WHAT IS SUPERCONDUCTIVITY??

Size: px
Start display at page:

Download "WHAT IS SUPERCONDUCTIVITY??"

Transcription

1 WHAT IS SUPERCONDUCTIVITY?? For some materials, the resistivity vanishes at some low temperature: they become superconducting. Superconductivity is the ability of certain materials to conduct electrical current with no resistance. Thus, superconductors can carry large amounts of current with little or no loss of energy. Type I superconductors: pure metals, have low critical field Type II superconductors: primarily of alloys or intermetallic compounds

2 BCS theory, 1957 Meissner, 1933 Superconductors History organic, heavy Fermion, Sr 2 RuO 4 T C (K) Sn (Tin) 3.72 Hg (Mercury) 4.15 Pb (Lead) 7.19 NbTi (Niobium Titanium) Nb 3 Sn (Niobium Tin) Műller, Bednorz 1986 high T c MgB 2 Onnes, 1911 SC Mercury Josephson, 1962

3

4 Bardeen Cooper Schreiffer Theory BCS theory requires: (a) low temperatures - to minimise the number of random (thermal) phonons (ie those associated with electron-ion interactions must dominate) (b) a large density of electron states just below E F (the electrons associated with these states are those that are energetically suited to form pairs) (c) strong electron phonon coupling BCS theory is an effective, all encompassing microscopic theory of superconductivity from which all of the experimentally observed results emerge naturally Ginzburg-Landau theory can be derived from BCS theory, and the phenomenological coefficients introduced by Ginzburg and Landau are related to quantities introduced in the microscopic theory

5 Superconducting Materials 160 HgBa 2 Ca 2 Cu 3 O 9 (under pressure) Superconducting transition temperature (K) Hg Pb HgBa 2 Ca 2 Cu 3 O 9 TlBaCaCuO BiCaSrCuO YBa 2 Cu 3 O 7 (LaBa)CuO Nb Nb NbC NbN 3 Sn Nb 3 Ge V 3 Si Liquid Nitrogen temperature (77K) Lecture 12

6 Properties of SC n Zero resistivity n Meissner effect n Energy gap Δ in excitation spectrum n example of SC

7 Superconductivity Explained BCS Theory Electron lattice interaction Cooper pairs Energy Gap Coherence Flux Quantization Phono ns!

8 Superconductivity Explained BCS Theory Electron lattice interaction Cooper pairs Energy Gap Coherence Flux Quantization Two coupled electrons with opposite momenta and spins Boson-like Does not scatter - resistanceless Energetically favorable in superconducting state

9 Superconductivity Explained BCS Theory Electron lattice interaction Cooper pairs Energy Gap Coherence Flux Quantization

10 Superconductivity Explained BCS Theory Electron lattice interaction Cooper pairs Energy Gap Coherence Flux Quantization Can calculate phase and amplitude at any point on the wave Coherence length One wave equation describes all Cooper pairs:

11 Superconductivity Explained BCS Theory Electron lattice interaction Cooper pairs Energy Gap Coherence Flux Quantization Magnetic flux around a closed superconducting current loop must be quantized One fluxon

12 Josephson Tunneling Josephson Junction small gap between two superconductors Cooper pairs can tunnel Critical current supercurrent Phase difference across the junction

13 Superconducting compounds Perhaps the most widely used class of superconducting compounds are the A 3 B family which crystallise in the A-15 structure. The A-atoms are typically the transition metals V or Nb, whilst the B atoms are nontransition metals such as Sn, Al, Ga, Si, Ge Six A15 compounds have transition temperatures over 17K B A Nb 3 Ge thin films held the record for the highest known T c of 23K for a number of years up to 1986 This was thought to be close to the limit imposed by BCS theory Lecture 12

14 The Chevrel phase compounds The Chevrel phases were discovered in 1971 They are ternary molybdenum chalcogenides of the type M x Mo 6 X 8 M could be any one of a number of metals at rare earth (4f) elements and X is S, Se or Te The M atoms form a nearly cubic lattice in which the Mo 6 X 8 uinits are inserted These were the first class of superconductors in which magnetic order and superconductivity were found to coexist With M=Gd, Tb, Dy, Er the superconducting transition temperatures are between 1.5 and 2K, while the Neel temperatures are between 0.5 and 1K. Lecture 12

15 The Chevrel phase compounds Some Chevrel compounds have relatively high transition temperatures, and very high critical fields Compound T c B* SnMo 6 S 8 12K 34T PbMo 6 S 8 15K 60T LaMo 6 S 8 7K PbMo 6 Se 8 3.6K 3.8T Critical current densities as high as 3x10 5 A.cm -2 have been observed at 4.2K Unfortunately the material is extremely brittle and making Lecture wires 12 is problematic

16 The nickel borocarbides The rare earth nickel borocarbides, discovered in 1994 have relatively high transition temperatures but also order magnetically at temperatures comparable to T T N (K) T c (K) (g-1) 2 c J(J+1) Y Yb 0 0 (HF?) Lu Tm Er Ho Dy Tb Gd Y, Lu, Tm, Er, Ho, Dy (Tb, Gd, Nd, Pr, Ce, Yb) Ni B C

17 The nickel borocarbides

18 Organic Superconductors The Bechgaard salts are nearly one dimensional conductors with very low carrier densities The electronic properties are extremely anisotropic Most of the class of compounds (TTMTSF) 2 -X, where X is an anion are only superconducting under pressure CH 3 Se Se CH 3 CH 3 Se Se CH 3 TMTSF tetramethyltetraselenafulvane X p c /kbar T c ClO K PF K ReO K

19 Organic superconductors under pressure The systems are particularly interesting from a fundamental perspective Is the superconductivity conventional?

20 The Bucky balls Buckminsterfullerene contains 60 carbon atoms at the apices of a triacontaduohedron 7.1Å in diameter C60 itself is not a superconductor, but it can be doped with alkali metals (which form an fcc lattice with a lattice parameter of 10Å) giving A3C60 Compound K3C60 K2 RbC60 Rb2KC60 Rb3C60 Cs3C60 Tc 19K 22K 25K 29K 47K

21

22

23

24

25

26 MEISSNER EFFECT When you place a superconductor in a magnetic field, the field is expelled below T C. B B T >T c T < T c Magnet Superconductor Currents i appear, to cancel B. i x B on the superconductor produces repulsion.

27 Conductors in a Magnetic Field Normal metal Perfect (metallic) conductor Superconductor Apply field Apply field Cool Apply field Cool Field off

28 Magnetic Penetration Depth - λ Screening not immediate; characteristic decay length 2 λ = m µ n e 0 s 2 B 2 1 = 2 λ B Typical λ ~ 50 nm m,e fixed λ uniquely specifies the superconducting electron density n s B( z) = B(z) B e 0 z / λ SC Sometimes called the superfluid density B 0 λ z

29 H(x) ξ Type I λ ψ(x) λ >> ξ κ λ ξ H(x) λ Type II ξ ψ(x) λ >> ξ g net (x) g magnetic (x) g sc (x) κ > 1 2 g net (x) g magnetic (x) g sc (x) κ > 1 2 elemental superconductors predicted in 1950s by Abrikosov ξ (nm) λ (nm) T c (K) H c2 (T) Al Pb Sn ξ (nm) λ (nm) T c (K) H c2 (T) Nb 3 Sn YBCO MgB

30 Type II Superconductors Normal state cores Superconducting region H

31 APPLICATIONS: Superconducting Magnetic Levitation The track are walls with a continuous series of vertical coils of wire mounted inside. The wire in these coils is not a superconductor. As the train passes each coil, the motion of the superconducting magnet on the train induces a current in these coils, making them electromagnets. The electromagnets on the train and outside produce forces that levitate the train and keep it centered above the track. In addition, a wave of electric current sweeps down these outside coils and propels the train forward. The Yamanashi MLX01MagLev Train

32 APPLICATIONS: Superconducting Magnetic Levitation On 2 December 2003, a threecar train reached a maximum speed of 581 km/h (361 mph) (world record in a manned vehicle)

33 APPLICATIONS: Superconducting Magnetic Levitation The L0 Series Shinkansen train is planned to run at 500 km/h (310 mph). The train is planned to run at 500 km/h (310 mph), but not until

34 APPLICATIONS: Medical MRI (Magnetic Resonance Imaging) scans produce detailed images of soft tissues. The superconducting magnet coils produce a large and uniform magnetic field inside the patient's body.

35

36 How it works Phase change due to external magnetic field Current flow Voltage change Due to B field Due to junctions Must be quantized

37 Superconducting Wind Generation Conventional Gearbox 5 MW ~ 410 tons Conventional Gearless 6 MW ~ 500 tons HTS Gearless 8 MW ~ 480 tons Wind turbine output limited by weight supported on the tower Superconducting generators: half the size and weight Generator Gearbox Shaft Matthews, Physics Today 62(4), 25 (April 2009) à double the output for same land area

38 APPLICATIONS: Power The cable configuration features a conductor made from HTS wires wound around a flexible hollow core. Liquid nitrogen flows through the core, cooling the HTS wire to the zero resistance state. The conductor is surrounded by conventional dielectric insulation. The efficiency of this design reduces losses. Superconducting Transmission Cable From American Superconductor

39 APPLICATIONS: Power

40 APPLICATIONS: Power

41 APPLICATIONS: Power

42 APPLICATIONS: Power

43 APPLICATIONS: Power

44 Superconducting Wind Generation Conventional Gearbox 5 MW ~ 410 tons Conventional Gearless 6 MW ~ 500 tons HTS Gearless 8 MW ~ 480 tons Wind turbine output limited by weight supported on the tower Superconducting generators: half the size and weight Generator Gearbox Shaft Matthews, Physics Today 62(4), 25 (April 2009) à double the output for same land area

Superconductor. Superconductor Materials Materials Eng. Dep. Kufa Univ. Dr. Sabah M. Thahab

Superconductor. Superconductor Materials Materials Eng. Dep. Kufa Univ. Dr. Sabah M. Thahab Superconductor Materials What's a superconductor? Superconductors have two outstanding features: 1). Zero electrical resistivity. This means that an electrical current in a superconducting ring continues

More information

Superconductivity Ref: Richerson, Dekker, 2nd Ed., 1992, pp

Superconductivity Ref: Richerson, Dekker, 2nd Ed., 1992, pp MME 467: Ceramics for Advanced Applications Lecture 23 Superconductivity Ref: Richerson, Dekker, 2nd Ed., 1992, pp.239 248. Prof. A. K. M. B. Rashid Department of MME, BUET, Dhaka Topics to discuss...!

More information

Superconductivity and Superfluidity

Superconductivity and Superfluidity Superconductivity and Superfluidity Contemporary physics, Spring 2015 Partially from: Kazimierz Conder Laboratory for Developments and Methods, Paul Scherrer Institute, 5232 Villigen PSI, Switzerland Resistivity

More information

Strongly Correlated Systems:

Strongly Correlated Systems: M.N.Kiselev Strongly Correlated Systems: High Temperature Superconductors Heavy Fermion Compounds Organic materials 1 Strongly Correlated Systems: High Temperature Superconductors 2 Superconductivity:

More information

Energy Levels Zero energy. From Last Time Molecules. Today. n- and p-type semiconductors. Energy Levels in a Metal. Junctions

Energy Levels Zero energy. From Last Time Molecules. Today. n- and p-type semiconductors. Energy Levels in a Metal. Junctions Today From Last Time Molecules Symmetric and anti-symmetric wave functions Lightly higher and lower energy levels More atoms more energy levels Conductors, insulators and semiconductors Conductors and

More information

Superconductors. An exciting field of Physics!

Superconductors. An exciting field of Physics! Superconductors An exciting field of Physics! General Objective To understand the nature of superconductivity Specific Objectives: You will be able to 1. Define Superconductivity 2. State the history of

More information

What s so super about superconductivity?

What s so super about superconductivity? What s so super about superconductivity? Mark Rzchowski Physics Department Electrons can flow through the wire when pushed by a battery. Electrical resistance But remember that the wire is made of atoms.

More information

Physics 416 Solid State Course Nov. 18, 2016

Physics 416 Solid State Course Nov. 18, 2016 Physics 416 Solid State Course Nov. 18, 016 Superconductivity: 1. Overview: Roughly ½ of the elements exhibit superconductivity, though some only under extreme pressure. The elements tend to be type I;

More information

Superconductivity and Quantum Coherence

Superconductivity and Quantum Coherence Superconductivity and Quantum Coherence Lent Term 2008 Credits: Christoph Bergemann, David Khmelnitskii, John Waldram, 12 Lectures: Mon, Wed 10-11am Mott Seminar Room 3 Supervisions, each with one examples

More information

Quantum Theory of Matter

Quantum Theory of Matter Quantum Theory of Matter Overview Lecture Derek Lee Imperial College London January 2007 Outline 1 Course content Introduction Superfluids Superconductors 2 Course Plan Resources Outline 1 Course content

More information

High temperature superconductivity

High temperature superconductivity High temperature superconductivity Applications to the maglev industry Elsa Abreu April 30, 2009 Outline Historical overview of superconductivity Copper oxide high temperature superconductors Angle Resolved

More information

Physics of Engineering materials

Physics of Engineering materials Physics of Engineering materials Course Code:SPH1101 Unit -III: Superconducting Materials Prepared by : Dr.R.Sampathkumar Superconducting materials have electromagentic properties, a unique structure,

More information

UNIVERSITÀ DEGLI STUDI DI GENOVA

UNIVERSITÀ DEGLI STUDI DI GENOVA UNIVERSITÀ DEGLI STUDI DI GENOVA Outline Story of superconductivity phenomenon going through the discovery of its main properties. Microscopic theory of superconductivity and main parameters which characterize

More information

Materials Aspects aud. Application of Superconductivity

Materials Aspects aud. Application of Superconductivity Materials Science and Device Technology Materials Aspects and Application of Superconductivity School of Environmental Science and Engineering Toshihiko Maeda, Professor 1 Contents apple Self introduction

More information

Demonstration Some simple theoretical models Materials How to make superconductors Some applications

Demonstration Some simple theoretical models Materials How to make superconductors Some applications Superconductivity Demonstration Some simple theoretical models Materials How to make superconductors Some applications How do we show superconductivity? Superconductors 1. have an electrical resistivity

More information

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor

From Last Time. Partially full bands = metal Bands completely full or empty = insulator / seminconductor From Last Time Solids are large numbers of atoms arranged in a regular crystal structure. Each atom has electron quantum states, but interactions shift the energies. End result is each type atomic electron

More information

Superconductivity. The Discovery of Superconductivity. Basic Properties

Superconductivity. The Discovery of Superconductivity. Basic Properties Superconductivity Basic Properties The Discovery of Superconductivity Using liquid helium, (b.p. 4.2 K), H. Kamerlingh Onnes found that the resistivity of mercury suddenly dropped to zero at 4.2 K. H.

More information

SUPERCONDUCTING MATERIALS

SUPERCONDUCTING MATERIALS SUPERCONDUCTING MATERIALS Superconductivity - The phenomenon of losing resistivity when sufficiently cooled to a very low temperature (below a certain critical temperature). H. Kammerlingh Onnes 1911 Pure

More information

lectures accompanying the book: Solid State Physics: An Introduction, by Philip Hofmann (2nd edition 2015, ISBN-10: 3527412824, ISBN-13: 978-3527412822, Wiley-VCH Berlin. www.philiphofmann.net 1 Superconductivity

More information

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom

Superconductivity. S2634: Physique de la matière condensée & nano-objets. Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom Superconductivity S2634: Physique de la matière condensée & nano-objets Miguel Anía Asenjo Alexandre Le Boité Christine Lingblom 1 What is superconductivity? 2 Superconductivity Superconductivity generally

More information

Materials 218/UCSB: Superconductivity and High T C copper oxide superconductors:

Materials 218/UCSB: Superconductivity and High T C copper oxide superconductors: Materials 218/UCSB: Superconductivity and High T C copper oxide superconductors: Ram Seshadri (seshadri@mrl.ucsb.edu) The Ruddlesden-Popper phases: Ruddlesden-Popper phases are intergrowths of perovskite

More information

Low temperature physics The Home page. aqpl.mc2.chalmers.se/~delsing/superconductivity

Low temperature physics The Home page. aqpl.mc2.chalmers.se/~delsing/superconductivity The Home page aqpl.mc2.chalmers.se/~delsing/superconductivity Info about the course The course treats three closely related topics: Superconductivity, superfluid helium, and cryogenics The course gives

More information

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs)

Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) Principles and Applications of Superconducting Quantum Interference Devices (SQUIDs) PHY 300 - Junior Phyics Laboratory Syed Ali Raza Roll no: 2012-10-0124 LUMS School of Science and Engineering Thursday,

More information

Foundations of Condensed Matter Physics

Foundations of Condensed Matter Physics Foundations of Condensed Matter Physics PHY1850F 2005 www.physics.utoronto.ca/~wei/phy1850f.html Physics 1850F Foundations of Condensed Matter Physics Webpage: www.physics.utoronto.ca/~wei/phy1850f.html

More information

1 General Theory of High - Tc Superconductors

1 General Theory of High - Tc Superconductors 1 1 General Theory of High - Tc Superconductors Kaname Matsumoto Twenty years after the discovery of high-temperature superconductors, practical superconducting wires made of these materials are now being

More information

Superconductivity. Dept of Phys. M.C. Chang

Superconductivity. Dept of Phys. M.C. Chang Superconductivity Introduction Thermal properties Magnetic properties London theory of the Meissner effect Microscopic (BCS) theory Flux quantization Quantum tunneling Dept of Phys M.C. Chang A brief history

More information

Superconductivity at Future Hadron Colliders

Superconductivity at Future Hadron Colliders XXVI Giornate di Studio sui Rivelatori 13-17.2.2017, Cogne, Italia Superconductivity at Future Hadron Colliders René Flükiger CERN, TE-MSC, 1211 Geneva 23, Switzerland and Dept. Quantum Matter Physics,

More information

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture.

Nanoelectronics 14. [( ) k B T ] 1. Atsufumi Hirohata Department of Electronics. Quick Review over the Last Lecture. Nanoelectronics 14 Atsufumi Hirohata Department of Electronics 09:00 Tuesday, 27/February/2018 (P/T 005) Quick Review over the Last Lecture Function Fermi-Dirac distribution f ( E) = 1 exp E µ [( ) k B

More information

CHAPTER I INTRODUCTION TO SUPERCONDUCTIVITY

CHAPTER I INTRODUCTION TO SUPERCONDUCTIVITY CHAPTER I INTRODUCTION TO SUPERCONDUCTIVITY 1.1 Introduction Superconductivity is a fascinating and challenging field of Physics. Today, superconductivity is being applied to many diverse areas such as:

More information

Superconductivity: General Theory & Materials Overview Phys 617, Texas A&M University, April, 2017

Superconductivity: General Theory & Materials Overview Phys 617, Texas A&M University, April, 2017 Superconductivity: General Theory & Materials Overview Phys 617, Texas A&M University, April, 017 1. London equation, London penetration depth: The London theory (due to F. and H. London) omits coherence

More information

High T C copper oxide superconductors and CMR:

High T C copper oxide superconductors and CMR: High T C copper oxide superconductors and CMR: Ram Seshadri (seshadri@mrl.ucsb.edu) The Ruddlesden-Popper phases: Ruddlesden-Popper phases are intergrowths of perovskite slabs with rock salt slabs. First

More information

Superconductivity. Superconductivity. Superconductivity was first observed by HK Onnes in 1911 in mercury at T ~ 4.2 K (Fig. 1).

Superconductivity. Superconductivity. Superconductivity was first observed by HK Onnes in 1911 in mercury at T ~ 4.2 K (Fig. 1). Superconductivity Superconductivity was first observed by HK Onnes in 9 in mercury at T ~ 4. K (Fig. ). The temperature at which the resistivity falls to zero is the critical temperature, T c. Superconductivity

More information

METALS CRYSTAL STRUCTURE In a metal the atoms arrange themselves in a regular pattern know as a crystal lattice

METALS CRYSTAL STRUCTURE In a metal the atoms arrange themselves in a regular pattern know as a crystal lattice DO PHYSICS ONLINE SUPERCONDUCTIVITY METALS CRYSTAL STRUCTURE In a metal the atoms arrange themselves in a regular pattern know as a crystal lattice X-ray crystallography can locate every atom in a zeolite,

More information

Superconductivity. Allen M. Goldman. School of Physics and Astronomy University of Minnesota

Superconductivity. Allen M. Goldman. School of Physics and Astronomy University of Minnesota Superconductivity Allen M. Goldman School of Physics and Astronomy University of Minnesota October 26, 2007 OUTLINE Introduction What is superconductivity? Phenomena Mechanism Superconducting Materials

More information

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance

Introduction to Superconductivity. Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Introduction to Superconductivity Superconductivity was discovered in 1911 by Kamerlingh Onnes. Zero electrical resistance Meissner Effect Magnetic field expelled. Superconducting surface current ensures

More information

From Quantum to Matter 2005

From Quantum to Matter 2005 From Quantum to Matter 2005 Ronald Griessen Vrije Universiteit, Amsterdam AMOLF, May 24, 2004 vrije Universiteit amsterdam Why such a course? From Quantum to Matter: The main themes Wave functions Molecules

More information

Superconductivity. Alexey Ustinov Universität Karlsruhe WS Alexey Ustinov WS2008/2009 Superconductivity: Lecture 1 1

Superconductivity. Alexey Ustinov Universität Karlsruhe WS Alexey Ustinov WS2008/2009 Superconductivity: Lecture 1 1 Superconductivity Alexey Ustinov Universität Karlsruhe WS 2008-2009 Alexey Ustinov WS2008/2009 Superconductivity: Lecture 1 1 Lectures October 20 Phenomenon of superconductivity October 27 Magnetic properties

More information

Introduction to superconductivity.

Introduction to superconductivity. Introduction to superconductivity http://hyscience.blogspot.ro/ Outline Introduction to superconductors Kamerlingh Onnes Evidence of a phase transition MEISSNER EFFECT Characteristic lengths in SC Categories

More information

Lecture 2. Phenomenology of (classic) superconductivity Phys. 598SC Fall 2015 Prof. A. J. Leggett

Lecture 2. Phenomenology of (classic) superconductivity Phys. 598SC Fall 2015 Prof. A. J. Leggett Lecture 2. Phenomenology of (classic) superconductivity Phys. 598SC Fall 2015 Prof. A. J. Leggett (References: de Gannes chapters 1-3, Tinkham chapter 1) Statements refer to classic (pre-1970) superconductors

More information

APS March Meeting Years of BCS Theory. A Family Tree. Ancestors BCS Descendants

APS March Meeting Years of BCS Theory. A Family Tree. Ancestors BCS Descendants APS March Meeting 2007 50 Years of BCS Theory A Family Tree Ancestors BCS Descendants D. Scalapino: Ancestors and BCS J. Rowell : A tunneling branch of the family G. Baym: From Atoms and Nuclei to the

More information

Modifying Ampere's Law to include the possibility of time varying electric fields gives the fourth Maxwell's Equations.

Modifying Ampere's Law to include the possibility of time varying electric fields gives the fourth Maxwell's Equations. Induction In 183-1831, Joseph Henry & Michael Faraday discovered electromagnetic induction. Induction requires time varying magnetic fields and is the subject of another of Maxwell's Equations. Modifying

More information

Superconductivity. 24 February Paul Wilson Tutor: Justin Evans

Superconductivity. 24 February Paul Wilson Tutor: Justin Evans Superconductivity 24 February 2009 Paul Wilson Tutor: Justin Evans 1 Intended Audience This report is intended for anyone wishing to understand the fundamentals of superconductors and their growing importance

More information

Physics 5K Lecture 7 Friday May 18, Superconductivity. Joel Primack Physics Department UCSC. Friday, May 18, 12

Physics 5K Lecture 7 Friday May 18, Superconductivity. Joel Primack Physics Department UCSC. Friday, May 18, 12 Physics 5K Lecture 7 Friday May 18, 2012 Superconductivity Joel Primack Physics Department UCSC Friday, May 18, 12 101st Anniversary Year Inside a superconductor, a photon carrying a magnetic field effectively

More information

Solid State Physics SUPERCONDUCTIVITY I. Lecture 30. A.H. Harker. Physics and Astronomy UCL

Solid State Physics SUPERCONDUCTIVITY I. Lecture 30. A.H. Harker. Physics and Astronomy UCL Solid State Physics SUPERCONDUCTIVITY I Lecture 30 A.H. Harker Physics and Astronomy UCL 11 Superconductivity 11.1 Basic experimental observations 11.1.1 Disappearance of resistance The phenomenon of superconductivity

More information

For their 1948 discovery of the transistor, John Bardeen, Walter Brattain, and William Shockley were awarded the 1956 Nobel prize in physics.

For their 1948 discovery of the transistor, John Bardeen, Walter Brattain, and William Shockley were awarded the 1956 Nobel prize in physics. Modern Physics (PHY 3305) Lecture Notes Modern Physics (PHY 3305) Lecture Notes Solid-State Physics: Superconductivity (Ch. 10.9) SteveSekula, 1 April 2010 (created 1 April 2010) Review no tags We applied

More information

The Ginzburg-Landau Theory

The Ginzburg-Landau Theory The Ginzburg-Landau Theory A normal metal s electrical conductivity can be pictured with an electron gas with some scattering off phonons, the quanta of lattice vibrations Thermal energy is also carried

More information

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598

C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Origin of High-Temperature Superconductivity Nature s great puzzle C. C. Tsuei IBM T.J. Watson Research Center Yorktown Heights, NY 10598 Basic characteristics of superconductors: Perfect electrical conduction

More information

Superconductivity: approaching the century jubilee

Superconductivity: approaching the century jubilee SIMTECH KICK-OFF MEETING, March, 18, 2011 Superconductivity: approaching the century jubilee Andrey Varlamov Institute of Superconductivity & Innovative Materials (SPIN), Consiglio Nazionale delle Ricerche,

More information

Superconductivity. Introduction. Final project. Statistical Mechanics Fall Mehr Un Nisa Shahid

Superconductivity. Introduction. Final project. Statistical Mechanics Fall Mehr Un Nisa Shahid 1 Final project Statistical Mechanics Fall 2010 Mehr Un Nisa Shahid 12100120 Superconductivity Introduction Superconductivity refers to the phenomenon of near-zero electric resistance exhibited by conductors

More information

5. Superconductivity. R(T) = 0 for T < T c, R(T) = R 0 +at 2 +bt 5, B = H+4πM = 0,

5. Superconductivity. R(T) = 0 for T < T c, R(T) = R 0 +at 2 +bt 5, B = H+4πM = 0, 5. Superconductivity In this chapter we shall introduce the fundamental experimental facts about superconductors and present a summary of the derivation of the BSC theory (Bardeen Cooper and Schrieffer).

More information

Lecture 23 - Superconductivity II - Theory

Lecture 23 - Superconductivity II - Theory D() Lecture 23: Superconductivity II Theory (Kittel Ch. 10) F mpty D() F mpty Physics 460 F 2000 Lect 23 1 Outline Superconductivity - Concepts and Theory Key points xclusion of magnetic fields can be

More information

Electron Transport Properties of High Temperature Superconductors. Heather Stephenson East Orange Campus High School

Electron Transport Properties of High Temperature Superconductors. Heather Stephenson East Orange Campus High School Electron Transport Properties of High Temperature Superconductors Heather Stephenson East Orange Campus High School Introduction (Part 1) History of Superconductors Superconductors are materials in which

More information

There are two main theories in superconductivity: Ginzburg-Landau Theory. Outline of the Lecture. Ginzburg-Landau theory

There are two main theories in superconductivity: Ginzburg-Landau Theory. Outline of the Lecture. Ginzburg-Landau theory Ginzburg-Landau Theory There are two main theories in superconductivity: i Microscopic theory describes why materials are superconducting Prof. Damian Hampshire Durham University ii Ginzburg-Landau Theory

More information

Group Members: Erick Iciarte Kelly Mann Daniel Willis Miguel Lastres

Group Members: Erick Iciarte Kelly Mann Daniel Willis Miguel Lastres Group Members: Erick Iciarte Kelly Mann Daniel Willis Miguel Lastres How it works A superconductor is a material that exhibits zero resistance when exposed to very cold temperatures. Temperatures required

More information

smaller mfp coh L type II

smaller mfp coh L type II Type II superconductors Superconductivity: outline of 10.10 Superconductor in magnetic field Thin superconductor in magnetic field Interface energy Type II superconductors Mixed phase Abrikosov vortices

More information

6.763 Applied Superconductivity Lecture 1

6.763 Applied Superconductivity Lecture 1 6.763 Applied Superconductivity Lecture 1 Terry P. Orlando Dept. of Electrical Engineering MIT September 4, 2003 Outline What is a Superconductor? Discovery of Superconductivity Meissner Effect Type I

More information

100 Years and Counting The Continuing Saga of Superconductivity

100 Years and Counting The Continuing Saga of Superconductivity 100 Years and Counting The Continuing Saga of Superconductivity Dr Maru Grant Ohlone College Chemistry Professor Dr Paul Grant IBM Physicist, Emeritus It takes two to Tango Fathers of Cryogenics CH 4 112

More information

Unit V Superconductivity Engineering Physics

Unit V Superconductivity Engineering Physics 1. Superconductivity ertain metals and alloys exhibit almost zero resistivity (i.e. infinite conductivity), when they are cooled to sufficiently low temperatures. This effect is called superconductivity.

More information

1 Quantum Theory of Matter

1 Quantum Theory of Matter Quantum Theory of Matter: Superfluids & Superconductors Lecturer: Derek Lee Condensed Matter Theory Blackett 809 Tel: 020 7594 7602 dkk.lee@imperial.ac.uk Level 4 course: PT4.5 (Theory Option) http://www.cmth.ph.ic.ac.uk/people/dkk.lee/teach/qtm

More information

Condensed Matter Option SUPERCONDUCTIVITY Handout

Condensed Matter Option SUPERCONDUCTIVITY Handout Condensed Matter Option SUPERCONDUCTIVITY Handout Syllabus The lecture course on Superconductivity will be given in 6 lectures in Trinity term. 1. Introduction to superconductivity. 2. The London equations

More information

10 Supercondcutor Experimental phenomena zero resistivity Meissner effect. Phys463.nb 101

10 Supercondcutor Experimental phenomena zero resistivity Meissner effect. Phys463.nb 101 Phys463.nb 101 10 Supercondcutor 10.1. Experimental phenomena 10.1.1. zero resistivity The resistivity of some metals drops down to zero when the temperature is reduced below some critical value T C. Such

More information

Origins of the Theory of Superconductivity

Origins of the Theory of Superconductivity Origins of the Theory of Superconductivity Leon N Cooper University of Illinois October 10, 2007 The Simple Facts of Superconductivity (as of 1955) In 1911, Kammerling Onnes found that the resistance

More information

The magnetic RKKY-interaction in the superconducting phase of thulium borocarbide

The magnetic RKKY-interaction in the superconducting phase of thulium borocarbide The magnetic RKKY-interaction in the superconducting phase of thulium borocarbide by Jens Jensen, Ørsted Laboratory Collaborators: Risø: Niels Hessel Andersen Katrine Nørgaard Morten Ring Eskildsen Stine

More information

Superconductivity and the BCS theory

Superconductivity and the BCS theory Superconductivity and the BCS theory PHY 313 - Statistical Mechanics Syed Ali Raza Roll no: 2012-10-0124 LUMS School of Science and Engineering Monday, December, 15, 2010 1 Introduction In this report

More information

Made the FIRST periodic table

Made the FIRST periodic table Made the FIRST periodic table 1869 Mendeleev organized the periodic table based on the similar properties and relativities of certain elements Later, Henri Moseley organized the elements by increasing

More information

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism

The Periodic Table. Periodic Properties. Can you explain this graph? Valence Electrons. Valence Electrons. Paramagnetism Periodic Properties Atomic & Ionic Radius Energy Electron Affinity We want to understand the variations in these properties in terms of electron configurations. The Periodic Table Elements in a column

More information

Superconducting Single-photon Detectors

Superconducting Single-photon Detectors : Quantum Cryptography Superconducting Single-photon Detectors Hiroyuki Shibata Abstract This article describes the fabrication and properties of a single-photon detector made of a superconducting NbN

More information

Electrical and Magnetic Properties of High Temperature Superconductors Using Varying forms of Data Acquisition

Electrical and Magnetic Properties of High Temperature Superconductors Using Varying forms of Data Acquisition Journal of the Advanced Undergraduate Physics Laboratory Investigation Volume 1 Issue 1 Article 3 2013 Electrical and Magnetic Properties of High Temperature Superconductors Using Varying forms of Data

More information

Superconductivity. Resistance goes to 0 below a critical temperature T c

Superconductivity. Resistance goes to 0 below a critical temperature T c Superconductivity Resistance goes to 0 below a critical temperature T c element T c resistivity (T300) Ag ---.16 mohms/m Cu --.17 mohms/m Ga 1.1 K 1.7 mo/m Al 1.2.28 Sn 3.7 1.2 Pb 7.2 2.2 Nb 9.2 1.3 Res.

More information

What's so unusual about high temperature superconductors? UBC 2005

What's so unusual about high temperature superconductors? UBC 2005 What's so unusual about high temperature superconductors? UBC 2005 Everything... 1. Normal State - doped Mott insulator 2. Pairing Symmetry - d-wave 2. Short Coherence Length - superconducting fluctuations

More information

Vortices in superconductors& low temperature STM

Vortices in superconductors& low temperature STM Vortices in superconductors& low temperature STM José Gabriel Rodrigo Low Temperature Laboratory Universidad Autónoma de Madrid, Spain (LBT-UAM) Cryocourse, 2011 Outline -Vortices in superconductors -Vortices

More information

Solutions and Ions. Pure Substances

Solutions and Ions. Pure Substances Class #4 Solutions and Ions CHEM 107 L.S. Brown Texas A&M University Pure Substances Pure substance: described completely by a single chemical formula Fixed composition 1 Mixtures Combination of 2 or more

More information

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1

CLASS TEST GRADE 11. PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials 1 CLASS TEST GRADE PHYSICAL SCIENCES: CHEMISTRY Test 4: Matter and materials MARKS: 45 TIME: hour INSTRUCTIONS AND INFORMATION. Answer ALL the questions. 2. You may use non-programmable calculators. 3. You

More information

M.C. Escher. Angels and devils (detail), 1941

M.C. Escher. Angels and devils (detail), 1941 M.C. Escher Angels and devils (detail), 1941 1 Coherent Quantum Phase Slip: Exact quantum dual to Josephson Tunneling (Coulomb blockade is a partial dual) Degree of freedom in superconductor: Phase and

More information

Why all the repeating Why all the repeating Why all the repeating Why all the repeating

Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Why all the repeating Patterns What Patterns have you observed in your life? Where to Get Help If you don t understand concepts in chapter

More information

Superconductivity at nanoscale

Superconductivity at nanoscale Superconductivity at nanoscale Superconductivity is the result of the formation of a quantum condensate of paired electrons (Cooper pairs). In small particles, the allowed energy levels are quantized and

More information

Material Property. Dr. Cherdsak Bootjomchai (Dr. Per)

Material Property. Dr. Cherdsak Bootjomchai (Dr. Per) Material Property By Dr. Cherdsak Bootjomchai (Dr. Per) Chapter IV Magnetic Properties Objectives - Magnetic Properties I 1. Equations describing magnetic field strength, induction (several versions),

More information

Element Cube Project (x2)

Element Cube Project (x2) Element Cube Project (x2) Background: As a class, we will construct a three dimensional periodic table by each student selecting two elements in which you will need to create an element cube. Helpful Links

More information

Quantum Theory of Matter

Quantum Theory of Matter Quantum Theory of Matter Revision Lecture Derek Lee Imperial College London May 2006 Outline 1 Exam and Revision 2 Quantum Theory of Matter Microscopic theory 3 Summary Outline 1 Exam and Revision 2 Quantum

More information

Lecture 6 - Bonding in Crystals

Lecture 6 - Bonding in Crystals Lecture 6 onding in Crystals inding in Crystals (Kittel Ch. 3) inding of atoms to form crystals A crystal is a repeated array of atoms Why do they form? What are characteristic bonding mechanisms? How

More information

Atoms and the Periodic Table

Atoms and the Periodic Table Atoms and the Periodic Table Parts of the Atom Proton Found in the nucleus Number of protons defines the element Charge +1, mass 1 Parts of the Atom Neutron Found in the nucleus Stabilizes the nucleus

More information

Superconducting QUantum Interference Device (SQUID) and applications. Massoud Akhtari PhD

Superconducting QUantum Interference Device (SQUID) and applications. Massoud Akhtari PhD Superconducting QUantum Interference Device (SQUID) and applications Massoud Akhtari PhD Topics Superconductivity Definitions SQUID Principles Applications Superconductivity Conduction lattice has zero

More information

Vortex Structure and Critical Parameters in Superconducting Thin Films with Arrays of Pinning Centers

Vortex Structure and Critical Parameters in Superconducting Thin Films with Arrays of Pinning Centers UNIVERSITEIT ANTWERPEN Faculteit Wetenschappen Departement Fysica Vortex Structure and Critical Parameters in Superconducting Thin Films with Arrays of Pinning Centers Proefschrift voorgelegd tot het behalen

More information

Selected Densities (g/cm 3 )

Selected Densities (g/cm 3 ) Selected Densities (g/cm 3 ) Mg 1.74 Be 1.85 Al 2.70 Ti 4.54 Pb 11.3 Hg 13.5 Uranium 18.95 Plutonium 19.84 Au 19.3 Pt 21.4 Ir 22.4 Os 22.5 Crystal Classes Bravais Lattices Closed-Packed Structures: hexagonal

More information

6.763 Applied Superconductivity Lecture 1

6.763 Applied Superconductivity Lecture 1 1 6.763 Applied Superconductivity Lecture 1 Terry P. Orlando Dept. of Electrical Engineering MIT September 8, 2005 Outline What is a Superconductor? Discovery of Superconductivity Meissner Effect Type

More information

11. SUPERCONDUCTORS 11.1 Superconducting phenomena

11. SUPERCONDUCTORS 11.1 Superconducting phenomena 11. SUPERCONDUCTORS 11.1 Superconducting phenomena All discussions of superconductivity are supposed to start in 1911, in Leiden, when and where Kamerlingh Onnes 184 and his assistants discovered that

More information

Essential Chemistry for Biology

Essential Chemistry for Biology 1 Chapter 2 Essential Chemistry for Biology Biology and Society: More Precious than Gold A drought is a period of abnormally dry weather that changes the environment and one of the most devastating disasters.

More information

Chapter 1. Macroscopic Quantum Phenomena

Chapter 1. Macroscopic Quantum Phenomena Chapter 1 Macroscopic Quantum Phenomena Chap. 1-2 I. Foundations of the Josephson Effect 1. Macroscopic Quantum Phenomena 1.1 The Macroscopic Quantum Model of Superconductivity quantum mechanics: - physical

More information

TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the Force-Free Configuration

TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the Force-Free Configuration 5th International Workshop on Numerical Modelling of High-Temperature Superconductors, 6/15-17/2016, Bologna, Italy TDGL Simulation on Dynamics of Helical Vortices in Thin Superconducting Wires in the

More information

High-temperature superconductivity

High-temperature superconductivity Superconductivity and Low temperature physics, FMI036 High-temperature superconductivity Alexey Kalabukhov Quantum Device Physics Laboratory, MC2 Outline Lecture I (19/2): History of discovery, phenomenology

More information

Physical Mechanism of Superconductivity

Physical Mechanism of Superconductivity Physical Mechanism of Superconductivity Part 1 High T c Superconductors Xue-Shu Zhao, Yu-Ru Ge, Xin Zhao, Hong Zhao ABSTRACT The physical mechanism of superconductivity is proposed on the basis of carrier-induced

More information

Vortices in superconductors: I. Introduction

Vortices in superconductors: I. Introduction Tutorial BEC and quantized vortices in superfluidity and superconductivity 6-77 December 007 Institute for Mathematical Sciences National University of Singapore Vortices in superconductors: I. Introduction

More information

A Hydrated Superconductor

A Hydrated Superconductor A Hydrated Superconductor Karmela Padavic, Bikash Padhi, Akshat Puri A brief discussion of Superconductivity in 2D CoO 2 Layers Kazunori Takada, Hiroya Sakurai, Eiji Takayama Muromachi, Fujio Izumi, Ruben

More information

Scanning Tunnelling Microscopy Observations of Superconductivity

Scanning Tunnelling Microscopy Observations of Superconductivity Department of physics Seminar I a Scanning Tunnelling Microscopy Observations of Superconductivity Author: Tim Verbovšek Mentor: dr. Rok Žitko Co-Mentor: dr. Erik Zupanič Ljubljana, February 013 Abstract

More information

On the Higgs mechanism in the theory of

On the Higgs mechanism in the theory of On the Higgs mechanism in the theory of superconductivity* ty Dietrich Einzel Walther-Meißner-Institut für Tieftemperaturforschung Bayerische Akademie der Wissenschaften D-85748 Garching Outline Phenomenological

More information

Lecture 22 Metals - Superconductivity

Lecture 22 Metals - Superconductivity Lecture 22: Metals (Review and Kittel Ch. 9) and Superconductivity I (Kittel Ch. 1) Resistence Ω Leiden, Netherlands - 1911.1 4.6 K g sample < 1-5 Ω Outline metals Recall properties (From lectures 12,

More information

SCIENCE 1206 UNIT 2 CHEMISTRY. September 2017 November 2017

SCIENCE 1206 UNIT 2 CHEMISTRY. September 2017 November 2017 SCIENCE 1206 UNIT 2 CHEMISTRY September 2017 November 2017 UNIT OUTLINE 1. Review of Grade 9 Terms & the Periodic Table Bohr diagrams Evidence for chemical reactions Chemical Tests 2. Naming & writing

More information

Superconductivity - Overview

Superconductivity - Overview Superconductivity - Overview Last week (20-21.11.2017) This week (27-28.11.2017) Classification of Superconductors - Theory Summary - Josephson Effect - Paraconductivity Reading tasks Kittel: Chapter:

More information

Electrical conduction in solids

Electrical conduction in solids Equations of motion Electrical conduction in solids Electrical conduction is the movement of electrically charged particles through a conductor or semiconductor, which constitutes an electric current.

More information

Corso di Laurea in Ing. Elettrotecnica Corso di Fisica II

Corso di Laurea in Ing. Elettrotecnica Corso di Fisica II Corso di Laurea in Ing. Elettrotecnica Corso di Fisica II Cenni di Fisica della superconduttività Prof. A. Barra A.A. 2012-13 Libro: Superconductivity and cryogenics for accelerators and detectors School

More information