Dstrbuton Functon Let X be rndom vrble tkng vlues n the fnte ntervl, b, wth cumultve dstrbutons functon F x PrX x The followng result from 0 cn be obtned from Theorem

32 SS DRAGOMIR, RP AGARWAL, AND P CERONE Theorem Let X nd F be s bove Then we hve the neultes 75 b E x PrX x b x + b PrX x + b b x PrX x + x PrX x b x +b + b for ll x, b All the neultes n 75 re shrp nd the constnt Now we shll prove the followng result sgn t x F tdt s the best possble Theorem 4 Let X nd F be s bove Then we hve the neultes 7 E x x b x + sgn x t F tdt b x PrX x + x PrX x b + x + b for ll x, b All the neultes n 7 re shrp nd the constnt s the best possble Proof Apply Corollry 5 for the monotonc nondecresng mppng ft : F t, t, b to get 77 F tdt x F + b xf b b xf b + x F + sgn x t F tdt b xf b F x + x F x F b + x + b F b F nd s F 0, F b

33 SIMPSON S INEQUALITY by the ntegrton by prts formul for Remnn-Steltjes ntegrls b E x tdf t tf t b F tdt Tht s, bf b F b F tdt F tdt b E x F tdt The neultes 77 gve the desred estmton 7 Corollry 8 Let X be rndom vrble tkng vlues n the fnte ntervl, b, wth cumultve dstrbuton functon F x PrX x nd the expectton E x Then we hve the neulty The constnt E x + b b b s the best n both neultes References sgn t + b F tdt b DS MITRINOVIĆ, JE PEČARIĆ nd AM FINK, Ineultes for Functons nd Ther Integrls nd Dervtves, Kluwer Acdemc Publshers, Dordrecht, 994 SS DRAGOMIR, On Smpson s udrture formul for mppngs of bounded vrton nd pplctons, Tmkng J of Mthemtcs, n press SS DRAGOMIR, On Smpson s udrture formul for Lpschtzn mppngs nd pplctons, Soochow J of Mthemtcs, n press 4 SS DRAGOMIR, On Smpson s udrture formul for dfferentble mppngs whose dervtves belong to L p spces nd pplctons, J KSIAM, 998, DS MITRINOVIĆ, JE PEČARIĆ nd AM FINK, Clsscl nd New Ineultes n Anlyss, Kluwer Acdemc Publshers, Dordrecht, 99 SS DRAGOMIR nd S WANG, An neulty of Ostrowsk-Grüss type nd ts pplctons to the estmton of error bounds for some specl mens nd for some numercl udrture rules, Computers Mth Applc, 997, SS DRAGOMIR nd S WANG, A new neulty of Ostrowsk s type n L norm nd pplctons to some specl mens nd to some numercl udrture rules, Tmkng J of Mthemtcs, 8997, SS DRAGOMIR nd S WANG, Applctons of Ostrowsk s neulty to the estmton of error bounds for some specl mens nd some numercl udrture rules, Appl Mth Lett, 998, SS DRAGOMIR nd S WANG, A new neulty of Ostrowsk s type n L p norm, Indn J of Mthemtcs, n press 0 P CERONE, SS DRAGOMIR nd J ROUMELIOTIS, An neulty of Ostrowsk-Grüss type for twce dfferentble mppngs nd pplctons n numercl ntegrton, Kyungpook Mth J, n press

34 4 SS DRAGOMIR, RP AGARWAL, AND P CERONE NS BARNETT nd SS DRAGOMIR, An neulty of Ostrowsk s type for cumultve dstrbuton functons, Kyungpook Mth J, n press SS DRAGOMIR, NS BARNETT nd P CERONE, An Ostrowsk type neulty for double ntegrls n terms of L p -norms nd pplctons n numercl ntegrton, Rev D Anly Num Theor Approx, n press T PEACHEY, A MC ANDREW nd SS DRAGOMIR, The best constnt n n eulty of Ostrowsk type, Tmkng J of Mth, n press 4 SS DRAGOMIR, YJ CHO nd SS KIM, Some remrks on Mlnovć-Pečrć neulty nd pplctons for specl mens nd numercl ntegrton, Tmkng J of Mth, ccepted 5 SS DRAGOMIR, RP AGARWAL nd NS BARNETT, Ineultes for Bet nd Gmm functons v some clsscl nd new ntegrl neultes, Journl of Ineultes nd Applctons, ccepted SS DRAGOMIR, A generlzton of Ostrowsk ntegrl neulty for mppngs of bounded vrton nd pplctons n numercl ntegrton, Bull Austrln Mth Soc, ccepted 7 SS DRAGOMIR,NS BARNETT nd S WANG, An Ostrowsk type neulty for rndom vrble whose probblty densty functon belongs to L p, b, p >, Mthemtcl Ineultes nd Applctons, ccepted 8 SS DRAGOMIR nd NS BARNETT, An Ostrowsk type neulty for mppngs whose second dervtves re bounded nd pplctons, The Journl of the Indn Mthemtcl Socety, ccepted 9 SS DRAGOMIR, P CERONE nd J ROUMELIOTIS, A new generlzton of Ostrowsk s ntegrl neulty for mppngs whose dervtves re bounded nd pplctons n numercl ntegrton nd for specl mens, Appl Mth Lett, ccepted 0 SS DRAGOMIR, Ostrowsk s neulty for monotonc mppngs nd pplctons, J KSIAM, ccepted I FEDOTOV nd SS DRAGOMIR, An neulty of Ostrowsk type nd ts pplctons for Smpson s rule nd specl mens, Preprnt, RGMIA Res Rep Coll, 999, -0 rgm SS DRAGOMIR, On the Ostrowsk s ntegrl neulty for mppngs wth bounded vrton nd pplctons, Preprnt, RGMIA Reserch Report Collecton, 999, -70 SS DRAGOMIR, On the Ostrowsk s ntegrl neulty for Lpschtzn mppngs wth bounded vrton, Preprnt, RGMIA Reserch Report Collecton, 999, SS DRAGOMIR, P CERONE, J ROUMELIOTIS nd S WANG, A weghted verson of Ostrowsk neulty for mppngs of Hölder type nd pplctons n numercl nlyss, Preprnt, RGMIA Reserch Report Collecton, 999, P CERONE, SS DRAGOMIR nd J ROUMELIOTIS, On Ostrowsk type neulty for mppngs whose second dervtves belong to L p, b nd pplctons, Preprnt, RGMIA Reserch Report Collecton, 998, 4-50 NS BARNETT nd SS DRAGOMIR, An Ostrowsk type neulty for double ntegrls nd pplctons for embouchure formule, Preprnt, RGMIA Reserch Report Collecton, 998, - 7 NS BARNETT nd SS DRAGOMIR, An Ostrowsk s type neulty for rndom vrble whose probblty densty functon belongs to L, b, Preprnt, RGMIA Reserch Report Collecton, 998, - 8 P CERONE, SS DRAGOMIR nd J ROUMELIOTIS, An neulty of Ostrowsk type for mppngs whose second dervtves re bounded nd pplctons, Preprnt, RGMIA Reserch Report Collecton, 998, P CERONE, SS DRAGOMIR nd J ROUMELIOTIS, Some Ostrowsk type neultes for n tme dfferentble mppngs nd pplctons, Preprnt, RGMIA Reserch Report Collecton, 998, J ROUMELIOTIS, P CERONE nd SS DRAGOMIR, An Ostrowsk type neulty for weghted mppngs wth bounded second dervtves, Preprnt, RGMIA Reserch Report Collecton, 998, P CERONE, SS DRAGOMIR nd J ROUMELIOTIS, An neulty of Ostrowsk type for mppngs whose second dervtves belong to L, b nd pplctons, Preprnt, RGMIA Reserch Report Collecton, 998, 5-58

35 SIMPSON S INEQUALITY 5 SS DRAGOMIR, A generlzton of Ostrowsk ntegrl neulty for mppngs whose dervtves belong to L nd pplctons n numercl ntegrton, submtted P CERONE nd SS DRAGOMIR, On weghted generlzton of Iyengr type neultes nvolvng bounded frst dervtve, submtted 4 P CERONE nd SS DRAGOMIR, Lobtto type udrture rules for functons wth bounded dervtve, submtted 5 SS DRAGOMIR, NS BARNETT nd P CERONE, An N-dmensonl verson of Ostrowsk s neulty for mppngs of the Hölder type, submtted SS DRAGOMIR, A generlzton of Ostrowsk ntegrl neulty for mppngs whose dervtves belong to L, b nd pplctons n numercl ntegrton, submtted 7 SS DRAGOMIR, A generlzton of Ostrowsk ntegrl neulty for mppngs whose dervtves belong to L p, b nd pplctons n numercl ntegrton, submtted 8 SS DRAGOMIR, JE PEČARIĆ nd S WANG, The unfed tretment of trpezod, Smpson nd Ostrowsk type neultes for monotonc mppngs nd pplctons, n preprton SS Drgomr School of Communctons nd Informtcs, Vctor Unversty of Technology, PO Box 448, MC Melbourne Cty, 800 Vctor, Austrl E-ml ddress, SS Drgomr: sever@mtldvueduu URL: Current ddress, RP Agrwl: Deprtment of Mthemtcs, Ntonl Unversty of Sngpore, 0 Kent Rdge Crescent, Sngpore 90 E-ml ddress, RP Agrwl: mtrvp@leonsnussg PCerone School of Communctons nd Informtcs, Vctor Unversty of Technology, PO Box 448, MC Melbourne Cty, 800 Vctor, Austrl URL:

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]:

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]: RGMIA Reserch Report Collecton, Vol., No. 1, 1999 http://sc.vu.edu.u/οrgm ON THE OSTROWSKI INTEGRAL INEQUALITY FOR LIPSCHITZIAN MAPPINGS AND APPLICATIONS S.S. Drgomr Abstrct. A generlzton of Ostrowsk's

More information

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir

AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS. I. Fedotov and S. S. Dragomir RGMIA Reserch Report Collection, Vol., No., 999 http://sci.vu.edu.u/ rgmi AN INEQUALITY OF OSTROWSKI TYPE AND ITS APPLICATIONS FOR SIMPSON S RULE AND SPECIAL MEANS I. Fedotov nd S. S. Drgomir Astrct. An

More information

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL

SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL NS BARNETT P CERONE SS DRAGOMIR AND J ROUMELIOTIS Abstrct Some ineulities for the dispersion of rndom

More information

S. S. Dragomir. 2, we have the inequality. b a

S. S. Dragomir. 2, we have the inequality. b a Bull Koren Mth Soc 005 No pp 3 30 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Abstrct Compnions of Ostrowski s integrl ineulity for bsolutely

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics http://jipmvueduu/ Volume, Issue, Article, 00 SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARIABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL NS BARNETT,

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics GENERALIZATIONS OF THE TRAPEZOID INEQUALITIES BASED ON A NEW MEAN VALUE THEOREM FOR THE REMAINDER IN TAYLOR S FORMULA volume 7, issue 3, rticle 90, 006.

More information

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality:

S. S. Dragomir. 1. Introduction. In [1], Guessab and Schmeisser have proved among others, the following companion of Ostrowski s inequality: FACTA UNIVERSITATIS NIŠ) Ser Mth Inform 9 00) 6 SOME COMPANIONS OF OSTROWSKI S INEQUALITY FOR ABSOLUTELY CONTINUOUS FUNCTIONS AND APPLICATIONS S S Drgomir Dedicted to Prof G Mstroinni for his 65th birthdy

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics SOME INEQUALITIES FOR THE DISPERSION OF A RANDOM VARI- ABLE WHOSE PDF IS DEFINED ON A FINITE INTERVAL NEIL S. BARNETT, PIETRO CERONE, SEVER S. DRAGOMIR

More information

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a

NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS. := f (4) (x) <. The following inequality. 2 b a NEW INEQUALITIES OF SIMPSON S TYPE FOR s CONVEX FUNCTIONS WITH APPLICATIONS MOHAMMAD ALOMARI A MASLINA DARUS A AND SEVER S DRAGOMIR B Abstrct In terms of the first derivtive some ineulities of Simpson

More information

ON THE WEIGHTED OSTROWSKI INEQUALITY

ON THE WEIGHTED OSTROWSKI INEQUALITY ON THE WEIGHTED OSTROWSKI INEQUALITY N.S. BARNETT AND S.S. DRAGOMIR School of Computer Science nd Mthemtics Victori University, PO Bo 14428 Melbourne City, VIC 8001, Austrli. EMil: {neil.brnett, sever.drgomir}@vu.edu.u

More information

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE

SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE RGMIA Reserch Report Collection, Vol., No., 998 http://sci.vut.edu.u/ rgmi SOME INTEGRAL INEQUALITIES OF GRÜSS TYPE S.S. DRAGOMIR Astrct. Some clssicl nd new integrl inequlities of Grüss type re presented.

More information

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES

ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES Volume 8 (2007), Issue 4, Article 93, 13 pp. ON AN INTEGRATION-BY-PARTS FORMULA FOR MEASURES A. ČIVLJAK, LJ. DEDIĆ, AND M. MATIĆ AMERICAN COLLEGE OF MANAGEMENT AND TECHNOLOGY ROCHESTER INSTITUTE OF TECHNOLOGY

More information

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b)

GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS. (b a)3 [f(a) + f(b)] f x (a,b) GENERALIZATIONS OF WEIGHTED TRAPEZOIDAL INEQUALITY FOR MONOTONIC MAPPINGS AND ITS APPLICATIONS KUEI-LIN TSENG, GOU-SHENG YANG, AND SEVER S. DRAGOMIR Abstrct. In this pper, we estblish some generliztions

More information

A Family of Multivariate Abel Series Distributions. of Order k

A Family of Multivariate Abel Series Distributions. of Order k Appled Mthemtcl Scences, Vol. 2, 2008, no. 45, 2239-2246 A Fmly of Multvrte Abel Seres Dstrbutons of Order k Rupk Gupt & Kshore K. Ds 2 Fculty of Scence & Technology, The Icf Unversty, Agrtl, Trpur, Ind

More information

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS

TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS TRAPEZOIDAL TYPE INEQUALITIES FOR n TIME DIFFERENTIABLE FUNCTIONS S.S. DRAGOMIR AND A. SOFO Abstrct. In this pper by utilising result given by Fink we obtin some new results relting to the trpezoidl inequlity

More information

ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES. f (t) dt

ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES. f (t) dt ON PERTURBED TRAPEZOIDAL AND MIDPOINT RULES P. CERONE Abstrct. Explicit bounds re obtined for the perturbed or corrected trpezoidl nd midpoint rules in terms of the Lebesque norms of the second derivtive

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula.

Keywords : Generalized Ostrowski s inequality, generalized midpoint inequality, Taylor s formula. Generliztions of the Ostrowski s inequlity K. S. Anstsiou Aristides I. Kechriniotis B. A. Kotsos Technologicl Eductionl Institute T.E.I.) of Lmi 3rd Km. O.N.R. Lmi-Athens Lmi 3500 Greece Abstrct Using

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

0 N. S. BARNETT AND S. S. DRAGOMIR Using Gruss' integrl inequlity, the following pertured trpezoid inequlity in terms of the upper nd lower ounds of t

0 N. S. BARNETT AND S. S. DRAGOMIR Using Gruss' integrl inequlity, the following pertured trpezoid inequlity in terms of the upper nd lower ounds of t TAMKANG JOURNAL OF MATHEMATICS Volume 33, Numer, Summer 00 ON THE PERTURBED TRAPEZOID FORMULA N. S. BARNETT AND S. S. DRAGOMIR Astrct. Some inequlities relted to the pertured trpezoid formul re given.

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 32, N o 1, 2003, pp 11 20 THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR TEODORA CĂTINAŞ Abstrct We extend the Sheprd opertor by

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics http://jipm.vu.edu.u/ Volume 3, Issue, Article 4, 00 ON AN IDENTITY FOR THE CHEBYCHEV FUNCTIONAL AND SOME RAMIFICATIONS P. CERONE SCHOOL OF COMMUNICATIONS

More information

2 S. S. DRAGOMIR, N. S. BARNETT, AND I. S. GOMM Theorem. Let V :(d d)! R be a twce derentable varogram havng the second dervatve V :(d d)! R whch s bo

2 S. S. DRAGOMIR, N. S. BARNETT, AND I. S. GOMM Theorem. Let V :(d d)! R be a twce derentable varogram havng the second dervatve V :(d d)! R whch s bo J. KSIAM Vol.4, No., -7, 2 FURTHER BOUNDS FOR THE ESTIMATION ERROR VARIANCE OF A CONTINUOUS STREAM WITH STATIONARY VARIOGRAM S. S. DRAGOMIR, N. S. BARNETT, AND I. S. GOMM Abstract. In ths paper we establsh

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics MOMENTS INEQUALITIES OF A RANDOM VARIABLE DEFINED OVER A FINITE INTERVAL PRANESH KUMAR Deprtment of Mthemtics & Computer Science University of Northern

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION Applied Mthemtics E-Notes, 5(005), 53-60 c ISSN 1607-510 Avilble free t mirror sites of http://www.mth.nthu.edu.tw/ men/ AN INTEGRAL INEQUALITY FOR CONVEX FUNCTIONS AND APPLICATIONS IN NUMERICAL INTEGRATION

More information

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs

New Integral Inequalities for n-time Differentiable Functions with Applications for pdfs Applied Mthemticl Sciences, Vol. 2, 2008, no. 8, 353-362 New Integrl Inequlities for n-time Differentible Functions with Applictions for pdfs Aristides I. Kechriniotis Technologicl Eductionl Institute

More information

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1)

f (a) + f (b) f (λx + (1 λ)y) max {f (x),f (y)}, x, y [a, b]. (1.1) TAMKANG JOURNAL OF MATHEMATICS Volume 41, Number 4, 353-359, Winter 1 NEW INEQUALITIES OF HERMITE-HADAMARD TYPE FOR FUNCTIONS WHOSE SECOND DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX M. ALOMARI, M. DARUS

More information

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions

Some estimates on the Hermite-Hadamard inequality through quasi-convex functions Annls of University of Criov, Mth. Comp. Sci. Ser. Volume 3, 7, Pges 8 87 ISSN: 13-693 Some estimtes on the Hermite-Hdmrd inequlity through qusi-convex functions Dniel Alexndru Ion Abstrct. In this pper

More information

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER Yn, S.-P.: Locl Frctonl Lplce Seres Expnson Method for Dffuson THERMAL SCIENCE, Yer 25, Vol. 9, Suppl., pp. S3-S35 S3 LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN

More information

Statistics and Probability Letters

Statistics and Probability Letters Sttstcs nd Probblty Letters 79 (2009) 105 111 Contents lsts vlble t ScenceDrect Sttstcs nd Probblty Letters journl homepge: www.elsever.com/locte/stpro Lmtng behvour of movng verge processes under ϕ-mxng

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

Applied Statistics Qualifier Examination

Applied Statistics Qualifier Examination Appled Sttstcs Qulfer Exmnton Qul_june_8 Fll 8 Instructons: () The exmnton contns 4 Questons. You re to nswer 3 out of 4 of them. () You my use ny books nd clss notes tht you mght fnd helpful n solvng

More information

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES GUANG-HUI CAI Receved 24 September 2004; Revsed 3 My 2005; Accepted 3 My 2005 To derve Bum-Ktz-type result, we estblsh

More information

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order Hndw Publshng Corporton Interntonl Journl of Dfferentl Equtons Volume 0, Artcle ID 7703, pges do:055/0/7703 Reserch Artcle On the Upper Bounds of Egenvlues for Clss of Systems of Ordnry Dfferentl Equtons

More information

Bulletin of the. Iranian Mathematical Society

Bulletin of the. Iranian Mathematical Society ISSN: 07-060X Print ISSN: 735-855 Online Bulletin of the Irnin Mthemticl Society Vol 3 07, No, pp 09 5 Title: Some extended Simpson-type ineulities nd pplictions Authors: K-C Hsu, S-R Hwng nd K-L Tseng

More information

An optimal 3-point quadrature formula of closed type and error bounds

An optimal 3-point quadrature formula of closed type and error bounds Revist Colombin de Mtemátics Volumen 8), págins 9- An optiml 3-point qudrture formul of closed type nd error bounds Un fórmul de cudrtur óptim de 3 puntos de tipo cerrdo y error de fronter Nend Ujević,

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Fundamental Theorem of Calculus

Fundamental Theorem of Calculus Fundmentl Theorem of Clculus Recll tht if f is nonnegtive nd continuous on [, ], then the re under its grph etween nd is the definite integrl A= f() d Now, for in the intervl [, ], let A() e the re under

More information

The Hadamard s inequality for quasi-convex functions via fractional integrals

The Hadamard s inequality for quasi-convex functions via fractional integrals Annls of the University of Criov, Mthemtics nd Computer Science Series Volume (), 3, Pges 67 73 ISSN: 5-563 The Hdmrd s ineulity for usi-convex functions vi frctionl integrls M E Özdemir nd Çetin Yildiz

More information

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs

ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs ON THE INEQUALITY OF THE DIFFERENCE OF TWO INTEGRAL MEANS AND APPLICATIONS FOR PDFs A.I. KECHRINIOTIS AND N.D. ASSIMAKIS Deprtment of Eletronis Tehnologil Edutionl Institute of Lmi, Greee EMil: {kehrin,

More information

NOTE AN INEQUALITY FOR KRUSKAL-MACAULAY FUNCTIONS

NOTE AN INEQUALITY FOR KRUSKAL-MACAULAY FUNCTIONS NOTE AN INEQUALITY FOR KRUSKAL-MACAULAY FUNCTIONS BERNARDO M. ÁBREGO, SILVIA FERNÁNDEZ-MERCHANT, AND BERNARDO LLANO Abstrct. Gven ntegers nd n, there s unque wy of wrtng n s n = n n... n so tht n <

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Introduction to Numerical Integration Part II

Introduction to Numerical Integration Part II Introducton to umercl Integrton Prt II CS 75/Mth 75 Brn T. Smth, UM, CS Dept. Sprng, 998 4/9/998 qud_ Intro to Gussn Qudrture s eore, the generl tretment chnges the ntegrton prolem to ndng the ntegrl w

More information

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX

INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX INEQUALITIES OF HERMITE-HADAMARD S TYPE FOR FUNCTIONS WHOSE DERIVATIVES ABSOLUTE VALUES ARE QUASI-CONVEX M. ALOMARI A, M. DARUS A, AND S.S. DRAGOMIR B Astrct. In this er, some ineulities of Hermite-Hdmrd

More information

INEQUALITIES FOR BETA AND GAMMA FUNCTIONS VIA SOME CLASSICAL AND NEW INTEGRAL INEQUALITIES

INEQUALITIES FOR BETA AND GAMMA FUNCTIONS VIA SOME CLASSICAL AND NEW INTEGRAL INEQUALITIES INEQUALITIES FOR BETA AND GAMMA FUNCTIONS VIA SOME CLASSICAL AND NEW INTEGRAL INEQUALITIES S. S. DRAGOMIR, R. P. AGARWAL, AND N. S. BARNETT Abstrct. In this survey pper we present the nturl ppliction of

More information

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications

A Generalized Inequality of Ostrowski Type for Twice Differentiable Bounded Mappings and Applications Applied Mthemticl Sciences, Vol. 8, 04, no. 38, 889-90 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/0.988/ms.04.4 A Generlized Inequlity of Ostrowski Type for Twice Differentile Bounded Mppings nd Applictions

More information

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term

A unified generalization of perturbed mid-point and trapezoid inequalities and asymptotic expressions for its error term An. Ştiinţ. Univ. Al. I. Cuz Işi. Mt. (N.S. Tomul LXIII, 07, f. A unified generliztion of perturbed mid-point nd trpezoid inequlities nd symptotic expressions for its error term Wenjun Liu Received: 7.XI.0

More information

WENJUN LIU AND QUÔ C ANH NGÔ

WENJUN LIU AND QUÔ C ANH NGÔ AN OSTROWSKI-GRÜSS TYPE INEQUALITY ON TIME SCALES WENJUN LIU AND QUÔ C ANH NGÔ Astrct. In this pper we derive new inequlity of Ostrowski-Grüss type on time scles nd thus unify corresponding continuous

More information

WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI, 1 (b a) 2. f(t)g(t)dt. provided that there exists the real numbers m; M; n; N such that

WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI, 1 (b a) 2. f(t)g(t)dt. provided that there exists the real numbers m; M; n; N such that Preprints (www.preprints.org) NOT PEER-REVIEWED Posted 6 June 8 doi.944/preprints86.4.v WEIGHTED INTEGRAL INEQUALITIES OF OSTROWSKI, µcebyšev AND LUPAŞ TYPE WITH APPLICATIONS SILVESTRU SEVER DRAGOMIR Abstrct.

More information

Communications inmathematicalanalysis Volume 6, Number 2, pp (2009) ISSN

Communications inmathematicalanalysis Volume 6, Number 2, pp (2009) ISSN Communictions inmthemticlanlysis Volume 6, Number, pp. 33 41 009) ISSN 1938-9787 www.commun-mth-nl.org A SHARP GRÜSS TYPE INEQUALITY ON TIME SCALES AND APPLICATION TO THE SHARP OSTROWSKI-GRÜSS INEQUALITY

More information

Journal of Inequalities in Pure and Applied Mathematics

Journal of Inequalities in Pure and Applied Mathematics Journl of Inequlities in Pure nd Applied Mthemtics ON LANDAU TYPE INEQUALITIES FOR FUNCTIONS WIT ÖLDER CONTINUOUS DERIVATIVES LJ. MARANGUNIĆ AND J. PEČARIĆ Deprtment of Applied Mthemtics Fculty of Electricl

More information

CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM

CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM PRANESH KUMAR AND INDER JEET TANEJA Abstrct The mnmum dcrmnton nformton prncple for the Kullbck-Lebler cross-entropy well known n the lterture In th pper

More information

Improvements of some Integral Inequalities of H. Gauchman involving Taylor s Remainder

Improvements of some Integral Inequalities of H. Gauchman involving Taylor s Remainder Divulgciones Mtemátics Vol. 11 No. 2(2003), pp. 115 120 Improvements of some Integrl Inequlities of H. Guchmn involving Tylor s Reminder Mejor de lguns Desigulddes Integrles de H. Guchmn que involucrn

More information

INTRODUCTION TO COMPLEX NUMBERS

INTRODUCTION TO COMPLEX NUMBERS INTRODUCTION TO COMPLEX NUMBERS The numers -4, -3, -, -1, 0, 1,, 3, 4 represent the negtve nd postve rel numers termed ntegers. As one frst lerns n mddle school they cn e thought of s unt dstnce spced

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

Point-based methods for estimating the length of a parametric curve

Point-based methods for estimating the length of a parametric curve Journl of Computtonl nd Appled Mthemtcs 196 (006) 51 5 www.elsever.com/locte/cm Pont-bsed methods for estmtng the length of prmetrc curve Mchel S. Floter, Atgerr F. Rsmussen CMA, Unversty of Oslo, P.O.

More information

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all

f(x)dx . Show that there 1, 0 < x 1 does not exist a differentiable function g : [ 1, 1] R such that g (x) = f(x) for all 3 Definite Integrl 3.1 Introduction In school one comes cross the definition of the integrl of rel vlued function defined on closed nd bounded intervl [, b] between the limits nd b, i.e., f(x)dx s the

More information

Lecture notes. Fundamental inequalities: techniques and applications

Lecture notes. Fundamental inequalities: techniques and applications Lecture notes Fundmentl nequltes: technques nd pplctons Mnh Hong Duong Mthemtcs Insttute, Unversty of Wrwck Eml: m.h.duong@wrwck.c.uk Jnury 4, 07 Abstrct Inequltes re ubqutous n Mthemtcs (nd n rel lfe.

More information

MTH 146 Class 7 Notes

MTH 146 Class 7 Notes 7.7- Approxmte Itegrto Motvto: MTH 46 Clss 7 Notes I secto 7.5 we lered tht some defte tegrls, lke x e dx, cot e wrtte terms of elemetry fuctos. So, good questo to sk would e: How c oe clculte somethg

More information

SOME HARDY TYPE INEQUALITIES WITH WEIGHTED FUNCTIONS VIA OPIAL TYPE INEQUALITIES

SOME HARDY TYPE INEQUALITIES WITH WEIGHTED FUNCTIONS VIA OPIAL TYPE INEQUALITIES SOME HARDY TYPE INEQUALITIES WITH WEIGHTED FUNCTIONS VIA OPIAL TYPE INEQUALITIES R. P. AGARWAL, D. O REGAN 2 AND S. H. SAKER 3 Abstrct. In this pper, we will prove severl new ineulities of Hrdy type with

More information

6 Roots of Equations: Open Methods

6 Roots of Equations: Open Methods HK Km Slghtly modfed 3//9, /8/6 Frstly wrtten t Mrch 5 6 Roots of Equtons: Open Methods Smple Fed-Pont Iterton Newton-Rphson Secnt Methods MATLAB Functon: fzero Polynomls Cse Study: Ppe Frcton Brcketng

More information

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei

INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV FUNCTIONAL. Mohammad Masjed-Jamei Fculty of Sciences nd Mthemtics University of Niš Seri Aville t: http://www.pmf.ni.c.rs/filomt Filomt 25:4 20) 53 63 DOI: 0.2298/FIL0453M INEQUALITIES FOR TWO SPECIFIC CLASSES OF FUNCTIONS USING CHEBYSHEV

More information

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN

LYAPUNOV-TYPE INEQUALITIES FOR NONLINEAR SYSTEMS INVOLVING THE (p 1, p 2,..., p n )-LAPLACIAN Electronic Journl of Differentil Equtions, Vol. 203 (203), No. 28, pp. 0. ISSN: 072-669. URL: http://ejde.mth.txstte.edu or http://ejde.mth.unt.edu ftp ejde.mth.txstte.edu LYAPUNOV-TYPE INEQUALITIES FOR

More information

Math Solutions to homework 1

Math Solutions to homework 1 Mth 75 - Solutions to homework Cédric De Groote October 5, 07 Problem, prt : This problem explores the reltionship between norms nd inner products Let X be rel vector spce ) Suppose tht is norm on X tht

More information

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1

Ostrowski Grüss Čebyšev type inequalities for functions whose modulus of second derivatives are convex 1 Generl Mthemtics Vol. 6, No. (28), 7 97 Ostrowski Grüss Čebyšev type inequlities for functions whose modulus of second derivtives re convex Nzir Ahmd Mir, Arif Rfiq nd Muhmmd Rizwn Abstrct In this pper,

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB Journl of Appled Mthemtcs nd Computtonl Mechncs 5, 4(4), 5-3 www.mcm.pcz.pl p-issn 99-9965 DOI:.75/jmcm.5.4. e-issn 353-588 LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION

More information

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members Onlne Appendx to Mndtng Behvorl Conformty n Socl Groups wth Conformst Members Peter Grzl Andrze Bnk (Correspondng uthor) Deprtment of Economcs, The Wllms School, Wshngton nd Lee Unversty, Lexngton, 4450

More information

Mixed Type Duality for Multiobjective Variational Problems

Mixed Type Duality for Multiobjective Variational Problems Ž. ournl of Mthemtcl Anlyss nd Applctons 252, 571 586 2000 do:10.1006 m.2000.7000, vlle onlne t http: www.delrry.com on Mxed Type Dulty for Multoectve Vrtonl Prolems R. N. Mukheree nd Ch. Purnchndr Ro

More information

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230

Polynomial Approximations for the Natural Logarithm and Arctangent Functions. Math 230 Polynomil Approimtions for the Nturl Logrithm nd Arctngent Functions Mth 23 You recll from first semester clculus how one cn use the derivtive to find n eqution for the tngent line to function t given

More information

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract

Jean Fernand Nguema LAMETA UFR Sciences Economiques Montpellier. Abstract Stochstc domnnce on optml portfolo wth one rsk less nd two rsky ssets Jen Fernnd Nguem LAMETA UFR Scences Economques Montpeller Abstrct The pper provdes restrctons on the nvestor's utlty functon whch re

More information

Improvement of Ostrowski Integral Type Inequalities with Application

Improvement of Ostrowski Integral Type Inequalities with Application Filomt 30:6 06), 56 DOI 098/FIL606Q Published by Fculty of Sciences nd Mthemtics, University of Niš, Serbi Avilble t: http://wwwpmfnicrs/filomt Improvement of Ostrowski Integrl Type Ineulities with Appliction

More information

NUMERICAL INTEGRATION

NUMERICAL INTEGRATION NUMERICAL INTEGRATION How do we evlute I = f (x) dx By the fundmentl theorem of clculus, if F (x) is n ntiderivtive of f (x), then I = f (x) dx = F (x) b = F (b) F () However, in prctice most integrls

More information

RGMIA Research Report Collection, Vol. 1, No. 1, SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIA

RGMIA Research Report Collection, Vol. 1, No. 1, SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIA ttp//sci.vut.edu.u/rgmi/reports.tml SOME OSTROWSKI TYPE INEQUALITIES FOR N-TIME DIFFERENTIABLE MAPPINGS AND APPLICATIONS P. CERONE, S.S. DRAGOMIR AND J. ROUMELIOTIS Astrct. Some generliztions of te Ostrowski

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

H-matrix theory and applications

H-matrix theory and applications MtTrd 205, Combr H-mtrx theory nd pplctons Mj Nedovć Unversty of Nov d, erb jont work wth Ljljn Cvetkovć Contents! H-mtrces nd DD-property Benefts from H-subclsses! Brekng the DD Addtve nd multplctve condtons

More information

MSC: Primary 11A15, Secondary 11A07, 11E25 Keywords: Reciprocity law; octic residue; congruence; quartic Jacobi symbol

MSC: Primary 11A15, Secondary 11A07, 11E25 Keywords: Reciprocity law; octic residue; congruence; quartic Jacobi symbol Act Arth 159013, 1-5 Congruences for [/] mo ZHI-Hong Sun School of Mthemtcl Scences, Hun Norml Unverst, Hun, Jngsu 3001, PR Chn E-ml: zhhongsun@hoocom Homege: htt://wwwhtceucn/xsjl/szh Abstrct Let Z be

More information

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1

On the Generalized Weighted Quasi-Arithmetic Integral Mean 1 Int. Journl of Mth. Anlysis, Vol. 7, 2013, no. 41, 2039-2048 HIKARI Ltd, www.m-hikri.com http://dx.doi.org/10.12988/ijm.2013.3499 On the Generlized Weighted Qusi-Arithmetic Integrl Men 1 Hui Sun School

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter 0.04 Newton-Rphson Method o Solvng Nonlner Equton Ater redng ths chpter, you should be ble to:. derve the Newton-Rphson method ormul,. develop the lgorthm o the Newton-Rphson method,. use the Newton-Rphson

More information

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction

Czechoslovak Mathematical Journal, 55 (130) (2005), , Abbotsford. 1. Introduction Czechoslovk Mthemticl Journl, 55 (130) (2005), 933 940 ESTIMATES OF THE REMAINDER IN TAYLOR S THEOREM USING THE HENSTOCK-KURZWEIL INTEGRAL, Abbotsford (Received Jnury 22, 2003) Abstrct. When rel-vlued

More information

1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ),

1. Gauss-Jacobi quadrature and Legendre polynomials. p(t)w(t)dt, p {p(x 0 ),...p(x n )} p(t)w(t)dt = w k p(x k ), 1. Guss-Jcobi qudrture nd Legendre polynomils Simpson s rule for evluting n integrl f(t)dt gives the correct nswer with error of bout O(n 4 ) (with constnt tht depends on f, in prticulr, it depends on

More information

1. On some properties of definite integrals. We prove

1. On some properties of definite integrals. We prove This short collection of notes is intended to complement the textbook Anlisi Mtemtic 2 by Crl Mdern, published by Città Studi Editore, [M]. We refer to [M] for nottion nd the logicl stremline of the rguments.

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

Numerical Analysis: Trapezoidal and Simpson s Rule

Numerical Analysis: Trapezoidal and Simpson s Rule nd Simpson s Mthemticl question we re interested in numericlly nswering How to we evlute I = f (x) dx? Clculus tells us tht if F(x) is the ntiderivtive of function f (x) on the intervl [, b], then I =

More information

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE

UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE UNIFORM CONVERGENCE MA 403: REAL ANALYSIS, INSTRUCTOR: B. V. LIMAYE 1. Pointwise Convergence of Sequence Let E be set nd Y be metric spce. Consider functions f n : E Y for n = 1, 2,.... We sy tht the sequence

More information

Math 554 Integration

Math 554 Integration Mth 554 Integrtion Hndout #9 4/12/96 Defn. A collection of n + 1 distinct points of the intervl [, b] P := {x 0 = < x 1 < < x i 1 < x i < < b =: x n } is clled prtition of the intervl. In this cse, we

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13

Revista Colombiana de Matemáticas Volumen 41 (2007), páginas 1 13 Revist Colombin de Mtemátics Volumen 4 7, págins 3 Ostrowski, Grüss, Čebyšev type inequlities for functions whose second derivtives belong to Lp,b nd whose modulus of second derivtives re convex Arif Rfiq

More information

Lecture 36. Finite Element Methods

Lecture 36. Finite Element Methods CE 60: Numercl Methods Lecture 36 Fnte Element Methods Course Coordntor: Dr. Suresh A. Krth, Assocte Professor, Deprtment of Cvl Engneerng, IIT Guwht. In the lst clss, we dscussed on the ppromte methods

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar)

Lecture 3 ( ) (translated and slightly adapted from lecture notes by Martin Klazar) Lecture 3 (5.3.2018) (trnslted nd slightly dpted from lecture notes by Mrtin Klzr) Riemnn integrl Now we define precisely the concept of the re, in prticulr, the re of figure U(, b, f) under the grph of

More information

QUADRATURE is an old-fashioned word that refers to

QUADRATURE is an old-fashioned word that refers to World Acdemy of Science Engineering nd Technology Interntionl Journl of Mthemticl nd Computtionl Sciences Vol:5 No:7 011 A New Qudrture Rule Derived from Spline Interpoltion with Error Anlysis Hdi Tghvfrd

More information

Lecture 1. Functional series. Pointwise and uniform convergence.

Lecture 1. Functional series. Pointwise and uniform convergence. 1 Introduction. Lecture 1. Functionl series. Pointwise nd uniform convergence. In this course we study mongst other things Fourier series. The Fourier series for periodic function f(x) with period 2π is

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information