Weld Fracture. How Residual Stresses Affect Prediction of Brittle Fracture. Outline. Residual Stress in Thick Welds

Size: px
Start display at page:

Download "Weld Fracture. How Residual Stresses Affect Prediction of Brittle Fracture. Outline. Residual Stress in Thick Welds"

Transcription

1 How Residual Stresses ffect Prediction of Brittle Fracture Michael R. Hill University of California, Davis Tina L. Panontin NS-mes Research Center Weld Fracture Defects provide location for fracture initiation Residual stress impacts fracture Opening stress Driving Force Here we consider only the influence of residual stress (RS) on weld fracture Residual Stress in Thick Welds Outline Depth (mm) Gunnert (9) Two-sided butt-weld in plate Center of weld length and width Stress (kg/mm ) Long. Trans. Perp. Long. (z) Perp. (y) Trans. (x) Background on residual stresses and fracture approach Constraint effects in fracture Micromechanical fracture prediction Fracture simulation FEM with micromechanical failure theory Girth weld fracture specimen testing Comparison of predictive methods

2 Predicting RS Influence on Fracture Previous research focuses on driving force effects Suggested by codes ccounts for contribution of RS to J or K I J total = J el + J pl = (K appl + K RS ) /E + J pl J pl and K appl from reference solution K RS from weight function solution Fracture predicted when J total = J c Constraint effects ignored Effect of Constraint on Crack-tip Stress Under certain conditions, crack-tip stresses are not predicted by J SSY (Infinite body) Large structure Constraint altered by: Q Size Loading mode Crack geometry Define the parameter Q Finite Body Test specimen Increasing Load 3 r/(j/σ o ) Indication of constraint and magnitude of hydrostatic stress Q usually negative J-Q locus can be used in fracture prediction σ yy σ o Problem Definition Prediction of -weld Fracture Large diameter girth weld fracture Geometries Structural -, D o /t =, t =. inch Lab specimen - Tools FEM - Refined meshes to compute J and crack-tip fields Residual stresses introduced using eigenstrain Micromechanical failure theory Predict fracture from local crack-tip conditions Predict fracture using global parameters xial load, mild steel (5-7) Two-sided weld External girth flaw, a/t =.3 t =5mm Section - a a/t=.3 b=t-a Girth weld Toughness data from specimen,, yy,y P a/w =.3 S Z 58 mm B W W = B = 5mm S = W R 58 mm P

3 Residual Stresses in Girth Residual Stresses in Specimen Residual stress assumed independent of θ Stress computed by imposing eigenstrain.5.5 σ/σ o Weld Center xial Hoop Radial Distance from the inner surface (r/t).8. σ/σ o.. Z 58 mm xial Hoop Distance from the centerline (z/t) R Surface Stresses 58 mm Residual stress opening the crack largely unchanged Residual stress acting along the crack front is changed This leads to different constraint influence caused by residual stress Through Thickness, x/w Through Thickness, x/w Normalized Transverse Stress Out-of-plane Stress Fracture Simulation Refined finite element models Symmetric, blunt-notched mesh Crack-tip : xisymmetric, r o =.5, nodes : 3D, r o =.5, 9977 nodes y J z plasticity, finite strain formulation Three analysis steps: Residual stress introduction Crack extension Loading to failure x,,, yyy Symmetry planes, y,, yy,, yy Crack-tip stress-strain history computed, J-integral estimated (including residual stress) Micromechanical Fracture Prediction Continuum micromechanical damage model RKR model for cleavage σ f * and l* FEM can provide crack-tip stress 5-7 σ f * = 3.5σ y l* = 3 grain diameters Micromechanics defines fracture (local) σ yy /σ o Global parameters J c and Q at predicted fracture. σ f */σ o r = l* σ yy σ f * over r l* r/(j/σ o ) 8

4 Results - Global Results - Constraint RS alters J-integral RS causes drop in load at fracture, P c - 5% - 5% J RKR criteria satisfied J-integral Normalized by for which J c = 7. kn/m....8 Load / Limit Load J-Q analysis quantifies constraint change Residual stress increases constraint Constraint change is much larger for the structure J/(bσ o ) ( -3 ) at rσ o /J = Residual stress causes drop in J at fracture, J c - % - 3% Q = (σ yy - σ yy ssy )/σ o testing does not bound structural behavior Results - Results - Find J from FEM Failure load at J = J c J c defined from Non-conservative failure prediction relative to RKR by % by % Configuration RKR....8 Failure Load / Limit Load Prediction affected by geometric constraint Toughness Source Conservative Non-conservative.5.5 Failure Load For the ( / RKR) Geometrically corrected toughness grossly non-conservative Prediction using is fortuitous Constraint-loss + Constraint-addition

5 Conclusions Residual stress changes crack-driving force Residual stress changes constraint J-Q theory helpful is in quantifying the constraint effect of residual stress ignores constraint imposed by residual stresses Can cause large errors in fracture prediction Micromechanical approach is valuable Includes effect of residual stresses on J Includes effect of residual stresses on constraint Effects to be shown experimentally

Treatment of Constraint in Non-Linear Fracture Mechanics

Treatment of Constraint in Non-Linear Fracture Mechanics Treatment of Constraint in Non-Linear Fracture Mechanics Noel O Dowd Department of Mechanical and Aeronautical Engineering Materials and Surface Science Institute University of Limerick Ireland Acknowledgements:

More information

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens.

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens. a). Cohesive Failure b). Interfacial Failure c). Oscillatory Failure d). Alternating Failure Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double

More information

Efficient 2-parameter fracture assessments of cracked shell structures

Efficient 2-parameter fracture assessments of cracked shell structures Efficient 2-parameter fracture assessments of cracked shell structures B. Skallerud, K.R. Jayadevan, C. Thaulow, E. Berg*, K. Holthe Faculty of Engineering Science The Norwegian University of Science and

More information

A Simplified Eigenstrain Approach for Determination of Sub-surface Triaxial Residual Stress in Welds

A Simplified Eigenstrain Approach for Determination of Sub-surface Triaxial Residual Stress in Welds 1 A Simplified Eigenstrain Approach for Determination of Sub-surface Triaxial Residual Stress in Welds Michael R. Hill Mechanical and Aeronautical Engineering Department University of California, Davis

More information

DEVELOPMENT OF TEST GUIDANCE FOR COMPACT TENSION FRACTURE TOUGHNESS SPECIMENS CONTAINING NOTCHES INSTEAD OF FATIGUE PRE-CRACKS

DEVELOPMENT OF TEST GUIDANCE FOR COMPACT TENSION FRACTURE TOUGHNESS SPECIMENS CONTAINING NOTCHES INSTEAD OF FATIGUE PRE-CRACKS Transactions, SMiRT-23 Division II, Paper ID 287 Fracture Mechanics and Structural Integrity DEVELOPMENT OF TEST GUIDANCE FOR COMPACT TENSION FRACTURE TOUGHNESS SPECIMENS CONTAINING NOTCHES INSTEAD OF

More information

Fracture mechanics fundamentals. Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design

Fracture mechanics fundamentals. Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design Fracture mechanics fundamentals Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design Failure modes Failure can occur in a number of modes: - plastic deformation

More information

INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE IN A 90 BEND

INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE IN A 90 BEND 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) Beijing, China, August 7-12, 25 SMiRT18-G8-5 INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE

More information

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering FCP Short Course Ductile and Brittle Fracture Stephen D. Downing Mechanical Science and Engineering 001-015 University of Illinois Board of Trustees, All Rights Reserved Agenda Limit theorems Plane Stress

More information

G1RT-CT A. BASIC CONCEPTS F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION

G1RT-CT A. BASIC CONCEPTS F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION A. BASIC CONCEPTS 6 INTRODUCTION The final fracture of structural components is associated with the presence of macro or microstructural defects that affect the stress state due to the loading conditions.

More information

Stress Concentration. Professor Darrell F. Socie Darrell Socie, All Rights Reserved

Stress Concentration. Professor Darrell F. Socie Darrell Socie, All Rights Reserved Stress Concentration Professor Darrell F. Socie 004-014 Darrell Socie, All Rights Reserved Outline 1. Stress Concentration. Notch Rules 3. Fatigue Notch Factor 4. Stress Intensity Factors for Notches 5.

More information

Archetype-Blending Multiscale Continuum Method

Archetype-Blending Multiscale Continuum Method Archetype-Blending Multiscale Continuum Method John A. Moore Professor Wing Kam Liu Northwestern University Mechanical Engineering 3/27/2014 1 1 Outline Background and Motivation Archetype-Blending Continuum

More information

QUESTION BANK Composite Materials

QUESTION BANK Composite Materials QUESTION BANK Composite Materials 1. Define composite material. 2. What is the need for composite material? 3. Mention important characterits of composite material 4. Give examples for fiber material 5.

More information

IMECE CRACK TUNNELING: EFFECT OF STRESS CONSTRAINT

IMECE CRACK TUNNELING: EFFECT OF STRESS CONSTRAINT Proceedings of IMECE04 2004 ASME International Mechanical Engineering Congress November 13-20, 2004, Anaheim, California USA IMECE2004-60700 CRACK TUNNELING: EFFECT OF STRESS CONSTRAINT Jianzheng Zuo Department

More information

Crack Tip Plastic Zone under Mode I Loading and the Non-singular T zz -stress

Crack Tip Plastic Zone under Mode I Loading and the Non-singular T zz -stress Crack Tip Plastic Zone under Mode Loading and the Non-singular T -stress Yu.G. Matvienko Mechanical Engineering Research nstitute of the Russian Academy of Sciences Email: ygmatvienko@gmail.com Abstract:

More information

Elastic-Plastic Fracture Mechanics. Professor S. Suresh

Elastic-Plastic Fracture Mechanics. Professor S. Suresh Elastic-Plastic Fracture Mechanics Professor S. Suresh Elastic Plastic Fracture Previously, we have analyzed problems in which the plastic zone was small compared to the specimen dimensions (small scale

More information

V Predicted Weldment Fatigue Behavior AM 11/03 1

V Predicted Weldment Fatigue Behavior AM 11/03 1 V Predicted Weldment Fatigue Behavior AM 11/03 1 Outline Heavy and Light Industry weldments The IP model Some predictions of the IP model AM 11/03 2 Heavy industry AM 11/03 3 Heavy industry AM 11/03 4

More information

Stress Intensity Factor Determination of Multiple Straight and Oblique Cracks in Double Cover Butt Riveted Joint

Stress Intensity Factor Determination of Multiple Straight and Oblique Cracks in Double Cover Butt Riveted Joint ISSN (Online) : 2319-8753 ISSN (Print) : 2347-671 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 214 214 International Conference on

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS E ENGINEERING FRACTURE MECHANICS

MMJ1133 FATIGUE AND FRACTURE MECHANICS E ENGINEERING FRACTURE MECHANICS E ENGINEERING WWII: Liberty ships Reprinted w/ permission from R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials", (4th ed.) Fig. 7.1(b), p. 6, John Wiley and Sons, Inc., 1996.

More information

Effect of Plasticity on Residual Stresses Obtained by the Incremental Hole-drilling Method with 3D FEM Modelling

Effect of Plasticity on Residual Stresses Obtained by the Incremental Hole-drilling Method with 3D FEM Modelling Effect of Plasticity on Residual Stresses Obtained by the Incremental Hole-drilling Method with 3D FEM Modelling Evy Van Puymbroeck 1, a *, Wim Nagy 1,b and Hans De Backer 1,c 1 Ghent University, Department

More information

Fracture Mechanics, Damage and Fatigue Non Linear Fracture Mechanics: J-Integral

Fracture Mechanics, Damage and Fatigue Non Linear Fracture Mechanics: J-Integral University of Liège Aerospace & Mechanical Engineering Fracture Mechanics, Damage and Fatigue Non Linear Fracture Mechanics: J-Integral Ludovic Noels Computational & Multiscale Mechanics of Materials CM3

More information

Evolution of Tenacity in Mixed Mode Fracture Volumetric Approach

Evolution of Tenacity in Mixed Mode Fracture Volumetric Approach Mechanics and Mechanical Engineering Vol. 22, No. 4 (2018) 931 938 c Technical University of Lodz Evolution of Tenacity in Mixed Mode Fracture Volumetric Approach O. Zebri LIDRA Laboratory, Research team

More information

Determination of Stress Intensity Factor for a Crack Emanating From a Rivet Hole and Approaching Another in Curved Sheet

Determination of Stress Intensity Factor for a Crack Emanating From a Rivet Hole and Approaching Another in Curved Sheet International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Determination of Stress Intensity Factor for a Crack Emanating From a Rivet Hole and Approaching Another in Curved Sheet Raghavendra.

More information

International Journal of Solids and Structures

International Journal of Solids and Structures International Journal of Solids and Structures 46 (2009) 2629 2641 Contents lists available at ScienceDirect International Journal of Solids and Structures journal homepage: www.elsevier.com/locate/solstr

More information

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing

More information

Linear Elastic Fracture Mechanics

Linear Elastic Fracture Mechanics Measure what is measurable, and make measurable what is not so. - Galileo GALILEI Linear Elastic Fracture Mechanics Krishnaswamy Ravi-Chandar Lecture presented at the University of Pierre and Marie Curie

More information

Influence of impact velocity on transition time for V-notched Charpy specimen*

Influence of impact velocity on transition time for V-notched Charpy specimen* [ 溶接学会論文集第 35 巻第 2 号 p. 80s-84s (2017)] Influence of impact velocity on transition time for V-notched Charpy specimen* by Yasuhito Takashima** and Fumiyoshi Minami** This study investigated the influence

More information

Laboratory 4 Bending Test of Materials

Laboratory 4 Bending Test of Materials Department of Materials and Metallurgical Engineering Bangladesh University of Engineering Technology, Dhaka MME 222 Materials Testing Sessional.50 Credits Laboratory 4 Bending Test of Materials. Objective

More information

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the 5. STRESS CONCENTRATIONS So far in this thesis, most of the formulas we have seen to calculate the stresses and strains in shafts apply only to solid and hollow circular shafts while they are in the elastic

More information

Characterization of crack-tip field and constraint for bending specimens under large-scale yielding

Characterization of crack-tip field and constraint for bending specimens under large-scale yielding International Journal of Fracture 127: 283 302, 2004. 2004 Kluwer Academic Publishers. Printed in the Netherlands. Characterization of crack-tip field and constraint for bending specimens under large-scale

More information

D Radaj, C M Sonsino and W Pricke. Fatigue assessment of welded joints by local approaches

D Radaj, C M Sonsino and W Pricke. Fatigue assessment of welded joints by local approaches D Radaj, C M Sonsino and W Pricke Fatigue assessment of welded joints by local approaches Second edition Foreword Preface Author contact details Introduction 1.1 Fatigue strength assessment of welded joints

More information

A 3D Discrete Damage Modeling Methodology for Abaqus for Fatigue Damage Evaluation in Bolted Composite Joints

A 3D Discrete Damage Modeling Methodology for Abaqus for Fatigue Damage Evaluation in Bolted Composite Joints A 3D Discrete Damage Modeling Methodology for Abaqus for Fatigue Damage Evaluation in Bolted Composite Joints Eugene Fang 1, Ling Liu 1, Michael Stuebner 1, Jim Lua 1 1 Global Engineering and Materials,

More information

2.002 MECHANICS AND MATERIALS II Spring, Creep and Creep Fracture: Part III Creep Fracture c L. Anand

2.002 MECHANICS AND MATERIALS II Spring, Creep and Creep Fracture: Part III Creep Fracture c L. Anand MASSACHUSETTS INSTITUTE OF TECHNOLOGY DEPARTMENT OF MECHANICAL ENGINEERING CAMBRIDGE, MA 02139 2.002 MECHANICS AND MATERIALS II Spring, 2004 Creep and Creep Fracture: Part III Creep Fracture c L. Anand

More information

FAILURE ASSESSMENT DIAGRAM ASSESSMENTS OF LARGE-SCALE CRACKED STRAIGHT PIPES AND ELBOWS

FAILURE ASSESSMENT DIAGRAM ASSESSMENTS OF LARGE-SCALE CRACKED STRAIGHT PIPES AND ELBOWS Transactions, SMiRT-23, Paper ID 093 FAILURE ASSESSMENT DIAGRAM ASSESSMENTS OF LARGE-SCALE CRACKED STRAIGHT PIPES AND ELBOWS R A Ainsworth 1, M Gintalas 1, M K Sahu 2, J Chattopadhyay 2 and B K Dutta 2

More information

ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

More information

Topics in Ship Structures

Topics in Ship Structures Topics in Ship Structures 8 Elastic-lastic Fracture Mechanics Reference : Fracture Mechanics by T.L. Anderson Lecture Note of Eindhoven University of Technology 17. 1 by Jang, Beom Seon Oen INteractive

More information

Effective stress assessment at rectangular rounded lateral notches

Effective stress assessment at rectangular rounded lateral notches Focussed on characterization of crack tip fields Effective stress assessment at rectangular rounded lateral notches Enrico Maggiolini, Roberto Tovo, Paolo Livieri University of Ferrara Enrico.maggiolini@unife.it,

More information

Critical applied stresses for a crack initiation from a sharp V-notch

Critical applied stresses for a crack initiation from a sharp V-notch Focussed on: Fracture and Structural Integrity related Issues Critical applied stresses for a crack initiation from a sharp V-notch L. Náhlík, P. Hutař Institute of Physics of Materials, Academy of Sciences

More information

New Approaches for Integrity Assessment. Nuclear Codes and Standards Workshop Kim Wallin VTT Technical Research Centre of Finland

New Approaches for Integrity Assessment. Nuclear Codes and Standards Workshop Kim Wallin VTT Technical Research Centre of Finland New Approaches for Integrity Assessment Nuclear Codes and Standards Workshop im Wallin VTT Technical Research Centre of Finland IC JC Ji JDa NO STATISTICAL SIZE EFFECT ADVANCED CHARACTERISTICS AND APPLICATIONS

More information

Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139

Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139 Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139 2.002 Mechanics and Materials II Spring 2004 Laboratory Module No. 6 Fracture Toughness Testing and Residual

More information

FRACTURE OF CRACKED MEMBERS 1. The presence of a crack in a structure may weaken it so that it fails by fracturing in two or more pieces.

FRACTURE OF CRACKED MEMBERS 1. The presence of a crack in a structure may weaken it so that it fails by fracturing in two or more pieces. Aerospace Structures Fracture Mechanics: An Introduction Page 1 of 7 FRACTURE OF CRACED MEMBERS 1. The presence of a crack in a structure may weaken it so that it fails by fracturing in two or more pieces.

More information

Burst pressure estimation of reworked nozzle weld on spherical domes

Burst pressure estimation of reworked nozzle weld on spherical domes Indian Journal of Engineering & Materials Science Vol. 21, February 2014, pp. 88-92 Burst pressure estimation of reworked nozzle weld on spherical domes G Jegan Lal a, Jayesh P a & K Thyagarajan b a Cryo

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION A - INTRODUCTION INTRODUCTION M.N.Tamin, CSMLab, UTM Course Content: A - INTRODUCTION Mechanical failure modes; Review of load and stress analysis equilibrium equations, complex stresses, stress transformation,

More information

ASSESSMENT OF THE PROBABILITY OF FAILURE OF REACTOR VESSELS AFTER WARM PRE-STRESSING USING MONTE CARLO SIMILATIONS

ASSESSMENT OF THE PROBABILITY OF FAILURE OF REACTOR VESSELS AFTER WARM PRE-STRESSING USING MONTE CARLO SIMILATIONS Int J Fract DOI 10.1007/s10704-012-9800-5 Springer Science+Business Media Dordrecht 2012 LETTERS IN FRACTURE AND MICROMECHANICS ASSESSMENT OF THE PROBABILITY OF FAILURE OF REACTOR VESSELS AFTER WARM PRE-STRESSING

More information

VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS

VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS The 4 th World Conference on Earthquake Engineering October -7, 008, Beijing, China VORONOI APPLIED ELEMENT METHOD FOR STRUCTURAL ANALYSIS: THEORY AND APPLICATION FOR LINEAR AND NON-LINEAR MATERIALS K.

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure

More information

Non-linear fracture mechanics in LS-DYNA and LS-PrePost

Non-linear fracture mechanics in LS-DYNA and LS-PrePost Non-linear fracture mechanics in LS-DYNA and LS-PrePost Per Lindström 1,, Anders Jonsson 3, Anders Jernberg 3, Erling Østby 1 Department of Engineering Science, University West, Trollhättan, Sweden DNV

More information

TOWARDS A VALIDATED PIPELINE DENT INTEGRITY ASSESSMENT MODEL

TOWARDS A VALIDATED PIPELINE DENT INTEGRITY ASSESSMENT MODEL Proceedings of IPC 28 International Pipeline Conference 28 September 29-October 3, 28, Calgary Alberta IPC28-64621 TOWARDS A VALIDATED PIPELINE DENT INTEGRITY ASSESSMENT MODEL Brock Bolton 1, Vlado Semiga

More information

Stress concentrations, fracture and fatigue

Stress concentrations, fracture and fatigue Stress concentrations, fracture and fatigue Piet Schreurs Department of Mechanical Engineering Eindhoven University of Technology http://www.mate.tue.nl/ piet December 1, 2016 Overview Stress concentrations

More information

Fatigue and Fracture

Fatigue and Fracture Fatigue and Fracture Multiaxial Fatigue Professor Darrell F. Socie Mechanical Science and Engineering University of Illinois 2004-2013 Darrell Socie, All Rights Reserved When is Multiaxial Fatigue Important?

More information

Structural Analysis I Chapter 4 - Torsion TORSION

Structural Analysis I Chapter 4 - Torsion TORSION ORSION orsional stress results from the action of torsional or twisting moments acting about the longitudinal axis of a shaft. he effect of the application of a torsional moment, combined with appropriate

More information

Towards The. Design of Super Columns. Prof. AbdulQader Najmi

Towards The. Design of Super Columns. Prof. AbdulQader Najmi Towards The Design of Super Columns Prof. AbdulQader Najmi Description: Tubular Column Square or Round Filled with Concrete Provided with U-Links welded to its Walls as shown in Figure 1 Compression Specimen

More information

Materials and Structures

Materials and Structures Journal of Mechanics of Materials and Structures BRITTLE FRACTURE BEYOND THE STRESS INTENSITY FACTOR C. T. Sun and Haiyang Qian Volume 4, Nº 4 April 2009 mathematical sciences publishers JOURNAL OF MECHANICS

More information

A Model for Local Plasticity Effects on Fatigue Crack Growth

A Model for Local Plasticity Effects on Fatigue Crack Growth A Model for Local Plasticity Effects on Fatigue Crack Growth USAF Aircraft Structural Integrity Program Conference San Antonio, Texas November 28-30, 2006 R. Craig McClung Brian M. Gardner Yi-Der Lee Fraser

More information

Introduction to Fracture

Introduction to Fracture Introduction to Fracture Introduction Design of a component Yielding Strength Deflection Stiffness Buckling critical load Fatigue Stress and Strain based Vibration Resonance Impact High strain rates Fracture

More information

FRACTURE ANALYSIS FOR REACTOR PRESSURE VESSEL NOZZLE CORNER CRACKS

FRACTURE ANALYSIS FOR REACTOR PRESSURE VESSEL NOZZLE CORNER CRACKS Transactions, SMiRT-22 FRACTURE ANALYSIS FOR REACTOR PRESSURE VESSEL NOZZLE CORNER CRACKS Shengjun Yin 1, Gary L. Stevens 2, and B. Richard Bass 3 1 Senior Research Staff, Oak Ridge National Laboratory,

More information

FME461 Engineering Design II

FME461 Engineering Design II FME461 Engineering Design II Dr.Hussein Jama Hussein.jama@uobi.ac.ke Office 414 Lecture: Mon 8am -10am Tutorial Tue 3pm - 5pm 10/1/2013 1 Semester outline Date Week Topics Reference Reading 9 th Sept 1

More information

Thermal load-induced notch stress intensity factors derived from averaged strain energy density

Thermal load-induced notch stress intensity factors derived from averaged strain energy density Available online at www.sciencedirect.com Draft ScienceDirect Draft Draft Structural Integrity Procedia 00 (2016) 000 000 www.elsevier.com/locate/procedia 21st European Conference on Fracture, ECF21, 20-24

More information

New Life in Fatigue KIVI NIRIA HOUSTON, WE HAVE A PROBLEM...

New Life in Fatigue KIVI NIRIA HOUSTON, WE HAVE A PROBLEM... New Life in Fatigue 21-11-2011 KIVI NIRIA HOUSTON, WE HAVE A PROBLEM... Ship structure a collection of a large number and variety of fatigue prone locations, hot spots. Delft University of Technology Challenge

More information

Cracks Jacques Besson

Cracks Jacques Besson Jacques Besson Centre des Matériaux UMR 7633 Mines ParisTech PSL Research University Institut Mines Télécom Aγνωστ oς Θεoς Outline 1 Some definitions 2 in a linear elastic material 3 in a plastic material

More information

Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives

Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives Experimentally Calibrating Cohesive Zone Models for Structural Automotive Adhesives Mark Oliver October 19, 2016 Adhesives and Sealants Council Fall Convention contact@veryst.com www.veryst.com Outline

More information

Weibull stress solutions for 2-D cracks in elastic and elastic-plastic materials

Weibull stress solutions for 2-D cracks in elastic and elastic-plastic materials International Journal of Fracture 89: 245 268, 1998. 1998 Kluwer Academic Publishers. Printed in the Netherlands. Weibull stress solutions for 2-D cracks in elastic and elastic-plastic materials Y. LEI,

More information

Lecture 4 Honeycombs Notes, 3.054

Lecture 4 Honeycombs Notes, 3.054 Honeycombs-In-plane behavior Lecture 4 Honeycombs Notes, 3.054 Prismatic cells Polymer, metal, ceramic honeycombs widely available Used for sandwich structure cores, energy absorption, carriers for catalysts

More information

Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach

Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach University of Liège Aerospace & Mechanical Engineering Fracture Mechanics, Damage and Fatigue Linear Elastic Fracture Mechanics - Energetic Approach Ludovic Noels Computational & Multiscale Mechanics of

More information

Volume 2 Fatigue Theory Reference Manual

Volume 2 Fatigue Theory Reference Manual Volume Fatigue Theory Reference Manual Contents 1 Introduction to fatigue 1.1 Introduction... 1-1 1. Description of the applied loading... 1-1.3 Endurance curves... 1-3 1.4 Generalising fatigue data...

More information

INFLUENCE OF THE LOCATION AND CRACK ANGLE ON THE MAGNITUDE OF STRESS INTENSITY FACTORS MODE I AND II UNDER UNIAXIAL TENSION STRESSES

INFLUENCE OF THE LOCATION AND CRACK ANGLE ON THE MAGNITUDE OF STRESS INTENSITY FACTORS MODE I AND II UNDER UNIAXIAL TENSION STRESSES INFLUENCE OF THE LOCATION AND CRACK ANGLE ON THE MAGNITUDE OF STRESS INTENSITY FACTORS MODE I AND II UNDER UNIAXIAL TENSION STRESSES Najah Rustum Mohsin Southern Technical University, Technical Institute-Nasiriya,

More information

Multiaxial Fatigue. Professor Darrell F. Socie. Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign

Multiaxial Fatigue. Professor Darrell F. Socie. Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign Multiaxial Fatigue Professor Darrell F. Socie Department of Mechanical Science and Engineering University of Illinois at Urbana-Champaign 2001-2011 Darrell Socie, All Rights Reserved Contact Information

More information

G1RT-CT D. EXAMPLES F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION

G1RT-CT D. EXAMPLES F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION D. EXAMPLES 426 WORKED EXAMPLE I Flat Plate Under Constant Load Introduction and objectives Data Analysis Bibliography/References 427 INTRODUCTION AND OBJECTIVES During a visual inspection of a C-Mn flat

More information

Modified Symmetry Cell Approach for Simulation of Surface Enhancement Over Large Scale Structures

Modified Symmetry Cell Approach for Simulation of Surface Enhancement Over Large Scale Structures Modified Symmetry Cell Approach for Simulation of Surface Enhancement Over Large Scale Structures T. Spradlin 1, R. Grandhi 2, and K. Langer 3 1 Doctoral Candidate, Wright State University, USA 2 Distinguished

More information

Computational Analysis for Composites

Computational Analysis for Composites Computational Analysis for Composites Professor Johann Sienz and Dr. Tony Murmu Swansea University July, 011 The topics covered include: OUTLINE Overview of composites and their applications Micromechanics

More information

Design and Analysis of Progressive Tool

Design and Analysis of Progressive Tool Design and Analysis of Progressive Tool Ch.Mastanamma 1, K.Prasada Rao 2,Dr. M.Venkateswara Rao 3 1. PG Student, Department of Mechanical Engineering, Bapatla Engineering College, Bapatla, Guntur, India

More information

Studies of Bimaterial Interface Fracture with Peridynamics Fang Wang 1, Lisheng Liu 2, *, Qiwen Liu 1, Zhenyu Zhang 1, Lin Su 1 & Dan Xue 1

Studies of Bimaterial Interface Fracture with Peridynamics Fang Wang 1, Lisheng Liu 2, *, Qiwen Liu 1, Zhenyu Zhang 1, Lin Su 1 & Dan Xue 1 International Power, Electronics and Materials Engineering Conference (IPEMEC 2015) Studies of Bimaterial Interface Fracture with Peridynamics Fang Wang 1, Lisheng Liu 2, *, Qiwen Liu 1, Zhenyu Zhang 1,

More information

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring

ROTATING RING. Volume of small element = Rdθbt if weight density of ring = ρ weight of small element = ρrbtdθ. Figure 1 Rotating ring ROTATIONAL STRESSES INTRODUCTION High centrifugal forces are developed in machine components rotating at a high angular speed of the order of 100 to 500 revolutions per second (rps). High centrifugal force

More information

Finite element simulations of fretting contact systems

Finite element simulations of fretting contact systems Computer Methods and Experimental Measurements for Surface Effects and Contact Mechanics VII 45 Finite element simulations of fretting contact systems G. Shi, D. Backman & N. Bellinger Structures and Materials

More information

ASSESSMENT OF DYNAMICALLY LOADED CRACKS IN FILLETS

ASSESSMENT OF DYNAMICALLY LOADED CRACKS IN FILLETS ASSESSMENT OF DNAMICALL LOADED CRACKS IN FILLETS Uwe Zencker, Linan Qiao, Bernhard Droste Federal Institute for Materials Research and Testing (BAM) 12200 Berlin, Germany e-mail: zencker@web.de Abstract

More information

THE DETERMINATION OF FRACTURE STRENGTH FROM ULTIMATE TENSILE AND TRANSVERSE RUPTURE STRESSES

THE DETERMINATION OF FRACTURE STRENGTH FROM ULTIMATE TENSILE AND TRANSVERSE RUPTURE STRESSES Powder Metallurgy Progress, Vol.3 (003), No 3 119 THE DETERMINATION OF FRACTURE STRENGTH FROM ULTIMATE TENSILE AND TRANSVERSE RUPTURE STRESSES A.S. Wronski, A.Cias Abstract It is well-recognized that the

More information

On the Path-Dependence of the J-Integral Near a Stationary Crack in an Elastic-Plastic Material

On the Path-Dependence of the J-Integral Near a Stationary Crack in an Elastic-Plastic Material Dorinamaria Carka Chad M. Landis e-mail: landis@mail.utexas.edu Department of Aerospace Engineering and Engineering Mechanics, University of Texas at Austin, 10 East 4th Street, C0600 Austin, TX 7871-035

More information

STRESS ANALYSIS AND STRENGTH EVALUATION OF SCARF ADHESIVE JOINTS SUBJECTED TO STATIC TENSILE LOADINGS. Graduate School of Mechanical Engineering

STRESS ANALYSIS AND STRENGTH EVALUATION OF SCARF ADHESIVE JOINTS SUBJECTED TO STATIC TENSILE LOADINGS. Graduate School of Mechanical Engineering STRESS ANALYSIS AND STRENGTH EVALUATION OF SCARF ADHESIVE JOINTS SUBJECTED TO STATIC TENSILE LOADINGS HE Dan Prof. Toshiyuki SAWA * Takeshi IWAMOTO Yuya HIRAYAMA Graduate School of Mechanical Engineering

More information

Plane Strain Test for Metal Sheet Characterization

Plane Strain Test for Metal Sheet Characterization Plane Strain Test for Metal Sheet Characterization Paulo Flores 1, Felix Bonnet 2 and Anne-Marie Habraken 3 1 DIM, University of Concepción, Edmundo Larenas 270, Concepción, Chile 2 ENS - Cachan, Avenue

More information

J-T AND J-Q CHARACTERIZATION OF SURFACE CRACK TIP FIELDS IN METALLIC LINERS UNDER LARGE-SCALE YIELDING

J-T AND J-Q CHARACTERIZATION OF SURFACE CRACK TIP FIELDS IN METALLIC LINERS UNDER LARGE-SCALE YIELDING J-T AND J-Q CHARACTERIZATION OF SURFACE CRACK TIP FIELDS IN METALLIC LINERS UNDER LARGE-SCALE YIELDING By SHAWN A. ENGLISH A DISSERTATION PRESENTED TO THE GRADUATE SCHOOL OF THE UNIVERSITY OF FLORIDA IN

More information

Numerical Study: Time-Reversed Reciprocal Method and Damage Detection Method for Weld Fracture

Numerical Study: Time-Reversed Reciprocal Method and Damage Detection Method for Weld Fracture Chapter 4 Numerical Study: Time-Reversed Reciprocal Method and Damage Detection Method for Weld Fracture A numerical study is performed to gain insight into applying the proposed method of detecting high-frequency

More information

RESIDUAL STRESS MEASUREMENT IN STEEL BEAMS USING THE INCREMENTAL SLITTING TECHNIQUE

RESIDUAL STRESS MEASUREMENT IN STEEL BEAMS USING THE INCREMENTAL SLITTING TECHNIQUE 659 RESIDUAL STRESS MEASUREMENT IN STEEL BEAMS USING THE INCREMENTAL SLITTING TECHNIQUE DZL Hodgson 1, DJ Smith 1, A Shterenlikht 1 1 Department of Mechanical Engineering, University of Bristol University

More information

Direct Comparison of Anisotropic Damage Mechanics to Fracture Mechanics of Explicit Cracks

Direct Comparison of Anisotropic Damage Mechanics to Fracture Mechanics of Explicit Cracks Direct Comparison of Anisotropic Damage Mechanics to Fracture Mechanics of Explicit Cracks John A. Nairn Wood Science and Engineering, Oregon State University, Corvallis, OR 97330, USA Tel: +1-541-737-4265

More information

A PAPER ON DESIGN AND ANALYSIS OF PRESSURE VESSEL

A PAPER ON DESIGN AND ANALYSIS OF PRESSURE VESSEL A PAPER ON DESIGN AND ANALYSIS OF PRESSURE VESSEL P.Palanivelu 1, R.Siva Prasad 2, 1 PG Scholar, Department of Mechanical Engineering, Gojan School of Business and Technology, Redhills, Chennai, India.

More information

Tentamen/Examination TMHL61

Tentamen/Examination TMHL61 Avd Hållfasthetslära, IKP, Linköpings Universitet Tentamen/Examination TMHL61 Tentamen i Skademekanik och livslängdsanalys TMHL61 lördagen den 14/10 2000, kl 8-12 Solid Mechanics, IKP, Linköping University

More information

Fatigue Crack Analysis on the Bracket of Sanding Nozzle of CRH5 EMU Bogie

Fatigue Crack Analysis on the Bracket of Sanding Nozzle of CRH5 EMU Bogie Journal of Applied Mathematics and Physics, 2015, 3, 577-583 Published Online May 2015 in SciRes. http://www.scirp.org/journal/jamp http://dx.doi.org/10.4236/jamp.2015.35071 Fatigue Crack Analysis on the

More information

Autodesk Helius PFA. Guidelines for Determining Finite Element Cohesive Material Parameters

Autodesk Helius PFA. Guidelines for Determining Finite Element Cohesive Material Parameters Autodesk Helius PFA Guidelines for Determining Finite Element Cohesive Material Parameters Contents Introduction...1 Determining Cohesive Parameters for Finite Element Analysis...2 What Test Specimens

More information

After lecture 16 you should be able to

After lecture 16 you should be able to Lecture 16: Design of paper and board packaging Advanced concepts: FEM, Fracture Mechanics After lecture 16 you should be able to describe the finite element method and its use for paper- based industry

More information

Durability of bonded aircraft structure. AMTAS Fall 2016 meeting October 27 th 2016 Seattle, WA

Durability of bonded aircraft structure. AMTAS Fall 2016 meeting October 27 th 2016 Seattle, WA Durability of bonded aircraft structure AMTAS Fall 216 meeting October 27 th 216 Seattle, WA Durability of Bonded Aircraft Structure Motivation and Key Issues: Adhesive bonding is a key path towards reduced

More information

Elastic and Elastic-Plastic Behaviour of a Crack in a Residual Stress Field

Elastic and Elastic-Plastic Behaviour of a Crack in a Residual Stress Field Residual Stresses 2016: IC-10 Elastic and Elastic-Plastic Behaviour of a Crack in a Residual Stress Field Guiyi Wu a, Chris Aird b, David Smith and Martyn Pavier c* Department of Mechanical Engineering,

More information

Numerical Simulation of Fatigue Crack Growth: Cohesive Zone Models vs. XFEM

Numerical Simulation of Fatigue Crack Growth: Cohesive Zone Models vs. XFEM Numerical Simulation of Fatigue Crack Growth: Cohesive Zone Models vs. XFEM Thomas Siegmund Purdue University 1 Funding JOINT CENTER OF EXCELLENCE for ADVANCED MATERIALS, FAA Cooperative Agreement 04-C-AM-PU.

More information

FRACTURE IN PBX 9501 AT LOW RATES

FRACTURE IN PBX 9501 AT LOW RATES FRACTURE IN PBX 9501 AT LOW RATES Cheng Liu & Richard Browning Los Alamos National Laboratory Los Alamos, NM 87545 Tensile, or mode I, fractures in PBX 9501 have a very large process zone that runs well

More information

Transactions on Modelling and Simulation vol 10, 1995 WIT Press, ISSN X

Transactions on Modelling and Simulation vol 10, 1995 WIT Press,  ISSN X Parameters controlling the numerical simulation validity of damageable composite toughness testing S. Yotte, C. Currit, E. Lacoste, J.M. Quenisset Laboratoire de Genie Meanique - IUT 'A\ Domaine Universitaire,

More information

Finite element modelling of infinitely wide Angle-ply FRP. laminates

Finite element modelling of infinitely wide Angle-ply FRP. laminates www.ijaser.com 2012 by the authors Licensee IJASER- Under Creative Commons License 3.0 editorial@ijaser.com Research article ISSN 2277 9442 Finite element modelling of infinitely wide Angle-ply FRP laminates

More information

SKIN-STRINGER DEBONDING AND DELAMINATION ANALYSIS IN COMPOSITE STIFFENED SHELLS

SKIN-STRINGER DEBONDING AND DELAMINATION ANALYSIS IN COMPOSITE STIFFENED SHELLS SKIN-STRINER DEBONDIN AND DELAMINATION ANALYSIS IN COMPOSITE STIFFENED SHELLS R. Rikards, K. Kalnins & O. Ozolinsh Institute of Materials and Structures, Riga Technical University, Riga 1658, Latvia ABSTRACT

More information

Engineering Fracture Mechanics

Engineering Fracture Mechanics Engineering Fracture Mechanics 77 (200) 70 8 Contents lists available at ScienceDirect Engineering Fracture Mechanics journal homepage: www.elsevier.com/locate/engfracmech J T characterized stress fields

More information

CHAPTER II EXPERIMENTAL INVESTIGATION

CHAPTER II EXPERIMENTAL INVESTIGATION CHAPTER II EXPERIMENTAL INVESTIGATION 2.1 SCOPE OF TESTING The objective of this research is to determine the force distribution between the column web and stiffener when the column flanges are subjected

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH

THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH THE ROLE OF DELAMINATION IN NOTCHED AND UNNOTCHED TENSILE STRENGTH M. R. Wisnom University of Bristol Advanced Composites Centre for Innovation and Science University Walk, Bristol BS8 1TR, UK M.Wisnom@bristol.ac.uk

More information

e = (l/27r)ln(l- p/l+p'

e = (l/27r)ln(l- p/l+p' Key Engineering Materials Vols. J83-I87 (2000) pp. 73-78 2000 Trans Tech Publications. Switzerland Kinking out of a Mixed Mode Interface Crack T. Ikeda\ Y. Komohara^, A. Nakamura^ and N. Miyazaki^ ^ Department

More information