ASSESSMENT OF THE PROBABILITY OF FAILURE OF REACTOR VESSELS AFTER WARM PRE-STRESSING USING MONTE CARLO SIMILATIONS

Size: px
Start display at page:

Download "ASSESSMENT OF THE PROBABILITY OF FAILURE OF REACTOR VESSELS AFTER WARM PRE-STRESSING USING MONTE CARLO SIMILATIONS"

Transcription

1 Int J Fract DOI /s Springer Science+Business Media Dordrecht 2012 LETTERS IN FRACTURE AND MICROMECHANICS ASSESSMENT OF THE PROBABILITY OF FAILURE OF REACTOR VESSELS AFTER WARM PRE-STRESSING USING MONTE CARLO SIMILATIONS V. Brevus, O. Yasniy Ternopil Ivan Pul'uj National Technical University, Ukraine vitaly.brevus@gmail.com, oleh.yasniy@gmail.com R. Moutou Pitti Institut Pascal, UMR 6602 / Université Blaise Pascal / CNRS / IFMA, BP 10448, Clermont-Ferrand, France rostand.moutou.pitti@polytech.univ-bpclermont.fr Y. Lapusta French Institute of Advanced Mechanics, Institut Pascal, UMR 6602 / UBP / CNRS / IFMA, Clermont Université, BP 265, Aubière Cedex, France lapusta@ifma.fr Abstract. The probability of failure of reactor vessel with semi elliptic crack after warm pre-stressing was assessed taken into account the scatter of mechanical properties and loading parameters by Monte Carlo with importance sampling and first order reliability method based on limit state functions from FITNET procedure. The failure assessment diagrams were obtained by means of Monte Carlo simulations for different crack depth and variable internal pressure. Keywords: pressure vessel, crack, stress intensity factor, warm pre-stressing, failure assessment diagram, probability of failure. 1. Introduction. Reactor vessels are important structural elements whose failure can lead to catastrophic consequences. Therefore the problem of integrity assessment of these components is of high importance. One of the methods of increasing resistance of materials to brittle fracture is warm pre-stressing (WPS) after which the stressstrain-state near the crack tip changes: the residual stresses emerge, the crack tip blunts and the strain hardening of material occurs (Chell, 1977). WPS can also arise in situations when the forced cooling of the reactor vessel happens, accompanied by large thermal stresses in the reactor shell (Rintamaa et. al., 2001). WPS of structural elements with cracks consists in their loading under the temperature that exceeds the temperature of fracture mechanism change from brittle to ductile (under the conditions when the material of structural element is in the plastic state).

2 V. Brevus et al. According to the scheme, the loading to the level of stress intensity factor (SIF) K I occurs at elevated temperature T 1, then at the same temperature structure is unloaded, after that it is cooled and loaded finally at temperature T 2 (Fig. 1). The main approaches to the evaluation of brittle strength of structural elements after WPS are based on the concept of "master curve" (Wallin, 2003), which describes the scatter of fracture toughness through the cumulative probability of failure (Wallin, 1984), P = 1 exp K K K K 4, { ( Jc min ) 0 min } f (1) where K Jc elastic fracture toughness, as defined by J c integral; K min lowest value of fracture toughness; K 0 normalized fracture toughness that corresponds to the probability of 63.2%. Figure 1. Temperature dependence of fracture toughness on the part of brittle-to ductile transition and appropriate changes of SIF The approach to the evaluation of structural integrity is well-known. It is the so-called procedure FITNET, which is based on SINTAP procedures and contains the latest European advances in assessing the integrity of structural elements (SINTAP, 1999, FITNET, 2006). Under this procedure, a two-parameter criterion of fracture of solids with cracks is developed the failure assessment diagram (FAD), which allows to consider plasticity in the crack tip. The input parameters that are required for prediction of failure of the structure are the geometrical parameters of the structure and the crack, the parameters of operating loading, and the mechanical properties of the material. The FITNET approach is deterministic and therefore does not allow to take into account the uncertainty and the current variation of loading parameters, the geometry

3 Assessment of the probability of failure of reactor vessels after warm pre-stressing of the structure and of the crack, the mechanical properties of the studied material, and also to obtain the probability of failure, which is an indicator of acceptability of its further exploitation. So an important task is to assess the limit state of structural elements taking into account the variation of the parameters that are used in the failure assessment diagram. The coordinates of the assessed point at FAD, which characterizes the stress state of element with a crack that is depicted in Fig. 2, are defined as (SINTAP, 1999) KIp KIs P σ ref Kr = + + ρ, Lr = =, (2) K K P σ mat mat L where K Ip and K Is are the SIF corresponding to the applied and residual stresses, respectively; K mat (K Ic ) is fracture toughness of the material; is correction for plasticity; P (or ref ) is applied loading (stress); P L (or yield stress 0.2 ) is loading (stress) at the beginning of yielding of the material in a weakened section of the sample. Failure assessment line, K r = f (L r ), that separates the safe region of the structure from the failure region, is determined under the results of tests of samples with cracks on the fracture toughness (SINTAP, 1999). 0.2 Figure 2. Typical failure assessment diagram for a structural element with a crack: 1 - safe region 2 failure line 3 failure region The purpose of this work is to assess the failure probability of the model of reactor vessel after warm pre-stressing on the basis of the failure assessment diagram taking into account the statistical distributions: the depth of the crack a, the internal pressure p, the yield stress 0.2, the ultimate tensile strength U and fracture toughness of the material K Ic. 2. Problem statement. Consider a crack in a solid with a random variation of mechanical properties and geometrical dimensions under random loading. We introduce a limit state function g(x), defined at the p-dimensional space of random

4 variables, where g(x) 0 failure region and g(x)>0 safe region (Dillström, 2000). Here x is a p-dimensional random vector with components x 1, x 2,, x p, which characterizes all system uncertainties and loading parameters. Random vector x corresponds to the probability density function f X (x). Then the failure probability is a multidimensional definite integral. Pf = fx( x ) dx. (3) g ( x) 0 To evaluate the probability of failure, two different limit state functions g (x) are used (Dillström, 2000) gfad ( x) = gfad ( KI c, σ 0.2, a) = ffad Kr (4) g ( x) = g ( σ, σ, a) = L L, max max max Lr Lr 0.2 U r r where σ U ultimate tensile strength; a crack size; L r ratio of the applied stress to yield stress of the material of the structure with the crack. Limit state functions are based on the analysis of the first level in a standardized procedure SINTAP. A reactor shell made of steel 15Kh2MFA (III) after heat treatment is considered. This situation simulates the properties of the material at the end of exploitation and prestressing with complete (Fig. 3) and partial unloading at 423 K and K I = MPa m (Yasniy, 1998). Chemical composition of steel (%) 0.18 C, 0.62 Mo; 0.27 Si; 0.29 V; 0.48 Mn; 2.58 Cr; S; 0.16 Ni; P; Ti (Yasniy, 1998). Mechanical properties of steel 15Kh2MFA (III) at room temperature are shown in Table 1. σ 0.2 σ U δ ψ MPa % Table 1. Mechanical properties of steel 15Kh2MFA (III) A model of the shell is presented in Figure 3. Wall thickness is h = 140 mm and 2R 0 = 4130 mm. A surface defect in a form of semi-elliptic crack on the inner wall of the pressure vessel is considered. The ratio of semi-axles of elliptic crack a/(b/2) is chosen equal to 2/3. The SIF after loading of vessel with pressure p is calculated by the formula (Heliot, 1979). K = σθ πa Y, (5) a 1 a where Y = , 1.2 σ Θ = b a h b 2 pr 0. h V. Brevus et al.

5 Assessment of the probability of failure of reactor vessels after warm pre-stressing Figure 3. The pressure vessel with a crack on the inner wall The internal pressure p, the mechanical properties (σ 0.2, σ U ) and the critical fracture toughness after WPS K mat = K f are considered as random variables, the types of distribution and parameters are presented in Table 2. Input data Distribution type Parameters of distribution p, MPa normal μ p = 32.5; σ p = 3.25; 4.875; 6.5 σ 0.2, MPa lognormal x 0 = 1080, m = 20, σ = 0.4 σ U, MPa lognormal x 0 = 1140, m = 8, σ = 0.6 K mat, MPa m Weibull x 0 = 141, β = 14.39, η = 2.04 Table 2. Types and distribution of input parameters Pressure of hydrostatic test was MPa. The average internal pressure was chosen two times greater the pressure of hydrostatic test. The coefficient of variation of internal pressure p, which for the normal distribution law is defined as cov p =σ p / μ p is chosen equal to 0.1; 0.15; 0.2; here σ p is the standard deviation of the parameter p. The crack depth a was chosen discretely from 16 mm to 30 mm with a step of 2 mm. The probability of failure was determined by Monte Carlo method with importance sampling (MCIS) and first order reliability method (FORM).

6 MCIS allows performing the tests in the most important part of the integration area. The sample is taken near the most probable point (MPP), determined previously by FORM. MCIS method requires fewer simulations than Monte Carlo method. FORM in the part of finding MPP can be implemented by method of iterations and therefore do not require sampling. Therefore, this method is convenient to calculate the probability of failure in case of small values. V. Brevus et al. a Figure 4. Dependence of failure probability P f on a crack depth by alternating pressure for cov p = 0.1 (1) 0.15 (2) 0.2 (3) calculated by MCIS - a) and FORM - b) b 3. Results. The dependencies of failure probability P f of reactor model from crack depth for a randomly distributed pressure for different coefficients of variation cov p of internal pressure (0.1, 0.15; 0.2) were obtained. The probability was calculated by MCIS (Figure 4a) and FORM (Figure 4b). With increasing coefficient of variation for a given crack length, the failure probability increases. The probability of failure of the model of reactor shell, assessed by FORM, in most cases was lower in comparison with the estimation of this parameter by the method of MCIS, with the largest difference observed for shorter cracks. In particular, for crack depth a = 16.0 mm and coefficient of variation of internal pressure cov p = 0.1, the failure probability, obtained by using FORM is approximately two orders of magnitude smaller than that calculated by the method of MCIS. With the increasing of cov p to 0.15 the probability calculated by a method FORM differs from the assessment of probability by MCIS on one order. Besides, FADs were constructed and simulations were performed by Monte Carlo method for different crack depth (Figure 5-1, 2, 3) for normally distributed pressure of μ p = 32.5 MPa for cov p = The number of samples was equal to 10 4.

7 Assessment of the probability of failure of reactor vessels after warm pre-stressing Figure 5. FAD of shell of reactor model under alternating pressure for cov p = 0.05 for different crack depth a: 1 - FAD curve 2 - a = 28 mm, 3-30 mm, 4-32 mm The estimations of probability of failure are given in Table 3. Crack depth, mm Probability of failure Table 3. Probability of failure for different cracks depths by method of Monte Carlo With the increasing of depth of the crack the probability of failure increases. For example, with increasing depth from 28 mm to 32 mm, the probability increases by 16 times. 4. Conclusions. The dependencies of failure probability of reactor shell after warm pre-stressing on the crack depth a were obtained, which take into account the variation of mechanical properties and loading parameters (normally distributed internal pressure for different coefficients of variation cov p ) by the Monte Carlo method with importance sampling and first order reliability method. For crack depth a = 16.0 mm and the coefficient of variation of internal pressure cov p = 0.1, the failure probability, obtained by first order reliability method is of two orders of magnitude smaller than that calculated by the method of Monte Carlo with importance sampling. The failure assessment diagrams with Monte Carlo method for different crack depth were constructed, considering the pressure as normally distributed random variable. With the increasing of crack depth from 28 mm to 32 mm the probability increases by 16 times.

8 V. Brevus et al. REFERENCES Chell, G. G. (1977). The J Integral as a fracture criterion: perhaps it doesn't mean what you thought it meant. International Journal of Fracture 13, Rintamaa, R., Wallin, K., Keinänen, H., Planman, T., Talja, H. (2001). Consistence of fracture assessment criteria for the NESC 1 thermal shock test. International Journal of Pressure Vessels and Piping 78, Wallin, K. (2003). Master Curve implementation of the warm pre stress effect. Engineering Fracture Mechanics 70, Wallin, K. (1984). The scatter in K IC results. Engineering Fracture Mechanics 19, SINTAP: Structural Integrity assessment procedure for European Industry (1999). Report BE British Steel, p FITNET FFS Procedure (2006). Prepared by European Fitness for Service Network FITNET. Dillström, P. (2000). ProSINTAP A probabilistic program implementing the SINTAP assessment procedure. Engineering Fracture Mechanics, 67, Yasniy, P. (1998). Plastically deformed materials: fatigue and crack resistance. World, Lviv, p Heliot, J. (1979). Fissures semi elliptiques axiales de grande longueur, débouchant a l intérieur d un cylindre. Creusot Loire, p. 237.

t, s T, C 2. Temperature fluctuations.

t, s T, C 2. Temperature fluctuations. Available online at www.sciencedirect.com ScienceDirect Procedia Structural Integrity 2 (2016) 840 846 www.elsevier.com/locate/procedia 21st European Conference on Fracture, ECF21, 20-24 June 2016, Catania,

More information

MODIFIED MONTE CARLO WITH IMPORTANCE SAMPLING METHOD

MODIFIED MONTE CARLO WITH IMPORTANCE SAMPLING METHOD MODIFIED MONTE CARLO WITH IMPORTANCE SAMPLING METHOD Monte Carlo simulation methods apply a random sampling and modifications can be made of this method is by using variance reduction techniques (VRT).

More information

PREDICTING THE PROBABILITY OF FAILURE OF GAS PIPELINES INCLUDING INSPECTION AND REPAIR PROCEDURES

PREDICTING THE PROBABILITY OF FAILURE OF GAS PIPELINES INCLUDING INSPECTION AND REPAIR PROCEDURES REDICTING THE ROBABILITY OF FAILURE OF GAS IELINES INCLUDING INSECTION AND REAIR ROCEDURES Zhang, L. 1, Adey, R.A. 2 1 C M BEASY Ltd, Ashurst Lodge, Lyndhurst Road, Southampton, SO40 7AA, UK, lzhang@beasy.com

More information

G1RT-CT D. EXAMPLES F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION

G1RT-CT D. EXAMPLES F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION D. EXAMPLES 426 WORKED EXAMPLE I Flat Plate Under Constant Load Introduction and objectives Data Analysis Bibliography/References 427 INTRODUCTION AND OBJECTIVES During a visual inspection of a C-Mn flat

More information

MODIFIED MONTE CARLO WITH LATIN HYPERCUBE METHOD

MODIFIED MONTE CARLO WITH LATIN HYPERCUBE METHOD MODIFIED MONTE CARLO WITH LATIN HYPERCUBE METHOD Latin hypercube sampling (LHS) was introduced by McKay, Conover and Beckman as a solution to increase the efficiency of computer simulations. This technique

More information

FAILURE ASSESSMENT DIAGRAM ASSESSMENTS OF LARGE-SCALE CRACKED STRAIGHT PIPES AND ELBOWS

FAILURE ASSESSMENT DIAGRAM ASSESSMENTS OF LARGE-SCALE CRACKED STRAIGHT PIPES AND ELBOWS Transactions, SMiRT-23, Paper ID 093 FAILURE ASSESSMENT DIAGRAM ASSESSMENTS OF LARGE-SCALE CRACKED STRAIGHT PIPES AND ELBOWS R A Ainsworth 1, M Gintalas 1, M K Sahu 2, J Chattopadhyay 2 and B K Dutta 2

More information

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering

FCP Short Course. Ductile and Brittle Fracture. Stephen D. Downing. Mechanical Science and Engineering FCP Short Course Ductile and Brittle Fracture Stephen D. Downing Mechanical Science and Engineering 001-015 University of Illinois Board of Trustees, All Rights Reserved Agenda Limit theorems Plane Stress

More information

Burst Pressure Prediction of Multiple Cracks in Pipelines

Burst Pressure Prediction of Multiple Cracks in Pipelines IOP Conference Series: Materials Science and Engineering OPEN ACCESS Burst Pressure Prediction of Multiple Cracks in Pipelines To cite this article: N A Razak et al 2013 IOP Conf. Ser.: Mater. Sci. Eng.

More information

Elastic-Plastic Fracture Mechanics. Professor S. Suresh

Elastic-Plastic Fracture Mechanics. Professor S. Suresh Elastic-Plastic Fracture Mechanics Professor S. Suresh Elastic Plastic Fracture Previously, we have analyzed problems in which the plastic zone was small compared to the specimen dimensions (small scale

More information

Principal Stresses, Yielding Criteria, wall structures

Principal Stresses, Yielding Criteria, wall structures Principal Stresses, Yielding Criteria, St i thi Stresses in thin wall structures Introduction The most general state of stress at a point may be represented by 6 components, x, y, z τ xy, τ yz, τ zx normal

More information

Examination in Damage Mechanics and Life Analysis (TMHL61) LiTH Part 1

Examination in Damage Mechanics and Life Analysis (TMHL61) LiTH Part 1 Part 1 1. (1p) Define the Kronecker delta and explain its use. The Kronecker delta δ ij is defined as δ ij = 0 if i j 1 if i = j and it is used in tensor equations to include (δ ij = 1) or "sort out" (δ

More information

Fissuration en milieux isotrope et orthotrope via les intégrales invariantes: prise en compte des effets environnementaux

Fissuration en milieux isotrope et orthotrope via les intégrales invariantes: prise en compte des effets environnementaux G E M H Fissuration en milieux isotrope et orthotrope via les intégrales invariantes: prise en compte des effets environnementaux R. Moutou Pitti 1,2, H. Riahi 1,2, F. Dubois 3, N. Angellier 3, A. Châteauneuf

More information

Determination of Transferable Lower-Bound Fracture Toughness from Small Specimens

Determination of Transferable Lower-Bound Fracture Toughness from Small Specimens Hans-Jakob Schindler, 1 Dietmar Kalkhof, 2 and Philip Tipping 2 Journal of ASTM International, Vol. 5, No. 8 Paper ID JAI101168 Available online at www.astm.org Determination of Transferable Lower-Bound

More information

Volume 2 Fatigue Theory Reference Manual

Volume 2 Fatigue Theory Reference Manual Volume Fatigue Theory Reference Manual Contents 1 Introduction to fatigue 1.1 Introduction... 1-1 1. Description of the applied loading... 1-1.3 Endurance curves... 1-3 1.4 Generalising fatigue data...

More information

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading

EMA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science (Mechanics of Materials) Chapter 2 Stress & Strain - Axial Loading MA 3702 Mechanics & Materials Science Zhe Cheng (2018) 2 Stress & Strain - Axial Loading Statics

More information

However, reliability analysis is not limited to calculation of the probability of failure.

However, reliability analysis is not limited to calculation of the probability of failure. Probabilistic Analysis probabilistic analysis methods, including the first and second-order reliability methods, Monte Carlo simulation, Importance sampling, Latin Hypercube sampling, and stochastic expansions

More information

Evolution of Tenacity in Mixed Mode Fracture Volumetric Approach

Evolution of Tenacity in Mixed Mode Fracture Volumetric Approach Mechanics and Mechanical Engineering Vol. 22, No. 4 (2018) 931 938 c Technical University of Lodz Evolution of Tenacity in Mixed Mode Fracture Volumetric Approach O. Zebri LIDRA Laboratory, Research team

More information

G1RT-CT A. BASIC CONCEPTS F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION

G1RT-CT A. BASIC CONCEPTS F. GUTIÉRREZ-SOLANA S. CICERO J.A. ALVAREZ R. LACALLE W P 6: TRAINING & EDUCATION A. BASIC CONCEPTS 6 INTRODUCTION The final fracture of structural components is associated with the presence of macro or microstructural defects that affect the stress state due to the loading conditions.

More information

Sensitivity and Reliability Analysis of Nonlinear Frame Structures

Sensitivity and Reliability Analysis of Nonlinear Frame Structures Sensitivity and Reliability Analysis of Nonlinear Frame Structures Michael H. Scott Associate Professor School of Civil and Construction Engineering Applied Mathematics and Computation Seminar April 8,

More information

The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties.

The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties. Objective: The objective of this experiment is to investigate the behavior of steel specimen under a tensile test and to determine it's properties. Introduction: Mechanical testing plays an important role

More information

STEAM GENERATOR TUBES RUPTURE PROBABILITY ESTIMATION - STUDY OF THE AXIALLY CRACKED TUBE CASE

STEAM GENERATOR TUBES RUPTURE PROBABILITY ESTIMATION - STUDY OF THE AXIALLY CRACKED TUBE CASE XN9500220 STEAM GENERATOR TUBES RUPTURE PROBABILITY ESTIMATION - STUDY OF THE AXIALLY CRACKED TUBE CASE B.Mavko, L.Cizelj "Jozef Stefan" Institute, Jamova 39, 61111 Ljubljana, Slovenia G.Roussel AIB-Vingotte

More information

Stress concentrations, fracture and fatigue

Stress concentrations, fracture and fatigue Stress concentrations, fracture and fatigue Piet Schreurs Department of Mechanical Engineering Eindhoven University of Technology http://www.mate.tue.nl/ piet December 1, 2016 Overview Stress concentrations

More information

Introduction to Fracture

Introduction to Fracture Introduction to Fracture Introduction Design of a component Yielding Strength Deflection Stiffness Buckling critical load Fatigue Stress and Strain based Vibration Resonance Impact High strain rates Fracture

More information

Fundamentals of Durability. Unrestricted Siemens AG 2013 All rights reserved. Siemens PLM Software

Fundamentals of Durability. Unrestricted Siemens AG 2013 All rights reserved. Siemens PLM Software Fundamentals of Durability Page 1 Your single provider of solutions System simulation solutions 3D simulation solutions Test-based engineering solutions Engineering services - Deployment services Troubleshooting

More information

Elastic Properties of Solid Materials. Notes based on those by James Irvine at

Elastic Properties of Solid Materials. Notes based on those by James Irvine at Elastic Properties of Solid Materials Notes based on those by James Irvine at www.antonine-education.co.uk Key Words Density, Elastic, Plastic, Stress, Strain, Young modulus We study how materials behave

More information

Module 5: Theories of Failure

Module 5: Theories of Failure Module 5: Theories of Failure Objectives: The objectives/outcomes of this lecture on Theories of Failure is to enable students for 1. Recognize loading on Structural Members/Machine elements and allowable

More information

Steam Generator Tubing Inspection

Steam Generator Tubing Inspection Steam Generator Tubing Inspection Analytical Determination of Critical Flaw Dimensions in Steam Generator Tubing I. Kadenko, N. Sakhno, R. Yermolenko, Nondestructive Examination Training and Certification

More information

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts.

NORMAL STRESS. The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. NORMAL STRESS The simplest form of stress is normal stress/direct stress, which is the stress perpendicular to the surface on which it acts. σ = force/area = P/A where σ = the normal stress P = the centric

More information

Stress Concentration. Professor Darrell F. Socie Darrell Socie, All Rights Reserved

Stress Concentration. Professor Darrell F. Socie Darrell Socie, All Rights Reserved Stress Concentration Professor Darrell F. Socie 004-014 Darrell Socie, All Rights Reserved Outline 1. Stress Concentration. Notch Rules 3. Fatigue Notch Factor 4. Stress Intensity Factors for Notches 5.

More information

2015:09. Research. PROSIR - Probabilistic Structural Integrity of a PWR Reactor Pressure Vessel. Peter Dillström. Author:

2015:09. Research. PROSIR - Probabilistic Structural Integrity of a PWR Reactor Pressure Vessel. Peter Dillström. Author: Author: Peter Dillström Research 2015:09 PROSIR - Probabilistic Structural Integrity of a PWR Reactor Pressure Vessel Report number: 2015:09 ISSN: 2000-0456 Available at www.stralsakerhetsmyndigheten.se

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION

MMJ1133 FATIGUE AND FRACTURE MECHANICS A - INTRODUCTION INTRODUCTION A - INTRODUCTION INTRODUCTION M.N.Tamin, CSMLab, UTM Course Content: A - INTRODUCTION Mechanical failure modes; Review of load and stress analysis equilibrium equations, complex stresses, stress transformation,

More information

Structural Reliability

Structural Reliability Structural Reliability Thuong Van DANG May 28, 2018 1 / 41 2 / 41 Introduction to Structural Reliability Concept of Limit State and Reliability Review of Probability Theory First Order Second Moment Method

More information

Chapter 7. Highlights:

Chapter 7. Highlights: Chapter 7 Highlights: 1. Understand the basic concepts of engineering stress and strain, yield strength, tensile strength, Young's(elastic) modulus, ductility, toughness, resilience, true stress and true

More information

Fracture mechanics fundamentals. Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design

Fracture mechanics fundamentals. Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design Fracture mechanics fundamentals Stress at a notch Stress at a crack Stress intensity factors Fracture mechanics based design Failure modes Failure can occur in a number of modes: - plastic deformation

More information

V Predicted Weldment Fatigue Behavior AM 11/03 1

V Predicted Weldment Fatigue Behavior AM 11/03 1 V Predicted Weldment Fatigue Behavior AM 11/03 1 Outline Heavy and Light Industry weldments The IP model Some predictions of the IP model AM 11/03 2 Heavy industry AM 11/03 3 Heavy industry AM 11/03 4

More information

RELIABILITY ANALYSIS IN FRACTURE MECHANICS ACCORDING TO COMBINED FAILURE CRITERIA

RELIABILITY ANALYSIS IN FRACTURE MECHANICS ACCORDING TO COMBINED FAILURE CRITERIA ECCOMAS Congress 2016 VII European Congress on Computational Methods in Applied Sciences and Engineering M. Papadrakakis, V. Papadopoulos, G. Stefanou, V. Plevris (eds.) Crete Island, Greece, 5 10 June

More information

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the

5. STRESS CONCENTRATIONS. and strains in shafts apply only to solid and hollow circular shafts while they are in the 5. STRESS CONCENTRATIONS So far in this thesis, most of the formulas we have seen to calculate the stresses and strains in shafts apply only to solid and hollow circular shafts while they are in the elastic

More information

Weld Fracture. How Residual Stresses Affect Prediction of Brittle Fracture. Outline. Residual Stress in Thick Welds

Weld Fracture. How Residual Stresses Affect Prediction of Brittle Fracture. Outline. Residual Stress in Thick Welds How Residual Stresses ffect Prediction of Brittle Fracture Michael R. Hill University of California, Davis Tina L. Panontin NS-mes Research Center Weld Fracture Defects provide location for fracture initiation

More information

INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE IN A 90 BEND

INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE IN A 90 BEND 18th International Conference on Structural Mechanics in Reactor Technology (SMiRT 18) Beijing, China, August 7-12, 25 SMiRT18-G8-5 INFLUENCE OF A WELDED PIPE WHIP RESTRAINT ON THE CRITICAL CRACK SIZE

More information

MMJ1133 FATIGUE AND FRACTURE MECHANICS E ENGINEERING FRACTURE MECHANICS

MMJ1133 FATIGUE AND FRACTURE MECHANICS E ENGINEERING FRACTURE MECHANICS E ENGINEERING WWII: Liberty ships Reprinted w/ permission from R.W. Hertzberg, "Deformation and Fracture Mechanics of Engineering Materials", (4th ed.) Fig. 7.1(b), p. 6, John Wiley and Sons, Inc., 1996.

More information

Advanced Strength of Materials Prof S. K. Maiti Mechanical Engineering Indian Institute of Technology, Bombay. Lecture 27

Advanced Strength of Materials Prof S. K. Maiti Mechanical Engineering Indian Institute of Technology, Bombay. Lecture 27 Advanced Strength of Materials Prof S. K. Maiti Mechanical Engineering Indian Institute of Technology, Bombay Lecture 27 Last time we considered Griffith theory of brittle fracture, where in it was considered

More information

Introduction to Engineering Materials ENGR2000. Dr. Coates

Introduction to Engineering Materials ENGR2000. Dr. Coates Introduction to Engineering Materials ENGR2 Chapter 6: Mechanical Properties of Metals Dr. Coates 6.2 Concepts of Stress and Strain tension compression shear torsion Tension Tests The specimen is deformed

More information

Fracture Mechanics, Damage and Fatigue Non Linear Fracture Mechanics: J-Integral

Fracture Mechanics, Damage and Fatigue Non Linear Fracture Mechanics: J-Integral University of Liège Aerospace & Mechanical Engineering Fracture Mechanics, Damage and Fatigue Non Linear Fracture Mechanics: J-Integral Ludovic Noels Computational & Multiscale Mechanics of Materials CM3

More information

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture

Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture Lecture #7: Basic Notions of Fracture Mechanics Ductile Fracture by Dirk Mohr ETH Zurich, Department of Mechanical and Process Engineering, Chair of Computational Modeling of Materials in Manufacturing

More information

PROBABILISTIC STRESS ANALYSIS OF CYLINDRICAL PRESSURE VESSEL UNDER INTERNAL PRESSURE USING MONTE CARLO SIMULATION METHOD

PROBABILISTIC STRESS ANALYSIS OF CYLINDRICAL PRESSURE VESSEL UNDER INTERNAL PRESSURE USING MONTE CARLO SIMULATION METHOD PROBABILISTIC STRESS ANALYSIS OF CYLINDRICAL PRESSURE VESSEL UNDER INTERNAL PRESSURE USING MONTE CARLO SIMULATION METHOD Manikandan.R 1, K.J.Nagarajan 2 1,2 AssistantProfessor, Department of Mechanical

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting Lectures & 3, 9/31 Aug 017 www.geosc.psu.edu/courses/geosc508 Discussion of Handin, JGR, 1969 and Chapter 1 Scholz, 00. Stress analysis and Mohr Circles Coulomb Failure

More information

Treatment of Constraint in Non-Linear Fracture Mechanics

Treatment of Constraint in Non-Linear Fracture Mechanics Treatment of Constraint in Non-Linear Fracture Mechanics Noel O Dowd Department of Mechanical and Aeronautical Engineering Materials and Surface Science Institute University of Limerick Ireland Acknowledgements:

More information

CRITICAL CONDITIONS OF PRESSURIZED PIPES

CRITICAL CONDITIONS OF PRESSURIZED PIPES Engineering MECHANICS, Vol. 20, 2013, No. 5, p. 401 412 401 CRITICAL CONDITIONS OF PRESSURIZED PIPES Lubomír Gajdoš, Martin Šperl* A simple fracture-mechanics based method is described for assessing a

More information

Generalized fracture toughness for specimens with re-entrant corners: Experiments vs. theoretical predictions

Generalized fracture toughness for specimens with re-entrant corners: Experiments vs. theoretical predictions Structural Engineering and Mechanics, Vol. 32, No. 5 (2009) 609-620 609 Generalized fracture toughness for specimens with re-entrant corners: Experiments vs. theoretical predictions Alberto Carpinteri,

More information

6. STRUCTURAL SAFETY

6. STRUCTURAL SAFETY 6.1 RELIABILITY 6. STRUCTURAL SAFETY Igor Kokcharov Dependability is the ability of a structure to maintain its working parameters in given ranges for a stated period of time. Dependability is a collective

More information

ME 2570 MECHANICS OF MATERIALS

ME 2570 MECHANICS OF MATERIALS ME 2570 MECHANICS OF MATERIALS Chapter III. Mechanical Properties of Materials 1 Tension and Compression Test The strength of a material depends on its ability to sustain a load without undue deformation

More information

Lecture 2: Introduction to Uncertainty

Lecture 2: Introduction to Uncertainty Lecture 2: Introduction to Uncertainty CHOI Hae-Jin School of Mechanical Engineering 1 Contents Sources of Uncertainty Deterministic vs Random Basic Statistics 2 Uncertainty Uncertainty is the information/knowledge

More information

There are three main types of structure - mass, framed and shells.

There are three main types of structure - mass, framed and shells. STRUCTURES There are three main types of structure - mass, framed and shells. Mass structures perform due to their own weight. An example would be a dam. Frame structures resist loads due to the arrangement

More information

Reliability Considerations for Steel Frames Designed with Advanced Analysis

Reliability Considerations for Steel Frames Designed with Advanced Analysis Reliability Considerations for Steel Frames Designed with Advanced Analysis Stephen G. Buonopane Benjamin W. Schafer Takeru Igusa Dept. of Civil Engineering Johns Hopkins University Features of Advanced

More information

Probabilistic elastic-plastic fracture analysis of circumferentially cracked pipes with finite-length surface flaws

Probabilistic elastic-plastic fracture analysis of circumferentially cracked pipes with finite-length surface flaws Nuclear Engineering and Design 195 (2000) 239 260 www.elsevier.com/locate/nucengdes Probabilistic elastic-plastic fracture analysis of circumferentially cracked pipes with finite-length surface flaws Sharif

More information

TEE METHOD OF LIFE EXTENSION FOR THE HIGH FLUX ISOTOPE REACTOR VESSEL

TEE METHOD OF LIFE EXTENSION FOR THE HIGH FLUX ISOTOPE REACTOR VESSEL TEE METHOD OF LIFE EXTENSION FOR THE HIGH FLUX ISOTOPE REACTOR VESSEL Shih-Jung Chang Research Reactors Division Oak Ridge National Laboratory Oak Ridge, Tennessee Outline of paper to be presented at ASME/JSME

More information

Lecture 7, Foams, 3.054

Lecture 7, Foams, 3.054 Lecture 7, Foams, 3.054 Open-cell foams Stress-Strain curve: deformation and failure mechanisms Compression - 3 regimes - linear elastic - bending - stress plateau - cell collapse by buckling yielding

More information

Reliability implications of advanced analysis in design of steel frames

Reliability implications of advanced analysis in design of steel frames Reliability implications of advanced analysis in design of steel frames Stephen G. Buonopane Benjamin W. Schafer Takeru Igusa Dept. of Civil Engineering Johns Hopkins University Advanced Analysis Non-Linear

More information

Structural Analysis of Large Caliber Hybrid Ceramic/Steel Gun Barrels

Structural Analysis of Large Caliber Hybrid Ceramic/Steel Gun Barrels Structural Analysis of Large Caliber Hybrid Ceramic/Steel Gun Barrels MS Thesis Jon DeLong Department of Mechanical Engineering Clemson University OUTLINE Merger of ceramics into the conventional steel

More information

CHAPTER 2 Failure/Fracture Criterion

CHAPTER 2 Failure/Fracture Criterion (11) CHAPTER 2 Failure/Fracture Criterion (12) Failure (Yield) Criteria for Ductile Materials under Plane Stress Designer engineer: 1- Analysis of loading (for simple geometry using what you learn here

More information

THE DETERMINATION OF FRACTURE STRENGTH FROM ULTIMATE TENSILE AND TRANSVERSE RUPTURE STRESSES

THE DETERMINATION OF FRACTURE STRENGTH FROM ULTIMATE TENSILE AND TRANSVERSE RUPTURE STRESSES Powder Metallurgy Progress, Vol.3 (003), No 3 119 THE DETERMINATION OF FRACTURE STRENGTH FROM ULTIMATE TENSILE AND TRANSVERSE RUPTURE STRESSES A.S. Wronski, A.Cias Abstract It is well-recognized that the

More information

Efficient 2-parameter fracture assessments of cracked shell structures

Efficient 2-parameter fracture assessments of cracked shell structures Efficient 2-parameter fracture assessments of cracked shell structures B. Skallerud, K.R. Jayadevan, C. Thaulow, E. Berg*, K. Holthe Faculty of Engineering Science The Norwegian University of Science and

More information

NTNU Faculty of Engineering Science and Technology Department of Marine Technology TMR 4195 DESIGN OF OFFSHORE STRUCTURES

NTNU Faculty of Engineering Science and Technology Department of Marine Technology TMR 4195 DESIGN OF OFFSHORE STRUCTURES NTNU Faculty of Engineering Science and Technology Department of Marine Technology EXERCISE 4 TMR 495 DESIGN OF OFFSHORE STRUCTURES Distr. Date: 9 th Feb 4 Sign: Q. Chen Mandatory Exercise This exercise

More information

Probabilistic analysis of off-center cracks in cylindrical structures

Probabilistic analysis of off-center cracks in cylindrical structures International Journal of Pressure Vessels and Piping 77 (2000) 3 16 www.elsevier.com/locate/ijpvp Probabilistic analysis of off-center cracks in cylindrical structures S. Rahman*, G. Chen a, R. Firmature

More information

FRACTURE OF CRACKED MEMBERS 1. The presence of a crack in a structure may weaken it so that it fails by fracturing in two or more pieces.

FRACTURE OF CRACKED MEMBERS 1. The presence of a crack in a structure may weaken it so that it fails by fracturing in two or more pieces. Aerospace Structures Fracture Mechanics: An Introduction Page 1 of 7 FRACTURE OF CRACED MEMBERS 1. The presence of a crack in a structure may weaken it so that it fails by fracturing in two or more pieces.

More information

Eurocod 3: Proiectarea structurilor de oţel Partea 4-3: Conducte Anexa Naţională

Eurocod 3: Proiectarea structurilor de oţel Partea 4-3: Conducte Anexa Naţională ICS 23.020.01; 91.010.30; 91.080.10 SR EN 1993-4-3/NA ROMANIAN STANDARD 2011 Eurocode 3: Design of steel structures. Part 4-3: Pipelines. National Annex Eurocod 3: Proiectarea structurilor de oţel Partea

More information

ME 243. Mechanics of Solids

ME 243. Mechanics of Solids ME 243 Mechanics of Solids Lecture 2: Stress and Strain Ahmad Shahedi Shakil Lecturer, Dept. of Mechanical Engg, BUET E-mail: sshakil@me.buet.ac.bd, shakil6791@gmail.com Website: teacher.buet.ac.bd/sshakil

More information

Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139

Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139 Massachusetts Institute of Technology Department of Mechanical Engineering Cambridge, MA 02139 2.002 Mechanics and Materials II Spring 2004 Laboratory Module No. 6 Fracture Toughness Testing and Residual

More information

INFLUENCE OF TEMPERATURE ON BEHAVIOR OF THE INTERFACIAL CRACK BETWEEN THE TWO LAYERS

INFLUENCE OF TEMPERATURE ON BEHAVIOR OF THE INTERFACIAL CRACK BETWEEN THE TWO LAYERS Djoković, J. M., et.al.: Influence of Temperature on Behavior of the Interfacial THERMAL SCIENCE: Year 010, Vol. 14, Suppl., pp. S59-S68 S59 INFLUENCE OF TEMPERATURE ON BEHAVIOR OF THE INTERFACIAL CRACK

More information

Probabilistic approach for the fatigue design of tower cranes

Probabilistic approach for the fatigue design of tower cranes Probabilistic approach for the fatigue design of tower cranes S. Bucas a,b,c, P. Rumelhart c, N. Gayton a,b, A. Chateauneuf a,b a. Clermont Université, Université Blaise Pascal, IFMA, Institut Pascal,

More information

EFFECT OF THERMAL FATIGUE ON INTRALAMINAR CRACKING IN LAMINATES LOADED IN TENSION

EFFECT OF THERMAL FATIGUE ON INTRALAMINAR CRACKING IN LAMINATES LOADED IN TENSION EFFECT OF THERMAL FATIGUE ON INTRALAMINAR CRACKING IN LAMINATES LOADED IN TENSION J.Varna and R.Joffe Dept of Applied Physics and Mechanical Engineering Lulea University of Technology, SE 97187, Lulea,

More information

lightweight structures

lightweight structures Calculation methodology for lightweight structures Chalmers University of Technology Göteborg, Sweden Page 1 Acknowledgements Chalmers University of Technology,, PhD student Luis Sanchez SP Technical Research

More information

STRUCTURAL RELIABILITY OF PRE-STRESSED CONCRETE CONTAINMENTS

STRUCTURAL RELIABILITY OF PRE-STRESSED CONCRETE CONTAINMENTS Transactions, MiRT-3 Manchester, United Kingdom - August 10-14, 015 Division VIII, Paper ID 461 TRUCTURA REIABIITY OF PRE-TREED CONCRETE CONTAINMENT Nawal K Prinja 1 and Azeezat Ogunbadejo 1 Technical

More information

Failure Probability Estimation of Pressure Tube Using Failure Assessment Diagram

Failure Probability Estimation of Pressure Tube Using Failure Assessment Diagram Solid State Phenomena Vol. 120 (2007) pp. 37-42 online at http://www.scientific.net (2007) Trans Tech Publications, Switzerland Failure Probability Estimation of Pressure Tube Using Failure Assessment

More information

Stress and fatigue analyses of a PWR reactor core barrel components

Stress and fatigue analyses of a PWR reactor core barrel components Seite 1 von 10 Stress and fatigue analyses of a PWR reactor core barrel components L. Mkrtchyan, H. Schau, H. Eggers TÜV SÜD ET Mannheim, Germany Abstract: The integrity of the nuclear reactor core barrel

More information

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression

Module 5: Failure Criteria of Rock and Rock masses. Contents Hydrostatic compression Deviatoric compression FAILURE CRITERIA OF ROCK AND ROCK MASSES Contents 5.1 Failure in rocks 5.1.1 Hydrostatic compression 5.1.2 Deviatoric compression 5.1.3 Effect of confining pressure 5.2 Failure modes in rocks 5.3 Complete

More information

CHAPTER 9 FAILURE PROBLEM SOLUTIONS

CHAPTER 9 FAILURE PROBLEM SOLUTIONS Excerpts from this work may be reproduced by instructors for distribution on a not-for-profit basis for testing or instructional purposes only to students enrolled in courses for which the textbook has

More information

TMHL TMHL (Del I, teori; 1 p.) SOLUTION I. II.. III. Fig. 1.1

TMHL TMHL (Del I, teori; 1 p.) SOLUTION I. II.. III. Fig. 1.1 TMHL61 2014-01-16 (Del I, teori; 1 p.) 1. Fig. 1.1 shows three cases of sharp cracks in a sheet of metal. In all three cases, the sheet is assumed to be very large in comparison with the crack. Note the

More information

Uncertainty modelling using software FReET

Uncertainty modelling using software FReET Uncertainty modelling using software FReET D. Novak, M. Vorechovsky, R. Rusina Brno University of Technology Brno, Czech Republic 1/30 Outline Introduction Methods and main features Software FReET Selected

More information

DEVELOPMENT OF TEST GUIDANCE FOR COMPACT TENSION FRACTURE TOUGHNESS SPECIMENS CONTAINING NOTCHES INSTEAD OF FATIGUE PRE-CRACKS

DEVELOPMENT OF TEST GUIDANCE FOR COMPACT TENSION FRACTURE TOUGHNESS SPECIMENS CONTAINING NOTCHES INSTEAD OF FATIGUE PRE-CRACKS Transactions, SMiRT-23 Division II, Paper ID 287 Fracture Mechanics and Structural Integrity DEVELOPMENT OF TEST GUIDANCE FOR COMPACT TENSION FRACTURE TOUGHNESS SPECIMENS CONTAINING NOTCHES INSTEAD OF

More information

Structural reliability analysis of rotor blades in ultimate loading

Structural reliability analysis of rotor blades in ultimate loading EWEA 2011 Brussels, Belgium: Europe s Premier Wind Energy Event Structural reliability analysis of rotor blades in ultimate loading K. C. Bacharoudis 1, D. J. Lekou 2, T. P. Philippidis 1 1. University

More information

MECHANICS OF MATERIALS

MECHANICS OF MATERIALS Third E CHAPTER 2 Stress MECHANICS OF MATERIALS Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf Lecture Notes: J. Walt Oler Texas Tech University and Strain Axial Loading Contents Stress & Strain:

More information

An alternative design method for the double-layer combined die using autofrettage theory

An alternative design method for the double-layer combined die using autofrettage theory https://doi.org/10.5194/ms-8-267-2017 Author(s) 2017. This work is distributed under the Creative Commons Attribution.0 License. An alternative design method for the double-layer combined die using autofrettage

More information

Determination of Stress Intensity Factor for a Crack Emanating From a Rivet Hole and Approaching Another in Curved Sheet

Determination of Stress Intensity Factor for a Crack Emanating From a Rivet Hole and Approaching Another in Curved Sheet International OPEN ACCESS Journal Of Modern Engineering Research (IJMER) Determination of Stress Intensity Factor for a Crack Emanating From a Rivet Hole and Approaching Another in Curved Sheet Raghavendra.

More information

New Approaches for Integrity Assessment. Nuclear Codes and Standards Workshop Kim Wallin VTT Technical Research Centre of Finland

New Approaches for Integrity Assessment. Nuclear Codes and Standards Workshop Kim Wallin VTT Technical Research Centre of Finland New Approaches for Integrity Assessment Nuclear Codes and Standards Workshop im Wallin VTT Technical Research Centre of Finland IC JC Ji JDa NO STATISTICAL SIZE EFFECT ADVANCED CHARACTERISTICS AND APPLICATIONS

More information

Mechanics of Earthquakes and Faulting

Mechanics of Earthquakes and Faulting Mechanics of Earthquakes and Faulting www.geosc.psu.edu/courses/geosc508 Surface and body forces Tensors, Mohr circles. Theoretical strength of materials Defects Stress concentrations Griffith failure

More information

Module 2 Selection of Materials and Shapes. IIT, Bombay

Module 2 Selection of Materials and Shapes. IIT, Bombay Module Selection of Materials and Shapes Lecture 4 Case Studies - I Instructional objectives This is a continuation of the previous lecture. By the end of this lecture, the student will further learn how

More information

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS

MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS MATERIALS FOR CIVIL AND CONSTRUCTION ENGINEERS 3 rd Edition Michael S. Mamlouk Arizona State University John P. Zaniewski West Virginia University Solution Manual FOREWORD This solution manual includes

More information

DEM modeling of penetration test in static and dynamic conditions

DEM modeling of penetration test in static and dynamic conditions DEM modeling of penetration test in static and dynamic conditions Quoc Anh Tran, Bastien Chevalier, Pierre Breul To cite this version: Quoc Anh Tran, Bastien Chevalier, Pierre Breul. DEM modeling of penetration

More information

Preliminary Validation of Deterministic and Probabilistic Risk Assessment of Fatigue Failures Using Experimental Results

Preliminary Validation of Deterministic and Probabilistic Risk Assessment of Fatigue Failures Using Experimental Results 9 th European Workshop on Structural Health Monitoring July -13, 2018, Manchester, United Kingdom Preliminary Validation of Deterministic and Probabilistic Risk Assessment of Fatigue Failures Using Experimental

More information

Mechanics of Materials Primer

Mechanics of Materials Primer Mechanics of Materials rimer Notation: A = area (net = with holes, bearing = in contact, etc...) b = total width of material at a horizontal section d = diameter of a hole D = symbol for diameter E = modulus

More information

Burst pressure estimation of reworked nozzle weld on spherical domes

Burst pressure estimation of reworked nozzle weld on spherical domes Indian Journal of Engineering & Materials Science Vol. 21, February 2014, pp. 88-92 Burst pressure estimation of reworked nozzle weld on spherical domes G Jegan Lal a, Jayesh P a & K Thyagarajan b a Cryo

More information

MECHANICS OF 2D MATERIALS

MECHANICS OF 2D MATERIALS MECHANICS OF 2D MATERIALS Nicola Pugno Cambridge February 23 rd, 2015 2 Outline Stretching Stress Strain Stress-Strain curve Mechanical Properties Young s modulus Strength Ultimate strain Toughness modulus

More information

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens.

Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double cantilever beam (DCB) specimens. a). Cohesive Failure b). Interfacial Failure c). Oscillatory Failure d). Alternating Failure Fig. 1. Different locus of failure and crack trajectories observed in mode I testing of adhesively bonded double

More information

Stress Intensity Factor Determination of Multiple Straight and Oblique Cracks in Double Cover Butt Riveted Joint

Stress Intensity Factor Determination of Multiple Straight and Oblique Cracks in Double Cover Butt Riveted Joint ISSN (Online) : 2319-8753 ISSN (Print) : 2347-671 International Journal of Innovative Research in Science, Engineering and Technology Volume 3, Special Issue 3, March 214 214 International Conference on

More information

BME 207 Introduction to Biomechanics Spring Homework 9

BME 207 Introduction to Biomechanics Spring Homework 9 April 10, 2018 UNIVERSITY OF RHODE ISLAND Department of Electrical, Computer and Biomedical Engineering BME 207 Introduction to Biomechanics Spring 2018 Homework 9 Prolem 1 The intertrochanteric nail from

More information

A probabilistic method to predict fatigue crack initiation

A probabilistic method to predict fatigue crack initiation International Journal of Fracture (2006) 137:9 17 DOI 10.1007/s10704-005-3074-0 Springer 2006 A probabilistic method to predict fatigue crack initiation SALIL. S. KULKARNI, L. SUN, B. MORAN, S. KRISHNASWAMY

More information

MAE 322 Machine Design. Dr. Hodge Jenkins Mercer University

MAE 322 Machine Design. Dr. Hodge Jenkins Mercer University MAE 322 Machine Design Dr. Hodge Jenkins Mercer University What is this Machine Design course really about? What you will learn: How to design machine elements 1) Design so they won t break under varying

More information

Evaluation of conformity criteria for reinforcing steel properties

Evaluation of conformity criteria for reinforcing steel properties IASSAR Safety, Reliability, Risk, Resilience and Sustainability of Structures and Infrastructure 12th Int. Conf. on Structural Safety and Reliability, Vienna, Austria, 6 10 August 2017 Christian Bucher,

More information

HONGJUN LI Department of Mechanical Engineering University of Strathclyde Glasgow, Scotland, UK

HONGJUN LI Department of Mechanical Engineering University of Strathclyde Glasgow, Scotland, UK HONGJUN LI Department of Mechanical Engineering University of Strathclyde Glasgow, Scotland, UK Introduction FEA is an established analysis method used in Pressure Vessel Design Most DBA is still based

More information