Quadrature detection, reduced dimensionality and GFT-NMR

Size: px
Start display at page:

Download "Quadrature detection, reduced dimensionality and GFT-NMR"

Transcription

1 2/5 Quadrature detection, reduced dimensionalit and GFT-NMR J.m.Chem.Soc. 25, (2003) Measuring time in NMR D: 32 scans: 42 seconds 2D: 52 FIDs, 6 scans: 0650 sec, 3 hours 3D: FIDs, 8 scans: sec, 48 hours 4D: FIDs, 4 scans: sec, 96 hours oder FIDs, scan: sec, 3030 hours, 26 das We are at the sampling limit rather than at the sensitivit limit 3/5 4/5. NMR basics (4-6) asis for NMR spectroscop is the nuclear spin that can be viewed as a combination of magnet and spinning top 2. Fourier transformation (7 2) 3. Quadrature detection (22 34) 4. Reduced dimensionalit (35-37) 5. GFT-NMR (38 49) 5/5 6/5 spinning top has an angular momentum the ais of the angular momentum constant in space magnet orients in the direction of the magnetic field, this is prevented b the fact that its a spinning top precession begins

2 7/5 8/5 When a magnetic field is switched on, this does not change immediatel, but thermal motion drives spins to orient predominantl along the field Without an eternal magnetic field spins are oriented randoml in all possible directions 9/5 0/5...along the main field, resulting in a olzman distribution That builds up a net magnetization... /5 2/5 radio frequnc pulse turns the spins. nd with them the net magnetization Note the difference between an orientation in the, plane and a coherence

3 3/5 4/5 The net magnetization performs a precession M =cosωt ep (-t/t 2 ) M = sin ωt ep (-t/t 2 ) The signal is detected via a coil and then digitized using an DC (analog-digital-converter) M = M + i M M = ep (iωt) ep (-t/t 2 ) 5/5 6/5 To make digitization possible, we subtract the original The reference signal is normall the center of the spectrum signal from the one returned from the sample 7/5 8/5 comple NMR signal has the following form We ignore the phase factor for the time being and appl a Fourier transformation s(t)= ep(iφ) ep(-t/t 2 ) ep(iω 0 t) s( Ω) = s( t) ep( iωt) dt 0 phase of the signal (time independent!) deca of the signal (relaation) oscillation of the signal (the frequenc) s(ω)= (/T 2 ) i(ω Ω 0 )

4 9/5 20/5 We obtain a comple Lorentian line shape, Now we reintroduce the phase factor it consist of an absorbtive and a dispersive part S(Ω) = [(Ω) + i D(Ω) ]ep(iφ) (Ω)= (/T 2 ) (/T 2 ) 2 + (Ω Ω 0 ) 2 S(Ω) = R(Ω) + i I(Ω) Real and imaginar part are mitures of (Ω Ω D(Ω)= 0 ) 2 (/T 2 ) 2 + (Ω Ω 0 ) 2 absorptive and dispersive line shapes R(Ω) = (Ω) cosφ D(Ω) sin φ I(Ω) = D(Ω)cosφ + (Ω) sinφ 2/5 22/5 We appl a zero-order phase correction (Ω) = R(Ω) cosφ + I(Ω) sin φ D(Ω) = I(Ω)cosφ R(Ω) sinφ What if we have onl one of the components either cosine or sine ep(iα) = cosα + i sinα ep(-iα) = cosα isinα cosα =ep(iα) + ep(-iα) sinα = ep(iα) ep(-iα) (the famous Euler formulas) 23/5 24/5 We get two signals each So we have to do a quadrature detection

5 /5 26/5 The first wa to do it is States (or Ruben-States-Haberkorn) Cosine and sine signal are then combined 2 27/5 28/5 second wa to do it is TPPI (time proportional phase increment) One half of the spectrum is then discarded 29/5 30/5 When a continous signal s(t) is sampled at evenl spaced intervals as s(k t), the highest detectable frequenc is the Nquist frequenc: f n = (2 t) That has consequences depending on the tpe of quadrature detection

6 3/5 32/5 liasing and folding The same problem eists for indirect dimensions 33/5 34/5 Quadrature detection in F Methods for quadrature detection.fid: φ =, - 2.FID: φ =, -.FID: φ rec = +, - 2.FID: φ rec = +, - Methode Phase des Präparations pulses Empfängerphase rt der Fouriertransformation Position der ialpeaks Redfield (t + 0* ) reell Zentrum (t + * ) (t + 2* ) - (t + 3* ) - TPPI (t + 0* ) reell Rand (t + * ) - (t + 2* ) - (t + 3* ) SHR (t + 0* ) komple Zentrum (t + 0* ) (t + 2* ) (t + 2* ) TPPI-States (t + 0* ) komple Rand (t + 0* ) - (t + 2* ) - - (t + 2* ) - 35/5 36/5 (H)N(COC)NH and HN(COC)NH (H)N(COC)NH and HN(COC)NH quadrature detection in t quadrature detection in t 2 racken et al. J.iomol. NMR 9 (997) reduced dimensionalit: evolution on H N is recorded concomitantl with the evolution on N but without an scheme for quadrature detection

7 37/5 38/5 (H)N(COC)NH HN(COC)NH reduced dimensionalit: nd information in an (n-)d spectrum δ( 5 N) GFT-NMR: Generalization of the this principle nd information in an (n-k)d spectrum racken et al. J.iomol. NMR 9 (997) /5 40/5 First the target dimensionalit is selected 5D-HCCONHN and (5,2)D-HCCONHN If there is barel Overlap in the 5 N-HSQC the target dimensionalit is 2D 4/5 42/5 (5,2)D HCCONHN Three additional dimensions require 8 basic spectra special modulation scheme, 6 spectra are recorded normal quadrature detection S cos(ω 0 t) cos(ω t) cos(ω 2 t) cos(ω 3 t) S2 cos(ω 0 t) sin(ω t) cos(ω 2 t) cos(ω 3 t) S3 cos(ω 0 t) cos(ω t) sin(ω 2 t) cos(ω 3 t) S4 cos(ω 0 t) sin(ω t) sin(ω 2 t) cos(ω 3 t) S5 cos(ω 0 t) cos(ω t) cos(ω 2 t) sin(ω 3 t) S6 cos(ω 0 t) sin(ω t) cos(ω 2 t) sin(ω 3 t) S7 cos(ω 0 t) cos(ω t) sin(ω 2 t) sin(ω 3 t) S8 cos(ω 0 t) sin(ω t) sin(ω 2 t) sin(ω 3 t)

8 43/5 Proper combination results in spectra with onl one peak FT of S-S8 44/5 That corresponds to a matri operation = 45/5 It is difficult to decide which peak is which, therefore central peaks are recorded S9 cos(ω 0 t) cos(ω t) cos(ω 2 t) S0 cos(ω 0 t) sin(ω t) cos(ω 2 t) S cos(ω 0 t) cos(ω t) sin(ω 2 t) S2 cos(ω 0 t) sin(ω t) sin(ω 2 t) S3 cos(ω 0 t) cos(ω t) S4 cos(ω 0 t) sin(ω t) S5 cos(ω 0 t) 46/5 Thats how it looks 47/5 The result are 5 2Ds 48/5 The G-matri does it all in the time domain

9 49/5 50/5 Comparison of numbers: (5,2)D HCCONHN 5 spectra can be recorded in 34 min and ields a set of two-dimensional spectra Proc. Natl. cad. Sci. US 99, (2002) 5D HCCONHN 0*(t ) *(t 2 ) 22*(t 3 ) 3* (t 4 ) 52*(t 5 ) scan per FID, second per scan 5.83 das 4D spectrum in 94 msec... Processed to the same resolution 68 G 5/5

NMR course at the FMP: Practical aspects

NMR course at the FMP: Practical aspects NMR course at the FMP: Practical aspects 04.05.2009 The program 2/68 The dynamic range Solvent supression Quadrature detection Folding/Aliasing Phasing in the indirect dimensions 3/68 The dynamic range

More information

Laboratory and Rotating frames

Laboratory and Rotating frames Laborator and Rotating frames The coordinate sstem that we used for the previous eample (laborator frame) is reall pathetic. The whole sstem is spinning at ω o, which makes an kind of analsis impossible.

More information

NMR course at the FMP: NMR of organic compounds and small biomolecules - III-

NMR course at the FMP: NMR of organic compounds and small biomolecules - III- NMR course at the FMP: NMR of organic compounds and small biomolecules - III- 23.03.2009 The program 2/82 The product operator formalism (the PROF ) Basic principles Building blocks Two-dimensional NMR:

More information

= I, (I - 1), (I - 2),, -I

= I, (I - 1), (I - 2),, -I NMR spectroscop Absorption (or emission) spectroscop, as IR or UV. Detects the absorption of radiofrequencies (electromagnetic radiation) b certain nuclei in a molecule. Onl nuclei with spin number (I)

More information

Spectral Broadening Mechanisms

Spectral Broadening Mechanisms Spectral Broadening Mechanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Unstable Oscillations!

Unstable Oscillations! Unstable Oscillations X( t ) = [ A 0 + A( t ) ] sin( ω t + Φ 0 + Φ( t ) ) Amplitude modulation: A( t ) Phase modulation: Φ( t ) S(ω) S(ω) Special case: C(ω) Unstable oscillation has a broader periodogram

More information

Lab 1: Earth s Field NMR

Lab 1: Earth s Field NMR Lab 1: Earth s Field NMR March 1, 213 Galen Reed (GSI), Miki Lustig (Prof) 1 Introduction In this lab, we will acquire spectra using an Earth s field spectrometer. This lab will cover basic NMR concepts

More information

Lecture 5: Bloch equation and detection of magnetic resonance

Lecture 5: Bloch equation and detection of magnetic resonance Lecture 5: Bloch equation and detection of magnetic resonance Lecture aims to eplain:. Bloch equations, transverse spin relaation time and *. Detection of agnetic Resonance: Free Induction Deca Bloch equations

More information

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening

Spectral Broadening Mechanisms. Broadening mechanisms. Lineshape functions. Spectral lifetime broadening Spectral Broadening echanisms Lorentzian broadening (Homogeneous) Gaussian broadening (Inhomogeneous, Inertial) Doppler broadening (special case for gas phase) The Fourier Transform NC State University

More information

Control of quantum two-level systems

Control of quantum two-level systems Control of quantum two-level sstems R. Gross, A. Mar & F. Deppe, Walther-Meißner-Institut (00-03) 0.3 Control of quantum two-level sstems.. General concept AS-Chap. 0 - How to control a qubit? Does the

More information

Physics 505 Homework No. 8 Solutions S Spinor rotations. Somewhat based on a problem in Schwabl.

Physics 505 Homework No. 8 Solutions S Spinor rotations. Somewhat based on a problem in Schwabl. Physics 505 Homework No 8 s S8- Spinor rotations Somewhat based on a problem in Schwabl a) Suppose n is a unit vector We are interested in n σ Show that n σ) = I where I is the identity matrix We will

More information

Frequency- and Time-Domain Spectroscopy

Frequency- and Time-Domain Spectroscopy Frequency- and Time-Domain Spectroscopy We just showed that you could characterize a system by taking an absorption spectrum. We select a frequency component using a grating or prism, irradiate the sample,

More information

Control of quantum two-level systems

Control of quantum two-level systems R. Gross, A. Mar, F. Deppe, and K. Fedorov Walther-Meißner-Institut (00-08) AS-Chap. 6.3 - Control of quantum two-level sstems R. Gross, A. Mar, F. Deppe, and K. Fedorov Walther-Meißner-Institut (00-08)

More information

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure:

Chem 325 NMR Intro. The Electromagnetic Spectrum. Physical properties, chemical properties, formulas Shedding real light on molecular structure: Physical properties, chemical properties, formulas Shedding real light on molecular structure: Wavelength Frequency ν Wavelength λ Frequency ν Velocity c = 2.998 10 8 m s -1 The Electromagnetic Spectrum

More information

Solutions manual for Understanding NMR spectroscopy second edition

Solutions manual for Understanding NMR spectroscopy second edition Solutions manual for Understanding NMR spectroscopy second edition James Keeler and Andrew J. Pell University of Cambridge, Department of Chemistry (a) (b) Ω Ω 2 Ω 2 Ω ω ω 2 Version 2.0 James Keeler and

More information

Complex Numbers. The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition,

Complex Numbers. The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition, Complex Numbers Complex Algebra The set of complex numbers can be defined as the set of pairs of real numbers, {(x, y)}, with two operations: (i) addition, and (ii) complex multiplication, (x 1, y 1 )

More information

3 Chemical exchange and the McConnell Equations

3 Chemical exchange and the McConnell Equations 3 Chemical exchange and the McConnell Equations NMR is a technique which is well suited to study dynamic processes, such as the rates of chemical reactions. The time window which can be investigated in

More information

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance

A Hands on Introduction to NMR Lecture #1 Nuclear Spin and Magnetic Resonance A Hands on Introduction to NMR 22.920 Lecture #1 Nuclear Spin and Magnetic Resonance Introduction - The aim of this short course is to present a physical picture of the basic principles of Nuclear Magnetic

More information

We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by:

We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by: Bloch Equations We have seen that the total magnetic moment or magnetization, M, of a sample of nuclear spins is the sum of the nuclear moments and is given by: M = [] µ i i In terms of the total spin

More information

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons

Fundamental MRI Principles Module 2 N. Nuclear Magnetic Resonance. X-ray. MRI Hydrogen Protons. Page 1. Electrons Fundamental MRI Principles Module 2 N S 1 Nuclear Magnetic Resonance There are three main subatomic particles: protons positively charged neutrons no significant charge electrons negatively charged Protons

More information

Coherence selection and multiple quantum spectroscopy.

Coherence selection and multiple quantum spectroscopy. Coherence selection and multiple quantum spectroscop. Last time we saw how we can get rid of artifacts b means of ccling the phases of pulses and receivers. Apart from artifacts, in more complicated multiple

More information

Ala-Arg-Pro-Tyr-Asn-Phe-Cpa-Leu-NH 2

Ala-Arg-Pro-Tyr-Asn-Phe-Cpa-Leu-NH 2 Applied Spectroscop Ala-Arg-Pro-Tr-Asn-Phe-Cpa-Leu-NH 2 Cpa Ala Pro Guillermo Mona What is Spectroscop? Without going into latin or greek, spectroscop is the stud of the interactions between light and

More information

THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3

THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3 THE FOURIER TRANSFORM (Fourier series for a function whose period is very, very long) Reading: Main 11.3 Any periodic function f(t) can be written as a Fourier Series a 0 2 + a n cos( nωt) + b n sin n

More information

12 Understanding Solution State NMR Experiments: Product Operator Formalism

12 Understanding Solution State NMR Experiments: Product Operator Formalism 12 Understanding Solution State NMR Experiments: Product Operator Formalism As we saw in the brief introduction in the previous chapter, solution state NMR pulse sequences consist of building blocks. Product

More information

INTRODUCTION TO NMR and NMR QIP

INTRODUCTION TO NMR and NMR QIP Books (NMR): Spin dynamics: basics of nuclear magnetic resonance, M. H. Levitt, Wiley, 2001. The principles of nuclear magnetism, A. Abragam, Oxford, 1961. Principles of magnetic resonance, C. P. Slichter,

More information

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007

Selected Topics in Physics a lecture course for 1st year students by W.B. von Schlippe Spring Semester 2007 Selected Topics in Physics a lecture course for st year students by W.B. von Schlippe Spring Semester 7 Lecture : Oscillations simple harmonic oscillations; coupled oscillations; beats; damped oscillations;

More information

The NMR Inverse Imaging Problem

The NMR Inverse Imaging Problem The NMR Inverse Imaging Problem Nuclear Magnetic Resonance Protons and Neutrons have intrinsic angular momentum Atoms with an odd number of proton and/or odd number of neutrons have a net magnetic moment=>

More information

Fundamental MRI Principles Module Two

Fundamental MRI Principles Module Two Fundamental MRI Principles Module Two 1 Nuclear Magnetic Resonance There are three main subatomic particles: protons neutrons electrons positively charged no significant charge negatively charged Protons

More information

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in:

Physikalische Chemie IV (Magnetische Resonanz) HS Solution Set 2. Hand out: Hand in: Solution Set Hand out:.. Hand in:.. Repetition. The magnetization moves adiabatically during the application of an r.f. pulse if it is always aligned along the effective field axis. This behaviour is observed

More information

Chemistry 431. Lecture 23

Chemistry 431. Lecture 23 Chemistry 431 Lecture 23 Introduction The Larmor Frequency The Bloch Equations Measuring T 1 : Inversion Recovery Measuring T 2 : the Spin Echo NC State University NMR spectroscopy The Nuclear Magnetic

More information

5. THE CLASSES OF FOURIER TRANSFORMS

5. THE CLASSES OF FOURIER TRANSFORMS 5. THE CLASSES OF FOURIER TRANSFORMS There are four classes of Fourier transform, which are represented in the following table. So far, we have concentrated on the discrete Fourier transform. Table 1.

More information

6. Molecular structure and spectroscopy I

6. Molecular structure and spectroscopy I 6. Molecular structure and spectroscopy I 1 6. Molecular structure and spectroscopy I 1 molecular spectroscopy introduction 2 light-matter interaction 6.1 molecular spectroscopy introduction 2 Molecular

More information

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form

2.3 Oscillation. The harmonic oscillator equation is the differential equation. d 2 y dt 2 r y (r > 0). Its solutions have the form 2. Oscillation So far, we have used differential equations to describe functions that grow or decay over time. The next most common behavior for a function is to oscillate, meaning that it increases and

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal.

EE 3054: Signals, Systems, and Transforms Summer It is observed of some continuous-time LTI system that the input signal. EE 34: Signals, Systems, and Transforms Summer 7 Test No notes, closed book. Show your work. Simplify your answers. 3. It is observed of some continuous-time LTI system that the input signal = 3 u(t) produces

More information

Structure Determination by NMR

Structure Determination by NMR 40-042 Analtische Chemie IV Structure Determination b NMR Prof. Bernhard Jaun Office: ETH Hönggerberg HCI E317 Phone: 01 632 31 44 e-mail: jaun@org.chem.ethz.ch home page: http://www.jaun.chem.ethz.ch

More information

Chapter 2: Complex numbers

Chapter 2: Complex numbers Chapter 2: Complex numbers Complex numbers are commonplace in physics and engineering. In particular, complex numbers enable us to simplify equations and/or more easily find solutions to equations. We

More information

Classical Description of NMR Parameters: The Bloch Equations

Classical Description of NMR Parameters: The Bloch Equations Classical Description of NMR Parameters: The Bloch Equations Pascale Legault Département de Biochimie Université de Montréal 1 Outline 1) Classical Behavior of Magnetic Nuclei: The Bloch Equation 2) Precession

More information

Solutions a) The characteristic equation is r = 0 with roots ±2i, so the complementary solution is. y c = c 1 cos(2t)+c 2 sin(2t).

Solutions a) The characteristic equation is r = 0 with roots ±2i, so the complementary solution is. y c = c 1 cos(2t)+c 2 sin(2t). Solutions 3.9. a) The characteristic equation is r + 4 = 0 with roots ±i, so the complementar solution is c = c cos(t)+c sin(t). b) We look for a particular solution in the form and obtain the equations

More information

PROTEIN NMR SPECTROSCOPY

PROTEIN NMR SPECTROSCOPY List of Figures List of Tables xvii xxvi 1. NMR SPECTROSCOPY 1 1.1 Introduction to NMR Spectroscopy 2 1.2 One Dimensional NMR Spectroscopy 3 1.2.1 Classical Description of NMR Spectroscopy 3 1.2.2 Nuclear

More information

Homonuclear 2DJ spectroscopy - HOMO2DJ

Homonuclear 2DJ spectroscopy - HOMO2DJ Homonuclear 2DJ spectroscop - HOMO2DJ All 2D eperiments we ve analzed so far are used to find out correlations or connections between spin sstems. There are man other things that we can etract from 2D

More information

NMR course at the FMP: NMR of organic compounds and small biomolecules - II -

NMR course at the FMP: NMR of organic compounds and small biomolecules - II - NMR course at the FMP: NMR of organic compounds and small biomolecules - II - 16.03.2009 The program 2/76 CW vs. FT NMR What is a pulse? Vectormodel Water-flip-back 3/76 CW vs. FT CW vs. FT 4/76 Two methods

More information

Nuclear Magnetic Resonance Imaging

Nuclear Magnetic Resonance Imaging Nuclear Magnetic Resonance Imaging Jeffrey A. Fessler EECS Department The University of Michigan NSS-MIC: Fundamentals of Medical Imaging Oct. 20, 2003 NMR-0 Background Basic physics 4 magnetic fields

More information

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 :

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : X(t) = µ + Asin(ω 0 t)+ Δ δ ( t t 0 ) ±σ N =100 Δ =100 χ ( ω ) Raises the amplitude uniformly at all

More information

Problem Sheet 1 Examples of Random Processes

Problem Sheet 1 Examples of Random Processes RANDOM'PROCESSES'AND'TIME'SERIES'ANALYSIS.'PART'II:'RANDOM'PROCESSES' '''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''''Problem'Sheets' Problem Sheet 1 Examples of Random Processes 1. Give

More information

V27: RF Spectroscopy

V27: RF Spectroscopy Martin-Luther-Universität Halle-Wittenberg FB Physik Advanced Lab Course V27: RF Spectroscopy ) Electron spin resonance (ESR) Investigate the resonance behaviour of two coupled LC circuits (an active rf

More information

Wave Phenomena Physics 15c

Wave Phenomena Physics 15c Wave Phenomena Physics 5c Lecture Fourier Analysis (H&L Sections 3. 4) (Georgi Chapter ) What We Did Last ime Studied reflection of mechanical waves Similar to reflection of electromagnetic waves Mechanical

More information

D.S.G. POLLOCK: BRIEF NOTES

D.S.G. POLLOCK: BRIEF NOTES BIVARIATE SPECTRAL ANALYSIS Let x(t) and y(t) be two stationary stochastic processes with E{x(t)} = E{y(t)} =. These processes have the following spectral representations: (1) x(t) = y(t) = {cos(ωt)da

More information

COPYRIGHTED MATERIAL. Basic Principles. 1.1 Introduction

COPYRIGHTED MATERIAL. Basic Principles. 1.1 Introduction . Introduction Basic Principles The field of spectroscopy is in general concerned with the interaction between matter and electromagnetic radiation. Atoms and molecules have a range of discrete energy

More information

Superposition of waves (review) PHYS 258 Fourier optics SJSU Spring 2010 Eradat

Superposition of waves (review) PHYS 258 Fourier optics SJSU Spring 2010 Eradat Superposition of waves (review PHYS 58 Fourier optics SJSU Spring Eradat Superposition of waves Superposition of waves is the common conceptual basis for some optical phenomena such as: Polarization Interference

More information

Lecture k-space. k-space illustrations. Zeugmatography 3/7/2011. Use of gradients to make an image echo. K-space Intro to k-space sampling

Lecture k-space. k-space illustrations. Zeugmatography 3/7/2011. Use of gradients to make an image echo. K-space Intro to k-space sampling Lecture 21-3-16 K-space Intro to k-space sampling (chap 3) Frequenc encoding and Discrete sampling (chap 2) Point Spread Function K-space properties K-space sampling principles (chap 3) Basic Contrast

More information

Biophysical Chemistry: NMR Spectroscopy

Biophysical Chemistry: NMR Spectroscopy Spin Dynamics & Vrije Universiteit Brussel 25th November 2011 Outline 1 Pulse/Fourier Transform NMR Thermal Equilibrium Effect of RF Pulses The Fourier Transform 2 Symmetric Exchange Between Two Sites

More information

Phasor Young Won Lim 05/19/2015

Phasor Young Won Lim 05/19/2015 Phasor Copyright (c) 2009-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any later version

More information

Math 214 Spring problem set (a) Consider these two first order equations. (I) dy dx = x + 1 dy

Math 214 Spring problem set (a) Consider these two first order equations. (I) dy dx = x + 1 dy Math 4 Spring 08 problem set. (a) Consider these two first order equations. (I) d d = + d (II) d = Below are four direction fields. Match the differential equations above to their direction fields. Provide

More information

Phys460.nb Back to our example. on the same quantum state. i.e., if we have initial condition (5.241) ψ(t = 0) = χ n (t = 0)

Phys460.nb Back to our example. on the same quantum state. i.e., if we have initial condition (5.241) ψ(t = 0) = χ n (t = 0) Phys46.nb 89 on the same quantum state. i.e., if we have initial condition ψ(t ) χ n (t ) (5.41) then at later time ψ(t) e i ϕ(t) χ n (t) (5.4) This phase ϕ contains two parts ϕ(t) - E n(t) t + ϕ B (t)

More information

Master s Thesis. Exploitation of Structure for Enhanced Reconstruction of Multidimensional NMR Spectra

Master s Thesis. Exploitation of Structure for Enhanced Reconstruction of Multidimensional NMR Spectra 석사학위논문 Master s Thesis 스펙트럼분포의구조를이용한고해상도다차원 NMR 분광분석기법 Exploitation of Structure for Enhanced Reconstruction of Multidimensional NMR Spectra Finn Wolfreys 바이오및뇌공학과 Department of Bio and Brain Engineering

More information

Wave Phenomena Physics 15c. Lecture 11 Dispersion

Wave Phenomena Physics 15c. Lecture 11 Dispersion Wave Phenomena Physics 15c Lecture 11 Dispersion What We Did Last Time Defined Fourier transform f (t) = F(ω)e iωt dω F(ω) = 1 2π f(t) and F(w) represent a function in time and frequency domains Analyzed

More information

Periodic functions: simple harmonic oscillator

Periodic functions: simple harmonic oscillator Periodic functions: simple harmonic oscillator Recall the simple harmonic oscillator (e.g. mass-spring system) d 2 y dt 2 + ω2 0y = 0 Solution can be written in various ways: y(t) = Ae iω 0t y(t) = A cos

More information

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x

K-space. Spin-Warp Pulse Sequence. At each point in time, the received signal is the Fourier transform of the object s(t) = M( k x Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2015 MRI Lecture 4 k (t) = γ 2π k y (t) = γ 2π K-space At each point in time, the received signal is the Fourier transform of the object

More information

Phys 7221 Homework # 8

Phys 7221 Homework # 8 Phys 71 Homework # 8 Gabriela González November 15, 6 Derivation 5-6: Torque free symmetric top In a torque free, symmetric top, with I x = I y = I, the angular velocity vector ω in body coordinates with

More information

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003

Lecture XXVI. Morris Swartz Dept. of Physics and Astronomy Johns Hopkins University November 5, 2003 Lecture XXVI Morris Swartz Dept. of Physics and Astronomy Johns Hopins University morris@jhu.edu November 5, 2003 Lecture XXVI: Oscillations Oscillations are periodic motions. There are many examples of

More information

4 DQF-COSY, Relayed-COSY, TOCSY Gerd Gemmecker, 1999

4 DQF-COSY, Relayed-COSY, TOCSY Gerd Gemmecker, 1999 44 4 DQF-COSY, Relayed-COSY, TOCSY Gerd Gemmecker, 1999 Double-quantum filtered COSY The phase problem of normal COSY can be circumvented by the DQF-COSY, using the MQC term generated by the second 90

More information

LINEAR RESPONSE THEORY

LINEAR RESPONSE THEORY MIT Department of Chemistry 5.74, Spring 5: Introductory Quantum Mechanics II Instructor: Professor Andrei Tokmakoff p. 8 LINEAR RESPONSE THEORY We have statistically described the time-dependent behavior

More information

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18

Circuit Analysis-III. Circuit Analysis-II Lecture # 3 Friday 06 th April, 18 Circuit Analysis-III Sinusoids Example #1 ü Find the amplitude, phase, period and frequency of the sinusoid: v (t ) =12cos(50t +10 ) Signal Conversion ü From sine to cosine and vice versa. ü sin (A ± B)

More information

BME I5000: Biomedical Imaging

BME I5000: Biomedical Imaging BME I5000: Biomedical Imaging Lecture 9 Magnetic Resonance Imaging (imaging) Lucas C. Parra, parra@ccny.cuny.edu Blackboard: http://cityonline.ccny.cuny.edu/ 1 Schedule 1. Introduction, Spatial Resolution,

More information

Background ODEs (2A) Young Won Lim 3/7/15

Background ODEs (2A) Young Won Lim 3/7/15 Background ODEs (2A) Copyright (c) 2014-2015 Young W. Lim. Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation License, Version 1.2 or any

More information

Lecture 27: More on Rotational Kinematics

Lecture 27: More on Rotational Kinematics Lecture 27: More on Rotational Kinematics Let s work out the kinematics of rotational motion if α is constant: dω α = 1 2 α dω αt = ω ω ω = αt + ω ( t ) dφ α + ω = dφ t 2 α + ωo = φ φo = 1 2 = t o 2 φ

More information

10.5 Graphs of the Trigonometric Functions

10.5 Graphs of the Trigonometric Functions 790 Foundations of Trigonometr 0.5 Graphs of the Trigonometric Functions In this section, we return to our discussion of the circular (trigonometric functions as functions of real numbers and pick up where

More information

Outline. Math Partial Differential Equations. Fourier Transforms for PDEs. Joseph M. Mahaffy,

Outline. Math Partial Differential Equations. Fourier Transforms for PDEs. Joseph M. Mahaffy, Outline Math 53 - Partial Differential Equations s for PDEs Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center

More information

Re(z) = a, For example, 3 + 2i = = 13. The complex conjugate (or simply conjugate") of z = a + bi is the number z defined by

Re(z) = a, For example, 3 + 2i = = 13. The complex conjugate (or simply conjugate) of z = a + bi is the number z defined by F COMPLEX NUMBERS In this appendi, we review the basic properties of comple numbers. A comple number is a number z of the form z = a + bi where a,b are real numbers and i represents a number whose square

More information

Shimming of a Magnet for Calibration of NMR Probes UW PHYSICS REU 2013

Shimming of a Magnet for Calibration of NMR Probes UW PHYSICS REU 2013 Shimming of a Magnet for Calibration of NMR Probes RACHEL BIELAJEW UW PHYSICS REU 2013 Outline Background The muon anomaly The g-2 Experiment NMR Design Helmholtz coils producing a gradient Results Future

More information

1.b Bloch equations, T 1, T 2

1.b Bloch equations, T 1, T 2 1.b Bloch equations, T 1, T Magnetic resonance eperiments are usually conducted with a large number of spins (at least 1 8, more typically 1 1 to 1 18 spins for electrons and 1 18 or more nuclear spins).

More information

Analytical Mechanics ( AM )

Analytical Mechanics ( AM ) Analytical Mechanics ( AM ) Olaf Scholten KVI, kamer v8; tel nr 6-55; email: scholten@kvinl Web page: http://wwwkvinl/ scholten Book: Classical Dynamics of Particles and Systems, Stephen T Thornton & Jerry

More information

NMR-spectroscopy in solution - an introduction. Peter Schmieder

NMR-spectroscopy in solution - an introduction. Peter Schmieder NMR-spectroscopy in solution - an introduction 2/92 Advanced Bioanalytics NMR-Spectroscopy Introductory session (11:00 12:30) Basic aspects of NMR-spectroscopy NMR parameter Multidimensional NMR-spectroscopy

More information

Fourier series. Complex Fourier series. Positive and negative frequencies. Fourier series demonstration. Notes. Notes. Notes.

Fourier series. Complex Fourier series. Positive and negative frequencies. Fourier series demonstration. Notes. Notes. Notes. Fourier series Fourier series of a periodic function f (t) with period T and corresponding angular frequency ω /T : f (t) a 0 + (a n cos(nωt) + b n sin(nωt)), n1 Fourier series is a linear sum of cosine

More information

Wave Phenomena Physics 15c. Lecture 10 Fourier Transform

Wave Phenomena Physics 15c. Lecture 10 Fourier Transform Wave Phenomena Physics 15c Lecture 10 Fourier ransform What We Did Last ime Reflection of mechanical waves Similar to reflection of electromagnetic waves Mechanical impedance is defined by For transverse/longitudinal

More information

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x )

Apodization. Gibbs Artifact. Bioengineering 280A Principles of Biomedical Imaging. Fall Quarter 2013 MRI Lecture 5. rect(k x ) Bioengineering 280A Principles of Biomedical Imaging Fall Quarter 2013 MRI Lecture 5 GE Medical Systems 2003 Gibbs Artifact Apodization rect(k ) Hanning Window h(k )=1/2(1+cos(2πk ) 256256 image 256128

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare ttp://ocw.mit.edu 5.74 Introductory Quantum Mecanics II Spring 9 For information about citing tese materials or our Terms of Use, visit: ttp://ocw.mit.edu/terms. Andrei Tokmakoff, MIT

More information

B2.III Revision notes: quantum physics

B2.III Revision notes: quantum physics B.III Revision notes: quantum physics Dr D.M.Lucas, TT 0 These notes give a summary of most of the Quantum part of this course, to complement Prof. Ewart s notes on Atomic Structure, and Prof. Hooker s

More information

Manifestations of classical physics in the quantum evolution of correlated spin states in pulsed NMR experiments. Abstract

Manifestations of classical physics in the quantum evolution of correlated spin states in pulsed NMR experiments. Abstract Manifestations of classical phsics in the quantum evolution of correlated spin states in pulsed NMR eperiments Martin Ligare Department of Phsics & Astronom, ucknell Universit, Lewisburg, PA 7837 Dated:

More information

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f APPENDIX C Additional Topics in Differential Equations APPENDIX C. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Chapter 6, ou studied applications

More information

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 :

Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : Periodogram of a sinusoid + spike Single high value is sum of cosine curves all in phase at time t 0 : ( ) ±σ X(t) = µ + Asin(ω 0 t)+ Δ δ t t 0 N =100 Δ =100 χ ( ω ) Raises the amplitude uniformly at all

More information

Prof. Shayla Sawyer CP08 solution

Prof. Shayla Sawyer CP08 solution What does the time constant represent in an exponential function? How do you define a sinusoid? What is impedance? How is a capacitor affected by an input signal that changes over time? How is an inductor

More information

Biochemistry 530 NMR Theory and Practice

Biochemistry 530 NMR Theory and Practice Biochemistry 530 NMR Theory and Practice Gabriele Varani Department of Biochemistry and Department of Chemistry University of Washington 1D spectra contain structural information.. but is hard to extract:

More information

HOMEWORK 4: MATH 265: SOLUTIONS. y p = cos(ω 0t) 9 ω 2 0

HOMEWORK 4: MATH 265: SOLUTIONS. y p = cos(ω 0t) 9 ω 2 0 HOMEWORK 4: MATH 265: SOLUTIONS. Find the solution to the initial value problems y + 9y = cos(ωt) with y(0) = 0, y (0) = 0 (account for all ω > 0). Draw a plot of the solution when ω = and when ω = 3.

More information

Relaxation, Multi pulse Experiments and 2D NMR

Relaxation, Multi pulse Experiments and 2D NMR Relaxation, Multi pulse Experiments and 2D NMR To Do s Read Chapter 6 Complete the end of chapter problems; 6 1, 6 2, 6 3, 6 5, 6 9 and 6 10. Read Chapter 15 and do as many problems as you can. Relaxation

More information

I WAVES (ENGEL & REID, 13.2, 13.3 AND 12.6)

I WAVES (ENGEL & REID, 13.2, 13.3 AND 12.6) I WAVES (ENGEL & REID, 13., 13.3 AND 1.6) I.1 Introduction A significant part of the lecture From Quantum to Matter is devoted to developing the basic concepts of quantum mechanics. This is not possible

More information

Lecture 35: FRI 17 APR Electrical Oscillations, LC Circuits, Alternating Current I

Lecture 35: FRI 17 APR Electrical Oscillations, LC Circuits, Alternating Current I Physics 3 Jonathan Dowling Lecture 35: FRI 7 APR Electrical Oscillations, LC Circuits, Alternating Current I Nikolai Tesla What are we going to learn? A road map Electric charge è Electric force on other

More information

5.74 Introductory Quantum Mechanics II

5.74 Introductory Quantum Mechanics II MIT OpenCourseWare http://ocw.mit.edu 5.74 Introductory Quantum Mechanics II Spring 9 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Andrei Tokmakoff,

More information

Review (2) Calculus II (201-nyb-05/05,06) Winter 2019

Review (2) Calculus II (201-nyb-05/05,06) Winter 2019 Review () Calculus II (-nyb-5/5,6) Winter 9 Note. You should also review the integrals eercises on the first review sheet. Eercise. Evaluate each of the following integrals. a. sin 3 ( )cos ( csc 3 (log)cot

More information

Lecture 1a. Complex numbers, phasors and vectors. Introduction. Complex numbers. 1a.1

Lecture 1a. Complex numbers, phasors and vectors. Introduction. Complex numbers. 1a.1 1a.1 Lecture 1a Comple numbers, phasors and vectors Introduction This course will require ou to appl several concepts ou learned in our undergraduate math courses. In some cases, such as comple numbers

More information

E = K + U. p mv. p i = p f. F dt = p. J t 1. a r = v2. F c = m v2. s = rθ. a t = rα. r 2 dm i. m i r 2 i. I ring = MR 2.

E = K + U. p mv. p i = p f. F dt = p. J t 1. a r = v2. F c = m v2. s = rθ. a t = rα. r 2 dm i. m i r 2 i. I ring = MR 2. v = v i + at x = x i + v i t + 1 2 at2 E = K + U p mv p i = p f L r p = Iω τ r F = rf sin θ v 2 = v 2 i + 2a x F = ma = dp dt = U v dx dt a dv dt = d2 x dt 2 A circle = πr 2 A sphere = 4πr 2 V sphere =

More information

NMR-spectroscopy of proteins in solution. Peter Schmieder

NMR-spectroscopy of proteins in solution. Peter Schmieder NMR-spectroscopy of proteins in solution Basic aspects of NMR-Spektroskopie Basic aspects of NMR-spectroscopy 3/84 Prerequisite for NMR-spectroscopy is a nuclear spin that can be thought of as a mixture

More information

Lecture 34. Fourier Transforms

Lecture 34. Fourier Transforms Lecture 34 Fourier Transforms In this section, we introduce the Fourier transform, a method of analyzing the frequency content of functions that are no longer τ-periodic, but which are defined over the

More information

Modern Physics. Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.2: Classical Concepts Review of Particles and Waves

Modern Physics. Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.2: Classical Concepts Review of Particles and Waves Modern Physics Unit 1: Classical Models and the Birth of Modern Physics Lecture 1.: Classical Concepts Reiew of Particles and Waes Ron Reifenberger Professor of Physics Purdue Uniersity 1 Equations of

More information

The Basics of Magnetic Resonance Imaging

The Basics of Magnetic Resonance Imaging The Basics of Magnetic Resonance Imaging Nathalie JUST, PhD nathalie.just@epfl.ch CIBM-AIT, EPFL Course 2013-2014-Chemistry 1 Course 2013-2014-Chemistry 2 MRI: Many different contrasts Proton density T1

More information

Spectroscopy in frequency and time domains

Spectroscopy in frequency and time domains 5.35 Module 1 Lecture Summary Fall 1 Spectroscopy in frequency and time domains Last time we introduced spectroscopy and spectroscopic measurement. I. Emphasized that both quantum and classical views of

More information

Magnetic Resonance Imaging (MRI)

Magnetic Resonance Imaging (MRI) Magnetic Resonance Imaging Introduction The Components The Technology (MRI) Physics behind MR Most slides taken from http:// www.slideworld.org/ viewslides.aspx/magnetic- Resonance-Imaging- %28MRI%29-MR-Imaging-

More information

HSQC = Heteronuclear Single-Quantum Coherence. ) in order to maximize the coherence transfer from I to S

HSQC = Heteronuclear Single-Quantum Coherence. ) in order to maximize the coherence transfer from I to S HSQC = Heteronuclear Single-Quantum Coherence The pulse sequence: Consider: Ω I, Ω S and J IS τ = 1/(4J IS in order to maximize the coherence transfer from I to S The overal pulse sequence can be subdivided

More information

Time Series Analysis. Solutions to problems in Chapter 7 IMM

Time Series Analysis. Solutions to problems in Chapter 7 IMM Time Series Analysis Solutions to problems in Chapter 7 I Solution 7.1 Question 1. As we get by subtraction kx t = 1 + B + B +...B k 1 )ǫ t θb) = 1 + B +... + B k 1 ), and BθB) = B + B +... + B k ), 1

More information