Quantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes

Size: px
Start display at page:

Download "Quantum Codes from Generalized Reed-Solomon Codes and Matrix-Product Codes"

Transcription

1 1 Quntum Codes from Generlzed Reed-Solomon Codes nd Mtrx-Product Codes To Zhng nd Gennn Ge Abstrct rxv: v1 [cs.it] 5 Aug 015 One of the centrl tsks n quntum error-correcton s to construct quntum codes tht hve good prmeters. In ths pper, we construct three new clsses of quntum MDS codes from clsscl Hermtn self-orthogonl generlzed Reed-Solomon codes. We lso present some clsses of quntum codes from mtrx-product codes. It turns out tht mny of our quntum codes re new n the sense tht the prmeters of quntum codes cnnot be obtned from ll prevous constructons. Index Terms Quntum MDS codes, generlzed Reed-Solomon codes, quntum codes, mtrx-product codes, Hermtn constructon. I. INTRODUCTION Quntum error-correctng codes hve ttrcted much ttenton s schemes tht protect quntum sttes from decoherence durng quntum computtons nd quntum communctons. After the poneerng works n [3], [4], the theory of quntum codes hs developed rpdly. In [5], [6], Clderbnk et. l found strong connecton between lrge clss of quntum codes whch cn be seen s n nlog of clsscl group codes, nd self-orthogonl codes over F 4. Ths ws then generlzed to the nonbnry cse n [], []. Recently, mny quntum codes hve been constructed by clsscl lner codes wth Euclden or Hermtn self-orthogonlty [1], [8], [5]. Let q be prme power, q-ry ((n,k,d)) quntum code s K-dmensonl vector subspce of the Hbert spce (C q ) n C qn whch cn detect up to d 1 quntum errors. Let k log q K, we use [[n,k,d]] q to denote q-ry ((n,k,d)) quntum code. As n clsscl codng theory, one of the centrl tsks n quntum codng theory s to construct quntum codes wth good prmeters. The followng theorem gves bound on the chevble mnmum dstnce of quntum code. Theorem 1.1. ([17], [18] Quntum Sngleton Bound) Quntum codes wth prmeters [[n,k,d]] q stsfy d n k +. A quntum code chevng ths quntum Sngleton bound s clled quntum mxmum-dstnce-seprble (MDS) code. Just s n the clsscl lner codes, quntum MDS codes form n mportnt fmly of quntum codes. Constructng quntum MDS codes hs become centrl topc for quntum codes n recent yers. As we know, the length of nontrvl q-ry quntum MDS codes cnnot exceed q + 1 f the clsscl MDS conjecture holds. The quntum MDS codes of length up to q+1 hve been constructed for ll possble dmensons [11] [1], nd mny quntum MDS codes of length between q +1 nd q + 1 hve lso been obtned (see [3], [7], [14], [15], [16], [19], [0], [1] nd the references theren). However, lmost ll known q-ry quntum MDS codes hve mnmum dstnce less thn or equl to q +1. In ths pper, we construct three clsses of quntum MDS codes s follows: (1) Let q be n odd prme power wth the form m+1, then there exsts q-ry [[ q 1, q 1 d+,d]]-quntum MDS code, where d (+1)m+1. The reserch of G. Ge ws supported by the Ntonl Nturl Scence Foundton of Chn under Grnt No nd Grnt No , the Importton nd Development of Hgh-Clber Tlents Project of Bejng Muncpl Insttutons, nd Zhejng Provncl Nturl Scence Foundton of Chn under Grnt No. LZ13A T. Zhng s wth the School of Mthemtcl Scences, Cptl Norml Unversty, Bejng , Chn. He s lso wth the Deprtment of Mthemtcs, Zhejng Unversty, Hngzhou 31007, Chn (e-ml: tzh@zju.edu.cn). G. Ge s wth the School of Mthemtcl Scences, Cptl Norml Unversty, Bejng , Chn. He s lso wth Bejng Center for Mthemtcs nd Informton Interdscplnry Scences, Bejng, , Chn (e-ml: gnge@zju.edu.cn).

2 () Let q be n odd prme power wth the form m 1, then there exsts q-ry [[ q 1 q+1, q 1 q d+3,d]]-quntum MDS code, where d (+1)m. (3) Let q be n odd prme power wth the form (+1)m 1, then there exsts q-ry [[ q 1 +1 q+1, q 1 +1 q d+3,d]]- quntum MDS code, where d (+1)m 1. In ddton, we lso show the exstence of q-ry quntum MDS codes wth length q 1 nd mnmum dstnce d for ny d q, where q s n odd prme power. Ths result extends those gven n [11], [1]. Mtrx-product codes were ntroduced n [4] s generlzton of severl well known constructons of longer codes from old ones, for exmple, the ( +b)-constructon nd the (+x b+x +b+x)-constructon. In [10], the uthors construct some new quntum codes from mtrx-product codes nd the Euclden constructon. Motvted by ths work, we wll gve new constructon of quntum codes by mtrx-product codes nd the Hermtn constructon. Some of them hve better prmeters thn the quntum codes lsted n tble onlne [9]. Ths pper s orgnzed s follows. In Secton II we recll the bscs bout lner codes, quntum codes nd mtrx-product codes. In Secton III, we gve three new clsses of quntum MDS codes from generlzed Reed-Solomon codes. In Secton IV, we present new constructon of quntum codes v mtrx-product codes nd the Hermtn constructon. II. PRELIMINARIES Throughout ths pper, let F q be the fnte feld wth q elements, where q s prme power. A lner [n,k] code C over F q s k-dmensonl subspce of F n q. The weght wt(x) of codeword x C s the number of nonzero components of x. The dstnce of two codewords x,y C s d(x,y) wt(x y). The mnmum dstnce d of C s the mnmum dstnce between ny two dstnct codewords of C. An [n,k,d] code s n [n,k] code wth the mnmum dstnce d. Gven two vectors x (x 0,x 1,,x n 1 ), y (y 0,y 1,,y n 1 ) F n q, there re two nner products we re nterested n. One s the Euclden nner product whch s defned s x,y E n 1 0 x y. When q l, where l s prme power, then we cn lso consder the Hermtn nner product whch s defned by x,y H n 1 0 x y l. The Euclden dul code of C s defned s C E {x F n q x,y E 0 for ll y C}. Smlrly the Hermtn dul code of C s defned s C H {x F n q x,y H 0 for ll y C}. A lner code C s clled Euclden (Hermtn) self-orthogonl f C C E (C C H, respectvely), nd C s clled Euclden (Hermtn) dul contnng f C E C (C H C, respectvely). For vector x (x 1,,x n ) F n q, let x q (x q 1,,xq n). For subset S of F n q, we defne S q to be the set {x q x S}. Then t s esy to see tht for q -ry lner code C, we hve C H (C q ) E. Therefore, C s Hermtn self-orthogonl f nd only f C (C q ) E,.e., C q C E. A. Quntum Codes In ths subsecton, we recll the bscs of quntum codes. Let q be power of prme number p. A qubt v s nonzero vector n C q whch cn be represented s v x F q c x x, where { x x F q } s bss of C q. For n 1, the n-th tensor product (C q ) n C q n hs bss { 1 n 1 n ( 1,, n ) F n q }, then n n-qubt s nonzero vector n C qn whch cn be represented s v F c, where c n q C. Let ζ p be prmtve p-th root of unty. The quntum errors n q-ry quntum system re lner opertors ctng on C q nd cn be represented by the set of error bses: ε n {T R b,b F q }, where T R b s defned by T R b x ζ Tr Fq/Fp (bx) p x+. The set E n {ζ l p T R b 0 l p 1, ( 1,, n ),b (b 1,,b n ) F n q } forms n error group, where ζ l pt R b s defned by ζpt l R b x ζpt l 1 R b1 x 1 T n R bn x n ζ l+tr Fq/Fp (bx) p x+,

3 3 for ny x x 1 x n, x (x 1,,x n ) F n q. For n error e ζl p T R b, ts quntum weght s defned by w Q (e) {1 n (,b ) (0,0)}. A subspce Q of C qn s clled q-ry quntum code wth length n. The q-ry quntum code hs mnmum dstnce d f nd only f t cn detect ll errors n E n of quntum weght less thn d, but cnnot detect some errors of weght d. A q-ry [[n,k,d]] q quntum code s q k -dmensonl subspce of C qn wth mnmum dstnce d. There re mny methods to construct quntum codes, nd the followng theorem s one of the most frequently used constructon methods. Theorem.1. ([] Hermtn Constructon) If C s q -ry Hermtn dul-contnng [n,k,d] code, then there exsts q-ry [[n,k n, d]]-quntum code. Then we hve the followng corollry. Corollry.. There s q-ry [[n,n k,k +1]] quntum MDS code whenever there exsts q -ry clsscl Hermtn self-orthogonl [n,k,n k +1]-MDS code. B. Mtrx-Product Codes In ths subsecton, we revew some nottons nd results of mtrx-product codes. Let C 1,C,,C s be fmly of s codes of length m over F q nd A ( j ) be n s l mtrx wth entres n F q. Then, the mtrx-product code [C 1,C,,C s ] A s defned s the code over F q of length ml wth genertor mtrx 11 G 1 1 G 1 1l G 1 1 G G l G......, s1 G s s G s sl G s where G, 1 s, s genertor mtrx for the code C. The followng theorem gves chrcterzton of mtrx-product codes. Theorem.3. [13], [10] The mtrx-product code [C 1,C,,C s ] A gven by sequence of [m,k,d ] lner codes C over F q nd full-rnk s l mtrx A s lner code whose length s ml, t hs dmenson s k nd mnmum dstnce lrger thn or equl to δ mn 1 s {d δ }, where δ s the mnmum dstnce of the code on F l q generted by the frst rows of the mtrx A. In order to construct quntum codes from mtrx-product codes, we need the followng theorem. Theorem.4. [4] Assume tht C 1,C,,C s re fmly of lner codes of length m nd A s nonsngulr s s mtrx, then the followng equlty of codes hppens where B t denotes the trnspose of the mtrx B. ([C 1,C,,C s ] A) [C 1,C,,C s ] (A 1 ) t, III. NEW QUANTUM MDS CODES FROM GENERALIZED REED-SOLOMON CODES We frst recll the bscs of generlzed Reed-Solomon codes. Choose n dstnct elements 1,, n of F q nd n nonzero elements v 1,,v n of F q. For 1 k n, we defne the code GRS k (,v) : {(v 1 f( 1 ),,v n f( n )) f(x) F q [x] nd deg(f(x)) < k}, where nd v denote the vectors ( 1,, n ) nd (v 1,,v n ), respectvely. The code GRS k (,v) s clled generlzed Reed-Solomon code over F q. It s well known tht generlzed Reed-Solomon code GRS k (,v) s n MDS code wth prmeters [n, k, n k + 1]. The followng lemm presents crteron to determne whether or not generlzed Reed-Solomon code s Hermn self-orthogonl. We ssume tht 0 0 : 1.

4 4 Lemm 3.1. Let ( 1,, n ) F n q nd v (v 1,,v n ) (F q ) n, then GRS k (,v) GRS k (,v) H f nd only f n vq+1 qj+l 0 for ll 0 j,l k 1. Proof: Note tht GRS k (,v) GRS k (,v) H f nd only f GRS k (,v) q GRS k (,v) E. It s obvous tht GRS k (,v) q hs bss {(v q 1 q 1,,vq n q n) 0 k 1}, nd GRS k (,v) hs bss {(v 1 1,,v n n) 0 k 1}. So GRS k (,v) q GRS k (,v) E f nd only f n vq+1 qj+l 0 for ll 0 j,l k 1. Now we consder generlzed Reed-Solomon codes over F q to construct quntum codes. A. New Quntum MDS Codes of Length q 1 Theorem 3.. Let q be n odd prme wth the form m+1, ω be fxed prmtve element of F q nd n q 1. Suppose (ω,ω,,ω n ) F n q, v (ω,ω,ω,ω,,ω,ω,,ω,ω,ω,ω,,ω,ω ) F n q nd 1 k (+1)m. Then GRS k (,v) GRS k (,v) H. Note tht Proof: For 0 j,l k 1 (+1)m 1, we hve qj+l ω (q+1) (ω [s()+(+1)](qj+l) +ω [s()+(+)](qj+l) ) ω (q+1) (ω (+1)(qj+l) +ω (+)(qj+l) ) ω s()(qj+l). ω s()(qj+l) 0; f q+1 (qj +l), q+1 q+1 ; f (qj +l). Now ssume tht qj+l t q+1. We clm (t+1), otherwse t r 1 for 1 r snce 0 j,l q. But qj +l (r 1)q+1 (r Thus 1)q +r + qj+l q +1, then (+1)m l r + q 1, whch s contrdcton. ω (q+1) (ω (+1)(qj+l) +ω (+)(qj+l) ) q +1 ωt(q+1) ω (q+1)(t+1) + q +1 q+1 ωt 0. Then by Lemm 3.1, GRS k (,v) GRS k (,v) H. ω (q+1)(t+1) Theorem 3.3. Let q be n odd prme power wth the form m+1, then there exsts q-ry [[ q 1, q 1 d+,d]]-quntum MDS code, where d (+1)m+1. Proof: The proof s strghtforwrd pplcton of Corollry. nd Theorem 3.. As n mmedte consequence of Theorem 3.3, we hve the followng corollry by tkng 1. Corollry 3.4. Let q be n odd prme power, then there exsts q-ry [[q 1,q d+1,d]]-quntum MDS code, where d q. Remrk 3.5. In [11], [1], the uthors showed tht there exsts q-ry [[q 1,q d+1,d]]-quntum MDS code, where q s n odd prme power nd d q 1. Obvously, our result hs lrger mnmum dstnce.

5 5 B. New Quntum MDS Codes of Length q 1 q +1 In ths subsecton, we wll construct quntum MDS codes of length q 1 lemm. q +1. For our purpose, we need the followng Lemm 3.6. [15] Let A be n (n 1) n mtrx of rnk n 1 over F q. Then the equton Ax 0 hs nonzero soluton n F q f nd only f A (q) nd A re row equvlent, where A (q) s obtned from A by rsng every entry to ts q-th power. Theorem 3.7. Let q be n odd prme power wth the form m 1 nd n q 1 q + 1, then there exst Fn q nd v (F q ) n such tht GRS k (,v) GRS k (,v) H for 1 k (+1)m 3. Proof: Let ω be fxed prmtve element of F q. We lso let A be n (m ) (m 1) mtrx wth A j ω j(m 3+()( 1)) for 1 m, 1 j m 1. Snce (m 3 + (q 1)( 1))q (m 3 + (q 1)(m )) (mod q 1) for 1 m, then A (q) nd A re row equvlent. By Lemm 3.6, there exsts c F m 1 q such tht A c t 0. Note tht by deletng ny one column of mtrx A, the remnng mtrx s Vndermonde mtrx, hence ll coordntes of c re nonzero. So we cn represent c s c (ω 1(q+1),,ω m 1(q+1) ). Now let (ω,ω 4,,ω q+1,ω q+1+,,ω q+,,ω q q +,,ω ) F n q nd v (ω 1,, ω m 1,ω 1 (m 3),,ω m 1 (m 3),,ω 1 (m 3)(q ),,ω m 1 (m 3)(q ) ) (F q ) n. Then for 0 j,l k 1 (+1)m 4, we hve Note tht qj+l m 1 q ω (q+1)+(qj+l) ω (q+1)(qj+l m+3)s. q ω (q+1)(qj+l m+3)s 0; f (q 1) (qj +l m+3), q 1; f (q 1) (qj +l m+3). Assume qj + l m + 3 t(q 1), we clm tht t m,m 1 (mod m). Otherwse, f t m (mod m), let t rm + m, then 0 r. If r 1, then qj + l t(q 1) + m 3 (mr + m 3)q + (q mr 1) (mr + m 3)q + ( r)m nd ( r)m > ( + 1)m 4 whch s contrdcton. If r, then qj +l t(q 1)+m 3 (m+m 3)q +(m ) nd m+m 3 > (+1)m 4, whch s lso contrdcton. Smlrly, t m 1 (mod m). Hence qj +l (mod q 1 ) {t(q 1)+m 3 0 t m 3}. Thus qj+l (q 1) 0, m 1 ω (q+1)+(qj+l) where the lst equton s from the defnton of c. Then by Lemm 3.1, GRS k (,v) GRS k (,v) H. Theorem 3.8. Let q be n odd prme power wth the form m 1, then there exsts q-ry [[ q 1 q+1, q 1 q d+3,d]]- quntum MDS code, where d (+1)m. Proof: The proof s strghtforwrd pplcton of Corollry. nd Theorem 3.7. In prtculr, tkng 1, we obtn the followng corollry. Corollry 3.9. Let q 5 be n odd prme power, then there exsts q-ry [[ q 1 q +1, q 1 q d+3,d]]-quntum MDS code, where d q 1.

6 6 C. New Quntum MDS Codes of Length q 1 +1 q +1 In ths subsecton, we consder quntum MDS codes of length q 1 +1 q +1. Theorem Let q be n odd prme power wth the form (+1)m 1 nd n q 1 +1 q +1, then there exst Fn q nd v (F q ) n such tht GRS k (,v) GRS k (,v) H for 1 k (+1)m. Proof: Let ω be fxed prmtve element of F q. We lso let A be n (m ) (m 1) mtrx wth A j ω (() 1)j for 1 m, 1 j m 1. Snce ((q 1) 1)q ((q )(q 1) 1) (mod q 1) for 1 q 1, then A (q) nd A re row equvlent. By Lemm 3.6, there exsts c F m 1 q such tht A c t 0. Snce by deletng ny one column of mtrx A, the remnng mtrx s Vndermonde mtrx, then ll coordntes of c re nonzero. Hence we cn represent c s c (ω 1(q+1),,ω m 1(q+1) ). Now let (ω +1,ω (+1),,ω q,ω q++,,ω q+1,,ω q +,,ω q ) F n q nd v (ω 1,,ω m 1,ω 1+1,,ω m 1+1,,ω 1+q,,ω m 1+q ) (F q ) n. Then for 0 j,l k 1 (+1)m 3, we hve Note tht qj+l m 1 q ω (q+1)+(qj+l) ω (q+1)(qj+l+1)s. q ω (q+1)(qj+l+1)s 0; f (q 1) (qj +l+1), q 1; f (q 1) (qj +l+1). Assume qj + l +1 t(q 1), then t 0,m 1 (mod m). Otherwse, f t 0 (mod m), let t rm. Then qj + l t() 1 (rm 1)q+(+1 r)m nd mn{rm 1,(+1 r)m }> (+1)m 3, whch s contrdcton. Smlrly, t m 1 (mod m). Thus qj+l (q 1) 0, m 1 ω (q+1)+(qj+l) where the lst equton s from the defnton of c. Then by Lemm 3.1, GRS k (,v) GRS k (,v) H. Theorem Let q be n odd prme power wth the form (+1)m 1, then there exsts q-ry [[ q 1 +1 q +1, q 1 +1 q d+3,d]]-quntum MDS code, where d (+1)m 1. Proof: The proof s strghtforwrd pplcton of Corollry. nd Theorem In prtculr, tkng 0, we obtn the followng corollry. Corollry 3.1. Let q be n odd prme power, then there exsts q-ry [[q q,q q d +,d]]-quntum MDS code, where d q. IV. NEW QUANTUM CODES FROM MATRIX-PRODUCT CODES Let A ( j ) be n s s mtrx wth entres n F q, we defne A (q) ( q j ). Then we hve the followng result. Lemm 4.1. Let A ( j ) be nonsngulr s s mtrx such tht A (q) s lso nonsngulr. Suppose there exst lner codes C such tht C H C for 1,,,s. Then ([C 1,C,,C s ] A) H [C 1,C,,C s ] [(A (q) ) 1 ] t.

7 7 Proof: By Theorem.4, we hve ([C 1,C,,C s ] A) H ([C q 1,Cq,,Cq s ] A(q) ) E [(C q 1 ) E,(C q ) E,,(C q s) E ] [(A (q) ) 1 ] t [C1 H,C H,,C H ] [(A (q) ) 1 ] t [C 1,C,,C s ] [(A (q) ) 1 ] t. s Now we would lke to use mtrx-product codes to construct quntum codes. Corollry 4.. Let q p t be n odd prme power, where p s prme number. Suppose C 1,C re lner codes over F q wth prmeters [n,k,d ] nd C H C, 1,. Then there exsts Hermtn dul contnng [n,k 1 +k, mn{d 1,d }] code over F q. Proof: Tke A ( p 1 ), then [(A (q) ) 1 ] t ( p+1 p+1 p+1 p 1 ). By Lemm 4.1, we hve ([C 1,C ] A) H [C 1,C ] [(A (q) ) 1 ] t [C 1,C ] A. Applyng Theorem.3, [C 1,C ] A s Hermtn dul contnng [n,k 1 +k, mn{d 1,d }] code. The followng result cn be found n [11], [14], [15]. Theorem 4.3. Let q be n odd prme power, then 1) there exsts q -ry Hermtn dul contnng [q +1,q + d,d] code for 1 d q +1; ) there exsts q -ry Hermtn dul contnng [q,q +1 d,d] code for d q. By combng Theorems 4.3, 3. nd Corollry 4., we cn mmedtely get the followng lemm. Lemm 4.4. Let q be n odd prme power, then 1) there exsts q -ry Hermtn dul contnng [q +,q +4 d d,d] code, where d q +1 s even; ) there exsts q -ry Hermtn dul contnng [q +,q +3 d d 1,d] code, where d q +1 s odd; 3) there exsts q -ry Hermtn dul contnng [q,q + d d,d] code, where d q s even; 4) there exsts q -ry Hermtn dul contnng [q,q +1 d d 1,d] code, where d q s odd; 5) there exsts q -ry Hermtn dul contnng [q,q d d,d] code, where d q s even; 6) there exsts q -ry Hermtn dul contnng [q,q 1 d d 1,d] code, where d q s odd. Then by the Hermtn constructon nd Lemm 4.4, we hve the followng theorem. Theorem 4.5. Let q be n odd prme power, then 1) there exsts q-ry [[q +,q +6 3d, d]] quntum code, where d q +1 s even; ) there exsts q-ry [[q +,q +5 3d, d]] quntum code, where d q +1 s odd; 3) there exsts q-ry [[q,q +4 3d, d]] quntum code, where d q s even; 4) there exsts q-ry [[q,q +3 3d, d]] quntum code, where d q s odd; 5) there exsts q-ry [[q,q + 3d, d]] quntum code, where d q s even; 6) there exsts q-ry [[q,q +1 3d, d]] quntum code, where d q s odd. In Tble I, we lst some quntum codes obtned from Theorem 4.5. The tble shows tht our quntum codes hve better prmeters thn the prevous quntum codes vlble.

8 8 TABLE I QUANTUM CODES COMPARISON new quntum codes quntum codes from [9] [[0,14, 3]] 3 [[0,1,3]] 3 [[48,8, 8]] 5 [[48,6,8]] 5 [[5,44, 4]] 5 [[5,4,4]] 5 [[5,40, 5]] 5 [[5,38,5]] 5 [[96,64, 1]] 7 [[96,6,1]] 7 [[100,9, 4]] 7 [[100,9,3]] 7 [[164,15, 5]] 9 [[164,150,5]] 9 [[164,156, 4]] 9 [[164,154,4]] 9 REFERENCES [1] S. A. Aly, A. Klppenecker, nd P. K. Srvepll, On quntum nd clsscl BCH codes, IEEE Trns. Inform. Theory, vol. 53, no. 3, pp , 007. [] A. Ashkhmn nd E. Knll, Nonbnry quntum stblzer codes, IEEE Trns. Inform. Theory, vol. 47, no. 7, pp , 001. [3] J. Berbruer nd Y. Edel, Quntum twsted codes, J. Combn. Des., vol. 8, no. 3, pp , 000. [4] T. Blckmore nd G. H. Norton, Mtrx-product codes over F q, Appl. Algebr Engrg. Comm. Comput., vol. 1, no. 6, pp , 001. [5] A. R. Clderbnk, E. M. Rns, P. W. Shor, nd N. J. A. Slone, Quntum error correcton nd orthogonl geometry, Phys. Rev. Lett., vol. 78, no. 3, pp , [6], Quntum error correcton v codes over GF(4), IEEE Trns. Inform. Theory, vol. 44, no. 4, pp , [7] B. Chen, S. Lng, nd G. Zhng, Applcton of constcyclc codes to quntum MDS codes, IEEE Trns. Inform. Theory, vol. 61, no. 3, pp , 015. [8] H. Chen, S. Lng, nd C. Xng, Quntum codes from conctented lgebrc-geometrc codes, IEEE Trns. Inform. Theory, vol. 51, no. 8, pp , 005. [9] Y. Edel, Some good quntum twsted codes, Onlne vlble t yves/mtrtzen/qtbch/qtbchindex.html. [10] C. Glndo, F. Hernndo, nd D. Runo, New quntum codes from evluton nd mtrx-product codes, rxv: [11] M. Grssl, T. Beth, nd M. Roetteler, On optml quntum codes, Int. J. Quntum Inf., vol., no. 01, pp , 004. [1] M. Grssl, M. Rotteler, nd T. Beth, On quntum MDS codes, n Proc. Int. Symp. Inf. Theory, Chcgo, June, 004, p [13] F. Hernndo, K. Llly, nd D. Runo, Constructon nd decodng of mtrx-product codes from nested codes, Appl. Algebr Engrg. Comm. Comput., vol. 0, no. 5-6, pp , 009. [14] L. Jn, S. Lng, J. Luo, nd C. Xng, Applcton of clsscl Hermtn self-orthogonl MDS codes to quntum MDS codes, IEEE Trns. Inform. Theory, vol. 56, no. 9, pp , 010. [15] L. Jn nd C. Xng, A constructon of new quntum MDS codes, IEEE Trns. Inform. Theory, vol. 60, no. 5, pp , 014. [16] X. K, S. Zhu, nd P. L, Constcyclc codes nd some new quntum MDS codes, IEEE Trns. Inform. Theory, vol. 60, no. 4, pp , 014. [17] A. Ketkr, A. Klppenecker, S. Kumr, nd P. K. Srvepll, Nonbnry stblzer codes over fnte felds, IEEE Trns. Inform. Theory, vol. 5, no. 11, pp , 006. [18] E. Knll nd R. Lflmme, Theory of quntum error-correctng codes, Phys. Rev. A (3), vol. 55, no., pp , [19] G. G. L Gurd, New quntum MDS codes, IEEE Trns. Inform. Theory, vol. 57, no. 8, pp , 011. [0] R. Lflmme, C. Mquel, J. P. Pz, nd W. H. Zurek, Perfect quntum error correctng code, Phys. Rev. Lett., vol. 77, no. 1, p. 198, [1] Z. L, L. Xng, nd X. Wng, Quntum generlzed Reed-Solomon codes: unfed frmework for quntum mxmum-dstnce-seprble codes, Phys. Rev. A (3), vol. 77, no. 1, pp , 4, 008. [] E. M. Rns, Nonbnry quntum codes, IEEE Trns. Inform. Theory, vol. 45, no. 6, pp , [3] P. W. Shor, Scheme for reducng decoherence n quntum computer memory, Phys. Rev. A, vol. 5, no. 4, p. R493, [4] A. Stene, Multple-prtcle nterference nd quntum error correcton, Proc. Roy. Soc. London Ser. A, vol. 45, no. 1954, pp , [5] A. M. Stene, Enlrgement of Clderbnk-Shor-Stene quntum codes, IEEE Trns. Inform. Theory, vol. 45, no. 7, pp , 1999.

Two Coefficients of the Dyson Product

Two Coefficients of the Dyson Product Two Coeffcents of the Dyson Product rxv:07.460v mth.co 7 Nov 007 Lun Lv, Guoce Xn, nd Yue Zhou 3,,3 Center for Combntorcs, LPMC TJKLC Nnk Unversty, Tnjn 30007, P.R. Chn lvlun@cfc.nnk.edu.cn gn@nnk.edu.cn

More information

The Number of Rows which Equal Certain Row

The Number of Rows which Equal Certain Row Interntonl Journl of Algebr, Vol 5, 011, no 30, 1481-1488 he Number of Rows whch Equl Certn Row Ahmd Hbl Deprtment of mthemtcs Fcult of Scences Dmscus unverst Dmscus, Sr hblhmd1@gmlcom Abstrct Let be X

More information

Statistics and Probability Letters

Statistics and Probability Letters Sttstcs nd Probblty Letters 79 (2009) 105 111 Contents lsts vlble t ScenceDrect Sttstcs nd Probblty Letters journl homepge: www.elsever.com/locte/stpro Lmtng behvour of movng verge processes under ϕ-mxng

More information

A Family of Multivariate Abel Series Distributions. of Order k

A Family of Multivariate Abel Series Distributions. of Order k Appled Mthemtcl Scences, Vol. 2, 2008, no. 45, 2239-2246 A Fmly of Multvrte Abel Seres Dstrbutons of Order k Rupk Gupt & Kshore K. Ds 2 Fculty of Scence & Technology, The Icf Unversty, Agrtl, Trpur, Ind

More information

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC

Rank One Update And the Google Matrix by Al Bernstein Signal Science, LLC Introducton Rnk One Updte And the Google Mtrx y Al Bernsten Sgnl Scence, LLC www.sgnlscence.net here re two dfferent wys to perform mtrx multplctons. he frst uses dot product formulton nd the second uses

More information

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 )

Chapter 2 Introduction to Algebra. Dr. Chih-Peng Li ( 李 ) Chpter Introducton to Algebr Dr. Chh-Peng L 李 Outlne Groups Felds Bnry Feld Arthetc Constructon of Glos Feld Bsc Propertes of Glos Feld Coputtons Usng Glos Feld Arthetc Vector Spces Groups 3 Let G be set

More information

Review of linear algebra. Nuno Vasconcelos UCSD

Review of linear algebra. Nuno Vasconcelos UCSD Revew of lner lgebr Nuno Vsconcelos UCSD Vector spces Defnton: vector spce s set H where ddton nd sclr multplcton re defned nd stsf: ) +( + ) (+ )+ 5) λ H 2) + + H 6) 3) H, + 7) λ(λ ) (λλ ) 4) H, - + 8)

More information

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x)

DCDM BUSINESS SCHOOL NUMERICAL METHODS (COS 233-8) Solutions to Assignment 3. x f(x) DCDM BUSINESS SCHOOL NUMEICAL METHODS (COS -8) Solutons to Assgnment Queston Consder the followng dt: 5 f() 8 7 5 () Set up dfference tble through fourth dfferences. (b) Wht s the mnmum degree tht n nterpoltng

More information

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR

THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR REVUE D ANALYSE NUMÉRIQUE ET DE THÉORIE DE L APPROXIMATION Tome 32, N o 1, 2003, pp 11 20 THE COMBINED SHEPARD ABEL GONCHAROV UNIVARIATE OPERATOR TEODORA CĂTINAŞ Abstrct We extend the Sheprd opertor by

More information

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II

UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS. M.Sc. in Economics MICROECONOMIC THEORY I. Problem Set II Mcroeconomc Theory I UNIVERSITY OF IOANNINA DEPARTMENT OF ECONOMICS MSc n Economcs MICROECONOMIC THEORY I Techng: A Lptns (Note: The number of ndctes exercse s dffculty level) ()True or flse? If V( y )

More information

CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM

CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM CHI-SQUARE DIVERGENCE AND MINIMIZATION PROBLEM PRANESH KUMAR AND INDER JEET TANEJA Abstrct The mnmum dcrmnton nformton prncple for the Kullbck-Lebler cross-entropy well known n the lterture In th pper

More information

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members

Online Appendix to. Mandating Behavioral Conformity in Social Groups with Conformist Members Onlne Appendx to Mndtng Behvorl Conformty n Socl Groups wth Conformst Members Peter Grzl Andrze Bnk (Correspondng uthor) Deprtment of Economcs, The Wllms School, Wshngton nd Lee Unversty, Lexngton, 4450

More information

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia

Variable time amplitude amplification and quantum algorithms for linear algebra. Andris Ambainis University of Latvia Vrble tme mpltude mplfcton nd quntum lgorthms for lner lgebr Andrs Ambns Unversty of Ltv Tlk outlne. ew verson of mpltude mplfcton;. Quntum lgorthm for testng f A s sngulr; 3. Quntum lgorthm for solvng

More information

H-matrix theory and applications

H-matrix theory and applications MtTrd 205, Combr H-mtrx theory nd pplctons Mj Nedovć Unversty of Nov d, erb jont work wth Ljljn Cvetkovć Contents! H-mtrces nd DD-property Benefts from H-subclsses! Brekng the DD Addtve nd multplctve condtons

More information

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed

Proof that if Voting is Perfect in One Dimension, then the First. Eigenvector Extracted from the Double-Centered Transformed Proof tht f Votng s Perfect n One Dmenson, then the Frst Egenvector Extrcted from the Doule-Centered Trnsformed Agreement Score Mtrx hs the Sme Rn Orderng s the True Dt Keth T Poole Unversty of Houston

More information

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU

Math 497C Sep 17, Curves and Surfaces Fall 2004, PSU Mth 497C Sep 17, 004 1 Curves nd Surfces Fll 004, PSU Lecture Notes 3 1.8 The generl defnton of curvture; Fox-Mlnor s Theorem Let α: [, b] R n be curve nd P = {t 0,...,t n } be prtton of [, b], then the

More information

Strong Gravity and the BKL Conjecture

Strong Gravity and the BKL Conjecture Introducton Strong Grvty nd the BKL Conecture Dvd Slon Penn Stte October 16, 2007 Dvd Slon Strong Grvty nd the BKL Conecture Introducton Outlne The BKL Conecture Ashtekr Vrbles Ksner Sngulrty 1 Introducton

More information

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013

ISSN: ISO 9001:2008 Certified International Journal of Engineering and Innovative Technology (IJEIT) Volume 3, Issue 1, July 2013 ISSN: 2277-375 Constructon of Trend Free Run Orders for Orthogonal rrays Usng Codes bstract: Sometmes when the expermental runs are carred out n a tme order sequence, the response can depend on the run

More information

MSC: Primary 11A15, Secondary 11A07, 11E25 Keywords: Reciprocity law; octic residue; congruence; quartic Jacobi symbol

MSC: Primary 11A15, Secondary 11A07, 11E25 Keywords: Reciprocity law; octic residue; congruence; quartic Jacobi symbol Act Arth 159013, 1-5 Congruences for [/] mo ZHI-Hong Sun School of Mthemtcl Scences, Hun Norml Unverst, Hun, Jngsu 3001, PR Chn E-ml: zhhongsun@hoocom Homege: htt://wwwhtceucn/xsjl/szh Abstrct Let Z be

More information

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order

Research Article On the Upper Bounds of Eigenvalues for a Class of Systems of Ordinary Differential Equations with Higher Order Hndw Publshng Corporton Interntonl Journl of Dfferentl Equtons Volume 0, Artcle ID 7703, pges do:055/0/7703 Reserch Artcle On the Upper Bounds of Egenvlues for Clss of Systems of Ordnry Dfferentl Equtons

More information

Principle Component Analysis

Principle Component Analysis Prncple Component Anlyss Jng Go SUNY Bufflo Why Dmensonlty Reducton? We hve too mny dmensons o reson bout or obtn nsghts from o vsulze oo much nose n the dt Need to reduce them to smller set of fctors

More information

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1

Dennis Bricker, 2001 Dept of Industrial Engineering The University of Iowa. MDP: Taxi page 1 Denns Brcker, 2001 Dept of Industrl Engneerng The Unversty of Iow MDP: Tx pge 1 A tx serves three djcent towns: A, B, nd C. Ech tme the tx dschrges pssenger, the drver must choose from three possble ctons:

More information

Sequences of Intuitionistic Fuzzy Soft G-Modules

Sequences of Intuitionistic Fuzzy Soft G-Modules Interntonl Mthemtcl Forum, Vol 13, 2018, no 12, 537-546 HIKARI Ltd, wwwm-hkrcom https://doorg/1012988/mf201881058 Sequences of Intutonstc Fuzzy Soft G-Modules Velyev Kemle nd Huseynov Afq Bku Stte Unversty,

More information

Katholieke Universiteit Leuven Department of Computer Science

Katholieke Universiteit Leuven Department of Computer Science Updte Rules for Weghted Non-negtve FH*G Fctorzton Peter Peers Phlp Dutré Report CW 440, Aprl 006 Ktholeke Unverstet Leuven Deprtment of Computer Scence Celestjnenln 00A B-3001 Heverlee (Belgum) Updte Rules

More information

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER

LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN FRACTAL HEAT TRANSFER Yn, S.-P.: Locl Frctonl Lplce Seres Expnson Method for Dffuson THERMAL SCIENCE, Yer 25, Vol. 9, Suppl., pp. S3-S35 S3 LOCAL FRACTIONAL LAPLACE SERIES EXPANSION METHOD FOR DIFFUSION EQUATION ARISING IN

More information

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache

FINITE NEUTROSOPHIC COMPLEX NUMBERS. W. B. Vasantha Kandasamy Florentin Smarandache INITE NEUTROSOPHIC COMPLEX NUMBERS W. B. Vsnth Kndsmy lorentn Smrndche ZIP PUBLISHING Oho 11 Ths book cn be ordered from: Zp Publshng 1313 Chespeke Ave. Columbus, Oho 31, USA Toll ree: (61) 85-71 E-ml:

More information

4. Eccentric axial loading, cross-section core

4. Eccentric axial loading, cross-section core . Eccentrc xl lodng, cross-secton core Introducton We re strtng to consder more generl cse when the xl force nd bxl bendng ct smultneousl n the cross-secton of the br. B vrtue of Snt-Vennt s prncple we

More information

p (i.e., the set of all nonnegative real numbers). Similarly, Z will denote the set of all

p (i.e., the set of all nonnegative real numbers). Similarly, Z will denote the set of all th Prelmnry E 689 Lecture Notes by B. Yo 0. Prelmnry Notton themtcl Prelmnres It s ssumed tht the reder s fmlr wth the noton of set nd ts elementry oertons, nd wth some bsc logc oertors, e.g. x A : x s

More information

arxiv: v1 [math.ra] 1 Nov 2014

arxiv: v1 [math.ra] 1 Nov 2014 CLASSIFICATION OF COMPLEX CYCLIC LEIBNIZ ALGEBRAS DANIEL SCOFIELD AND S MCKAY SULLIVAN rxiv:14110170v1 [mthra] 1 Nov 2014 Abstrct Since Leibniz lgebrs were introduced by Lody s generliztion of Lie lgebrs,

More information

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers

Jens Siebel (University of Applied Sciences Kaiserslautern) An Interactive Introduction to Complex Numbers Jens Sebel (Unversty of Appled Scences Kserslutern) An Interctve Introducton to Complex Numbers 1. Introducton We know tht some polynoml equtons do not hve ny solutons on R/. Exmple 1.1: Solve x + 1= for

More information

Department of Mathematical Sciences, Clemson University. The minimum weight of dual codes from projective planes

Department of Mathematical Sciences, Clemson University. The minimum weight of dual codes from projective planes Department of Mathematcal Scences, Clemson Unversty http://www.ces.clemson.edu/ keyj/ The mnmum weght of dual codes from projectve planes J. D. Key keyj@ces.clemson.edu 1/21 P Abstract The mnmum weght

More information

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]:

90 S.S. Drgomr nd (t b)du(t) =u()(b ) u(t)dt: If we dd the bove two equltes, we get (.) u()(b ) u(t)dt = p(; t)du(t) where p(; t) := for ll ; t [; b]: RGMIA Reserch Report Collecton, Vol., No. 1, 1999 http://sc.vu.edu.u/οrgm ON THE OSTROWSKI INTEGRAL INEQUALITY FOR LIPSCHITZIAN MAPPINGS AND APPLICATIONS S.S. Drgomr Abstrct. A generlzton of Ostrowsk's

More information

Lecture 5 Decoding Binary BCH Codes

Lecture 5 Decoding Binary BCH Codes Lecture 5 Decodng Bnary BCH Codes In ths class, we wll ntroduce dfferent methods for decodng BCH codes 51 Decodng the [15, 7, 5] 2 -BCH Code Consder the [15, 7, 5] 2 -code C we ntroduced n the last lecture

More information

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES

CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES CHOVER-TYPE LAWS OF THE ITERATED LOGARITHM FOR WEIGHTED SUMS OF ρ -MIXING SEQUENCES GUANG-HUI CAI Receved 24 September 2004; Revsed 3 My 2005; Accepted 3 My 2005 To derve Bum-Ktz-type result, we estblsh

More information

Smarandache-Zero Divisors in Group Rings

Smarandache-Zero Divisors in Group Rings Smarandache-Zero Dvsors n Group Rngs W.B. Vasantha and Moon K. Chetry Department of Mathematcs I.I.T Madras, Chenna The study of zero-dvsors n group rngs had become nterestng problem snce 1940 wth the

More information

Many-Body Calculations of the Isotope Shift

Many-Body Calculations of the Isotope Shift Mny-Body Clcultons of the Isotope Shft W. R. Johnson Mrch 11, 1 1 Introducton Atomc energy levels re commonly evluted ssumng tht the nucler mss s nfnte. In ths report, we consder correctons to tomc levels

More information

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB

LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION IN A TWO-LAYERED SLAB Journl of Appled Mthemtcs nd Computtonl Mechncs 5, 4(4), 5-3 www.mcm.pcz.pl p-issn 99-9965 DOI:.75/jmcm.5.4. e-issn 353-588 LAPLACE TRANSFORM SOLUTION OF THE PROBLEM OF TIME-FRACTIONAL HEAT CONDUCTION

More information

Notes on convergence of an algebraic multigrid method

Notes on convergence of an algebraic multigrid method Appled Mthemtcs Letters 20 (2007) 335 340 www.elsever.com/locte/ml Notes on convergence of n lgebrc multgrd method Zhohu Hung,, Peln Sh b Stte Key Lbortory of Spce Wether, Center for Spce Scence nd Appled

More information

On quasiperfect numbers

On quasiperfect numbers Notes on Number Theory and Dscrete Mathematcs Prnt ISSN 1310 5132, Onlne ISSN 2367 8275 Vol. 23, 2017, No. 3, 73 78 On quasperfect numbers V. Sva Rama Prasad 1 and C. Suntha 2 1 Nalla Malla Reddy Engneerng

More information

MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35

MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35 MATH 101A: ALGEBRA I PART B: RINGS AND MODULES 35 9. Modules over PID This week we re proving the fundmentl theorem for finitely generted modules over PID, nmely tht they re ll direct sums of cyclic modules.

More information

Continuous Random Variables

Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 217 Néhémy Lim Continuous Rndom Vribles Nottion. The indictor function of set S is rel-vlued function defined by : { 1 if x S 1 S (x) if x S Suppose tht

More information

Bases for Vector Spaces

Bases for Vector Spaces Bses for Vector Spces 2-26-25 A set is independent if, roughly speking, there is no redundncy in the set: You cn t uild ny vector in the set s liner comintion of the others A set spns if you cn uild everything

More information

Attribute reduction theory and approach to concept lattice

Attribute reduction theory and approach to concept lattice Scence n Chn Ser F Informton Scences 2005 Vol48 No6 713 726 713 Attrbute reducton theory nd pproch to concept lttce ZHANG Wenxu 1, WEI Lng 1,2 & QI Jnun 3 1 Insttute for Informton nd System Scences, Fculty

More information

Path product and inverse M-matrices

Path product and inverse M-matrices Electronic Journl of Liner Algebr Volume 22 Volume 22 (2011) Article 42 2011 Pth product nd inverse M-mtrices Yn Zhu Cheng-Yi Zhng Jun Liu Follow this nd dditionl works t: http://repository.uwyo.edu/el

More information

Theoretical foundations of Gaussian quadrature

Theoretical foundations of Gaussian quadrature Theoreticl foundtions of Gussin qudrture 1 Inner product vector spce Definition 1. A vector spce (or liner spce) is set V = {u, v, w,...} in which the following two opertions re defined: (A) Addition of

More information

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1

Study of Trapezoidal Fuzzy Linear System of Equations S. M. Bargir 1, *, M. S. Bapat 2, J. D. Yadav 3 1 mercn Interntonl Journl of Reserch n cence Technology Engneerng & Mthemtcs vlble onlne t http://wwwsrnet IN (Prnt: 38-349 IN (Onlne: 38-3580 IN (CD-ROM: 38-369 IJRTEM s refereed ndexed peer-revewed multdscplnry

More information

Least squares. Václav Hlaváč. Czech Technical University in Prague

Least squares. Václav Hlaváč. Czech Technical University in Prague Lest squres Václv Hlváč Czech echncl Unversty n Prgue hlvc@fel.cvut.cz http://cmp.felk.cvut.cz/~hlvc Courtesy: Fred Pghn nd J.P. Lews, SIGGRAPH 2007 Course; Outlne 2 Lner regresson Geometry of lest-squres

More information

Generalized Spectral Resolution & some of its applications

Generalized Spectral Resolution & some of its applications Generlzed Spectrl Resoluton & some of ts pplctons Nchols Wheeler, Reed College Physcs Deprtment 27 Aprl 29 Introducton Fmlrly, f the n n mtrx H s complex hermtn (or, more prtculrly, rel symmetrc or mgnry

More information

International Journal of Pure and Applied Sciences and Technology

International Journal of Pure and Applied Sciences and Technology Int. J. Pure Appl. Sc. Technol., () (), pp. 44-49 Interntonl Journl of Pure nd Appled Scences nd Technolog ISSN 9-67 Avlle onlne t www.jopst.n Reserch Pper Numercl Soluton for Non-Lner Fredholm Integrl

More information

ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4)

ON SIMPSON S INEQUALITY AND APPLICATIONS. 1. Introduction The following inequality is well known in the literature as Simpson s inequality : 2 1 f (4) ON SIMPSON S INEQUALITY AND APPLICATIONS SS DRAGOMIR, RP AGARWAL, AND P CERONE Abstrct New neultes of Smpson type nd ther pplcton to udrture formule n Numercl Anlyss re gven Introducton The followng neulty

More information

consider in the case of 1) internal resonance ω 2ω and 2) external resonance Ω ω and small damping

consider in the case of 1) internal resonance ω 2ω and 2) external resonance Ω ω and small damping consder n the cse o nternl resonnce nd externl resonnce Ω nd smll dmpng recll rom "Two_Degs_Frdm_.ppt" tht θ + μ θ + θ = θφ + cos Ω t + τ where = k α α nd φ + μ φ + φ = θ + cos Ω t where = α τ s constnt

More information

Mixed Type Duality for Multiobjective Variational Problems

Mixed Type Duality for Multiobjective Variational Problems Ž. ournl of Mthemtcl Anlyss nd Applctons 252, 571 586 2000 do:10.1006 m.2000.7000, vlle onlne t http: www.delrry.com on Mxed Type Dulty for Multoectve Vrtonl Prolems R. N. Mukheree nd Ch. Purnchndr Ro

More information

STUDY GUIDE FOR BASIC EXAM

STUDY GUIDE FOR BASIC EXAM STUDY GUIDE FOR BASIC EXAM BRYON ARAGAM This is prtil list of theorems tht frequently show up on the bsic exm. In mny cses, you my be sked to directly prove one of these theorems or these vrints. There

More information

arxiv:math/ v1 [math.nt] 13 Dec 2005

arxiv:math/ v1 [math.nt] 13 Dec 2005 LARGE SIEVE INEQUALITIES WITH QUADRATIC AMPLITUDES LIANGYI ZHAO rxv:mth/0570v [mth.nt] 3 Dec 005 Abstrct. In ths pper, we develop lrge seve type nequlty wth qudrtc mpltude. We use the double lrge seve

More information

The Schur-Cohn Algorithm

The Schur-Cohn Algorithm Modelng, Estmton nd Otml Flterng n Sgnl Processng Mohmed Njm Coyrght 8, ISTE Ltd. Aendx F The Schur-Cohn Algorthm In ths endx, our m s to resent the Schur-Cohn lgorthm [] whch s often used s crteron for

More information

Math 61CM - Solutions to homework 9

Math 61CM - Solutions to homework 9 Mth 61CM - Solutions to homework 9 Cédric De Groote November 30 th, 2018 Problem 1: Recll tht the left limit of function f t point c is defined s follows: lim f(x) = l x c if for ny > 0 there exists δ

More information

GAUSS ELIMINATION. Consider the following system of algebraic linear equations

GAUSS ELIMINATION. Consider the following system of algebraic linear equations Numercl Anlyss for Engneers Germn Jordnn Unversty GAUSS ELIMINATION Consder the followng system of lgebrc lner equtons To solve the bove system usng clsscl methods, equton () s subtrcted from equton ()

More information

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares

A Technique for Constructing Odd-order Magic Squares Using Basic Latin Squares Itertol Jourl of Scetfc d Reserch Publctos, Volume, Issue, My 0 ISSN 0- A Techque for Costructg Odd-order Mgc Squres Usg Bsc Lt Squres Tomb I. Deprtmet of Mthemtcs, Mpur Uversty, Imphl, Mpur (INDIA) tombrom@gml.com

More information

Binary construction of quantum codes of minimum distances five and six

Binary construction of quantum codes of minimum distances five and six Discrete Mathematics 308 2008) 1603 1611 www.elsevier.com/locate/disc Binary construction of quantum codes of minimum distances five and six Ruihu Li a, ueliang Li b a Department of Applied Mathematics

More information

Chapter Newton-Raphson Method of Solving a Nonlinear Equation

Chapter Newton-Raphson Method of Solving a Nonlinear Equation Chpter.4 Newton-Rphson Method of Solvng Nonlner Equton After redng ths chpter, you should be ble to:. derve the Newton-Rphson method formul,. develop the lgorthm of the Newton-Rphson method,. use the Newton-Rphson

More information

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space.

Linear, affine, and convex sets and hulls In the sequel, unless otherwise specified, X will denote a real vector space. Lnear, affne, and convex sets and hulls In the sequel, unless otherwse specfed, X wll denote a real vector space. Lnes and segments. Gven two ponts x, y X, we defne xy = {x + t(y x) : t R} = {(1 t)x +

More information

Anti-van der Waerden numbers of 3-term arithmetic progressions.

Anti-van der Waerden numbers of 3-term arithmetic progressions. Ant-van der Waerden numbers of 3-term arthmetc progressons. Zhanar Berkkyzy, Alex Schulte, and Mchael Young Aprl 24, 2016 Abstract The ant-van der Waerden number, denoted by aw([n], k), s the smallest

More information

COMPLEX NUMBERS INDEX

COMPLEX NUMBERS INDEX COMPLEX NUMBERS INDEX. The hstory of the complex numers;. The mgnry unt I ;. The Algerc form;. The Guss plne; 5. The trgonometrc form;. The exponentl form; 7. The pplctons of the complex numers. School

More information

Randić Energy and Randić Estrada Index of a Graph

Randić Energy and Randić Estrada Index of a Graph EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS Vol. 5, No., 202, 88-96 ISSN 307-5543 www.ejpam.com SPECIAL ISSUE FOR THE INTERNATIONAL CONFERENCE ON APPLIED ANALYSIS AND ALGEBRA 29 JUNE -02JULY 20, ISTANBUL

More information

On Hypercomplex Extensions of Quantum Theory

On Hypercomplex Extensions of Quantum Theory Journl of Modern Physcs, 5, 6, 698-79 Publshed Onlne Aprl 5 n ScRes. http://www.scrp.org/ournl/mp http://dx.do.org/.436/mp.5.6575 On Hypercomplex Extensons of Quntum Theory Dnel Sepunru RQE Reserch enter

More information

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38

Theory of Computation Regular Languages. (NTU EE) Regular Languages Fall / 38 Theory of Computtion Regulr Lnguges (NTU EE) Regulr Lnguges Fll 2017 1 / 38 Schemtic of Finite Automt control 0 0 1 0 1 1 1 0 Figure: Schemtic of Finite Automt A finite utomton hs finite set of control

More information

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962).

Vectors and Tensors. R. Shankar Subramanian. R. Aris, Vectors, Tensors, and the Equations of Fluid Mechanics, Prentice Hall (1962). 005 Vectors nd Tensors R. Shnkr Subrmnn Good Sources R. rs, Vectors, Tensors, nd the Equtons of Flud Mechncs, Prentce Hll (96). nd ppendces n () R. B. Brd, W. E. Stewrt, nd E. N. Lghtfoot, Trnsport Phenomen,

More information

NOTE AN INEQUALITY FOR KRUSKAL-MACAULAY FUNCTIONS

NOTE AN INEQUALITY FOR KRUSKAL-MACAULAY FUNCTIONS NOTE AN INEQUALITY FOR KRUSKAL-MACAULAY FUNCTIONS BERNARDO M. ÁBREGO, SILVIA FERNÁNDEZ-MERCHANT, AND BERNARDO LLANO Abstrct. Gven ntegers nd n, there s unque wy of wrtng n s n = n n... n so tht n <

More information

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization

DISCRIMINANTS AND RAMIFIED PRIMES. 1. Introduction A prime number p is said to be ramified in a number field K if the prime ideal factorization DISCRIMINANTS AND RAMIFIED PRIMES KEITH CONRAD 1. Introducton A prme number p s sad to be ramfed n a number feld K f the prme deal factorzaton (1.1) (p) = po K = p e 1 1 peg g has some e greater than 1.

More information

Theory of Computation Regular Languages

Theory of Computation Regular Languages Theory of Computtion Regulr Lnguges Bow-Yw Wng Acdemi Sinic Spring 2012 Bow-Yw Wng (Acdemi Sinic) Regulr Lnguges Spring 2012 1 / 38 Schemtic of Finite Automt control 0 0 1 0 1 1 1 0 Figure: Schemtic of

More information

p-adic Egyptian Fractions

p-adic Egyptian Fractions p-adic Egyptin Frctions Contents 1 Introduction 1 2 Trditionl Egyptin Frctions nd Greedy Algorithm 2 3 Set-up 3 4 p-greedy Algorithm 5 5 p-egyptin Trditionl 10 6 Conclusion 1 Introduction An Egyptin frction

More information

Counterexamples to the Connectivity Conjecture of the Mixed Cells

Counterexamples to the Connectivity Conjecture of the Mixed Cells Dscrete Comput Geom 2:55 52 998 Dscrete & Computatonal Geometry 998 Sprnger-Verlag New York Inc. Counterexamples to the Connectvty Conjecture of the Mxed Cells T. Y. L and X. Wang 2 Department of Mathematcs

More information

Remember: Project Proposals are due April 11.

Remember: Project Proposals are due April 11. Bonformtcs ecture Notes Announcements Remember: Project Proposls re due Aprl. Clss 22 Aprl 4, 2002 A. Hdden Mrov Models. Defntons Emple - Consder the emple we tled bout n clss lst tme wth the cons. However,

More information

Refined Coding Bounds for Network Error Correction

Refined Coding Bounds for Network Error Correction Refned Codng Bounds for Network Error Correcton Shenghao Yang Department of Informaton Engneerng The Chnese Unversty of Hong Kong Shatn, N.T., Hong Kong shyang5@e.cuhk.edu.hk Raymond W. Yeung Department

More information

Formulas for the Determinant

Formulas for the Determinant page 224 224 CHAPTER 3 Determnants e t te t e 2t 38 A = e t 2te t e 2t e t te t 2e 2t 39 If 123 A = 345, 456 compute the matrx product A adj(a) What can you conclude about det(a)? For Problems 40 43, use

More information

An Introduction to Support Vector Machines

An Introduction to Support Vector Machines An Introducton to Support Vector Mchnes Wht s good Decson Boundry? Consder two-clss, lnerly seprble clssfcton problem Clss How to fnd the lne (or hyperplne n n-dmensons, n>)? Any de? Clss Per Lug Mrtell

More information

Positive Solutions of Operator Equations on Half-Line

Positive Solutions of Operator Equations on Half-Line Int. Journl of Mth. Anlysis, Vol. 3, 29, no. 5, 211-22 Positive Solutions of Opertor Equtions on Hlf-Line Bohe Wng 1 School of Mthemtics Shndong Administrtion Institute Jinn, 2514, P.R. Chin sdusuh@163.com

More information

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus

ESCI 342 Atmospheric Dynamics I Lesson 1 Vectors and Vector Calculus ESI 34 tmospherc Dnmcs I Lesson 1 Vectors nd Vector lculus Reference: Schum s Outlne Seres: Mthemtcl Hndbook of Formuls nd Tbles Suggested Redng: Mrtn Secton 1 OORDINTE SYSTEMS n orthonorml coordnte sstem

More information

The Regulated and Riemann Integrals

The Regulated and Riemann Integrals Chpter 1 The Regulted nd Riemnn Integrls 1.1 Introduction We will consider severl different pproches to defining the definite integrl f(x) dx of function f(x). These definitions will ll ssign the sme vlue

More information

Lecture notes. Fundamental inequalities: techniques and applications

Lecture notes. Fundamental inequalities: techniques and applications Lecture notes Fundmentl nequltes: technques nd pplctons Mnh Hong Duong Mthemtcs Insttute, Unversty of Wrwck Eml: m.h.duong@wrwck.c.uk Jnury 4, 07 Abstrct Inequltes re ubqutous n Mthemtcs (nd n rel lfe.

More information

Finite Fields and Their Applications

Finite Fields and Their Applications Fnte Felds nd Ther Applctons 18 (2012) 271 282 Contents lsts vlble t ScVerse ScenceDrect Fnte Felds nd Ther Applctons www.elsever.com/locte/ff Bnoml nd fctorl congruences for F q [t] Dnesh S. Thkur 1 Deprtment

More information

A Note on Heredity for Terraced Matrices 1

A Note on Heredity for Terraced Matrices 1 Generl Mthemtics Vol. 16, No. 1 (2008), 5-9 A Note on Heredity for Terrced Mtrices 1 H. Crwford Rhly, Jr. In Memory of Myrt Nylor Rhly (1917-2006) Abstrct A terrced mtrix M is lower tringulr infinite mtrix

More information

Zero-Sum Magic Graphs and Their Null Sets

Zero-Sum Magic Graphs and Their Null Sets Zero-Sum Mgic Grphs nd Their Null Sets Ebrhim Slehi Deprtment of Mthemticl Sciences University of Nevd Ls Vegs Ls Vegs, NV 89154-4020. ebrhim.slehi@unlv.edu Abstrct For ny h N, grph G = (V, E) is sid to

More information

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University

Farey Fractions. Rickard Fernström. U.U.D.M. Project Report 2017:24. Department of Mathematics Uppsala University U.U.D.M. Project Report 07:4 Frey Frctions Rickrd Fernström Exmensrete i mtemtik, 5 hp Hledre: Andres Strömergsson Exmintor: Jörgen Östensson Juni 07 Deprtment of Mthemtics Uppsl University Frey Frctions

More information

Lecture 4: Piecewise Cubic Interpolation

Lecture 4: Piecewise Cubic Interpolation Lecture notes on Vrtonl nd Approxmte Methods n Appled Mthemtcs - A Perce UBC Lecture 4: Pecewse Cubc Interpolton Compled 6 August 7 In ths lecture we consder pecewse cubc nterpolton n whch cubc polynoml

More information

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism

Partially Observable Systems. 1 Partially Observable Markov Decision Process (POMDP) Formalism CS294-40 Lernng for Rootcs nd Control Lecture 10-9/30/2008 Lecturer: Peter Aeel Prtlly Oservle Systems Scre: Dvd Nchum Lecture outlne POMDP formlsm Pont-sed vlue terton Glol methods: polytree, enumerton,

More information

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix

Lectures - Week 4 Matrix norms, Conditioning, Vector Spaces, Linear Independence, Spanning sets and Basis, Null space and Range of a Matrix Lectures - Week 4 Matrx norms, Condtonng, Vector Spaces, Lnear Independence, Spannng sets and Bass, Null space and Range of a Matrx Matrx Norms Now we turn to assocatng a number to each matrx. We could

More information

2.3 Nilpotent endomorphisms

2.3 Nilpotent endomorphisms s a block dagonal matrx, wth A Mat dm U (C) In fact, we can assume that B = B 1 B k, wth B an ordered bass of U, and that A = [f U ] B, where f U : U U s the restrcton of f to U 40 23 Nlpotent endomorphsms

More information

ON THE NILPOTENCY INDEX OF THE RADICAL OF A GROUP ALGEBRA. XI

ON THE NILPOTENCY INDEX OF THE RADICAL OF A GROUP ALGEBRA. XI Mth. J. Okym Univ. 44(2002), 51 56 ON THE NILPOTENCY INDEX OF THE RADICAL OF A GROUP ALGEBRA. XI Koru MOTOSE Let t(g) be the nilpotency index of the rdicl J(KG) of group lgebr KG of finite p-solvble group

More information

Best response equivalence

Best response equivalence Gmes nd Economc Behvor 49 2004) 260 287 www.elsever.com/locte/geb Best response equvlence Stephen Morrs,, Tksh U b Deprtment of Economcs, Yle Unversty, USA b Fculty of Economcs, Yokohm Ntonl Unversty,

More information

Binding Numbers for all Fractional (a, b, k)-critical Graphs

Binding Numbers for all Fractional (a, b, k)-critical Graphs Filomt 28:4 (2014), 709 713 DOI 10.2298/FIL1404709Z Published by Fculty of Sciences nd Mthemtics, University of Niš, Serbi Avilble t: http://www.pmf.ni.c.rs/filomt Binding Numbers for ll Frctionl (, b,

More information

Maximizing the number of nonnegative subsets

Maximizing the number of nonnegative subsets Maxmzng the number of nonnegatve subsets Noga Alon Hao Huang December 1, 213 Abstract Gven a set of n real numbers, f the sum of elements of every subset of sze larger than k s negatve, what s the maxmum

More information

A Theoretical Study on the Rank of the Integral Operators for Large- Scale Electrodynamic Analysis

A Theoretical Study on the Rank of the Integral Operators for Large- Scale Electrodynamic Analysis Purdue Unversty Purdue e-pubs ECE Techncl Reports Electrcl nd Computer Engneerng -22-2 A Theoretcl Study on the Rnk of the Integrl Opertors for Lrge- Scle Electrodynmc Anlyss Wenwen Ch Purdue Unversty,

More information

Stochastic integral representations of quantum martingales on multiple Fock space

Stochastic integral representations of quantum martingales on multiple Fock space Proc. Indn Acd. Sc. (Mth. Sc.) Vol. 116, No. 4, November 26, pp. 489 55. Prnted n Ind Stochstc ntegrl representtons of quntum mrtngles on multple Fock spce UN CIG JI Deprtment of Mthemtcs, Reserch Insttute

More information

REPRESENTATION THEORY OF PSL 2 (q)

REPRESENTATION THEORY OF PSL 2 (q) REPRESENTATION THEORY OF PSL (q) YAQIAO LI Following re notes from book [1]. The im is to show the qusirndomness of PSL (q), i.e., the group hs no low dimensionl representtion. 1. Representtion Theory

More information

Binding Number and Connected (g, f + 1)-Factors in Graphs

Binding Number and Connected (g, f + 1)-Factors in Graphs Binding Number nd Connected (g, f + 1)-Fctors in Grphs Jinsheng Ci, Guizhen Liu, nd Jinfeng Hou School of Mthemtics nd system science, Shndong University, Jinn 50100, P.R.Chin helthci@163.com Abstrct.

More information

Chapter 5 : Continuous Random Variables

Chapter 5 : Continuous Random Variables STAT/MATH 395 A - PROBABILITY II UW Winter Qurter 216 Néhémy Lim Chpter 5 : Continuous Rndom Vribles Nottions. N {, 1, 2,...}, set of nturl numbers (i.e. ll nonnegtive integers); N {1, 2,...}, set of ll

More information

Lecture 10: May 6, 2013

Lecture 10: May 6, 2013 TTIC/CMSC 31150 Mathematcal Toolkt Sprng 013 Madhur Tulsan Lecture 10: May 6, 013 Scrbe: Wenje Luo In today s lecture, we manly talked about random walk on graphs and ntroduce the concept of graph expander,

More information

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004

Advanced Calculus: MATH 410 Notes on Integrals and Integrability Professor David Levermore 17 October 2004 Advnced Clculus: MATH 410 Notes on Integrls nd Integrbility Professor Dvid Levermore 17 October 2004 1. Definite Integrls In this section we revisit the definite integrl tht you were introduced to when

More information

Optimal Linear and Cyclic Locally Repairable Codes over Small Fields

Optimal Linear and Cyclic Locally Repairable Codes over Small Fields Optiml iner nd Cyclic oclly Repirble Codes over Smll Fields Alexnder Zeh nd Eitn Ykobi Computer Science Deprtment Technion Isrel Institute of Technology lex@codingtheoryeu, ykobi@cstechnioncil rxiv:150206809v1

More information