Modeling of saturation in induction machines using EMTP, PSpice and a dedicated computer program 1:;

Size: px
Start display at page:

Download "Modeling of saturation in induction machines using EMTP, PSpice and a dedicated computer program 1:;"

Transcription

1 '-l LSVR lectric Power Systems Research 3 (1994) LCTAC QWA SiSTmS ASr:1ACH Modeling of saturation in induction machines using MTP PSpice and a dedicated computer program 1:; J.F. Reynaud P. Pillay Department of lectrical ngineering University of New Orleans New Orleans LA 7148 USA Abstract The effects of saturation in an induction motor's performance during a direct on-line start are studied using three different techniques. n the first method the motor is modeled using the well-known lectromagnet Transients Program (MTP) with saturation included in the magnetizing branch only. Secondly the motor is modeled using PSpice a popular circuit simulation software package where magnetic-core saturation is modeled more accurately than in MTP. n the final method the motor is modeled by taking into account cross- as well as magnetic-core saturation and implemented in a dedicated computer program. A comparative evaluation of the results is presented. Keywords: Saturation modeling; nduction motors 1. ntroduction n an industrial environment it is important to be able to predict as accurately as possible the mechanical and electrical response of electrical machinery under different power supply disturbances. The effects of unbalanced voltages have been well documented in the technical literature [ 2]. Supply short-circuit faults have been recognized as the cause of severe transients on electrical machines. Upon reapplication of the supply even more severe transients can occur depending on the magnitude and phase of the motor's residual back emf. The current transient could easily exceed even that produced at starting which itself is typically five or six times the rated value. t is during these conditions of starting or reconnection of the supply that machines encounter deep levels of saturation. t then becomes mandatory to accurately model saturation effects for the correct determination of motor transients. n this paper several different methods of modeling saturation are studied and evaluated including the use of MTP PSpice and a dedicated computer program... Presented at the Third Biennial Symposium on ndustrial lectric Power Applications New Orleans LA USA November ] nduction motor model 2.1. MTP implementation The lectromagnetic Transients Program (MTP) is a powerful software package for the simulation of power systems. ncluded in the package is a Universal Machine (UM) model. The model used in MTP is as follows: V = Ri + L :t i + WrGi (1) where V= VdS ds Vdr ldr i= Vqs lqs [ Vqr ] [ iqr] R = Rr Rs (2) [R' Rr ] Lmo L= Lmo Lro LsQ (3) [L'D LmQ LrQ L] lsevier Science S.A. SSD (94 )86 7-4

2 28 i.f. Reynaud P. Pil/ay / lectric Power Systems Research 3 (/994) G= r -LmQ LsD = Ls + LmD LSQ = Ls + LmQ LrD = Lr + LmD -LrQ LmD LrD ] (4) (5) (6) LrQ = Lr + LmQ (8) R is the resistance matrix (constant) LsD and LsQ are the D and Q axis stator self inductances LrD and LrQ are the D and Q axis rotor self inductances and Wr is the rotor speed. JOe electromagnetic torque is defined for both saturated and unsaturated conditions as (9) Te = -2"2 Lm(isQirD dwr Te = J dt + flwr + 1; - isdirq) (7) (1) n MTP saturation is approximated by a two-segment piecewise curve of the magnetizing characteristics of the motor (Fig. 1). During saturation the inductance matrix L can only take two values for Lm. Fig. 2 shows the approximation of the magnetizing curve of the motor by a two-segment piecewise curve. The user must select a point in the magnetizing curve as the border between saturated and unsaturated operation. By inspecting this magnetizing curve it was determined that the motor operates in the saturated region when 1m> 1.73 A. This point is labeled as P in Fig JOO "... " " > uc '" " :: Fig. 2. Approximated l.a9nolizing Curron! (A) magnetizing curve. Fig. 3 shows the circuit representation MTP PSpice implementation as used in n PSpice the induction motor is modeled using the same D Q axis equations given in Section 2.1. However saturation is accounted for in the magnetic core more accurately than in MTP. A slightly different form of the torque equation is used in PSpice for ease of implementation: Te = -2"2 (Aqridr - Adriqr) () Aqr= Llriqr + LmQ(iqs+ iqr) (12) c:... " :: Fig. 1. Magnetizing curve. l.agnetizing Currenl (A) Adr = Llr idr + LmD (idr + id.) dwr Te = J dt + flwr + T (13) (14) n (12) and (13) LmD and LmQ are considered saturable and can be modeled as nonlinear functions of their currents. The inductance curve for the motor under study is approximated by a nonlinear function of the magnetizing currents (Fig. 4):.38 ( 15) LmD = iml L mq--.38 (16) imq Since PSpice is a circuit simulation package an equivalent circuit must be generated to represent the D

3 J.F. Reynaud P. Pillay / lectric Power Systems Research 3 (1994) R. A R).f 281 Rb Rc A T UR T v. Vb Vc RCnd Rom.1 Fig. 3. MTP equivalent circuit. - Lm (True & Approx.) O.!>.4 Vl :1 Rw Lt.. u.. R- Urd.. 'C V3 2 Rw L.. L.. Fr.1 Unq a m Fig. 4. nductance curves. (A-rrns) Fig. 5. PSpice D Q axis equivalent circuits. Q axis equations. These are shown in Fig. 5. The circuit representation of q. (1) is given in Fig. 6 where (17) Tel = "2'2 Adriqr re2 ="2 '2 Aqridr (18) V through Vs in Figs. 5 and 6 are dummy (zero) voltage sources to measure currents. and 2 are current-controlled voltage sources related to the G matrix in q. (4). Tel and Te2 are current-controlled voltage sources representing the electromagnetic torque of the motor. Rte and LJ are respectively the friction coefficient and the inertia of the motor. n order to implement saturation in the magnetizing branch of the circuit a nonlinear inductor was modeled as shown in V5 Fig. 6. Torque equivalent circuit. - Ri:e the Appendix. The nonlinear inductor is defined as a unit inductance in series with a current-controlled voltage source whose instantaneous value represents the inductance curve for the motor. LJ

4 282 J.F. Reynaud P. Pillay / lectric Power Systems Research 3 (/994) Modeling and implementation using a dedicated program LmQ imq = Lm + -:-- Ldq md (25) The most'accurate method [3-51 to account for core saturation is to include cross saturation between the D and Q axes which is absent under the assumption of linearity of the magnetic circuit. q. (1) characterizes the induction motor in the saturated n this case the Land G matrices change to account for the cross-saturation terms: [ LsD LmD Ldq L = LmD Lrd Ldq G= [ Ldq Ldq LSQ Ldq Ldq LmQ -Lm Ldq Ldq LmQ LrQ Lm Lr -Lr The components of Land ] ] (19) (2) G are defined as follows: Lm = j (21) imd imq dlm Ldq = 1'm dl'm Lr = Lrl+ Lm LmD imd = Lm + -:-- Ldq mq (22) (23) (24) LsD = LS + LmD (26) LsQ = LS + LmQ LrD = Lrl + LmD LrQ = Lrl + LmQ (27) (28) (29) where Lm is the magnetizing inductance fm' imd imq and 'm are the magnetizing flux linkage D and Q axis magnetizing currents and the resultant magnetizing current vector respectively and Ldq is the cross-saturation inductance. The flux of the machine can then be expressed in terms of the resultant magnetizing current vector as follows: t/1m =.822 tan-l(.652iml) +.54jiml (3) The electromagnetic torque is defined for both saturated and unsaturated conditions as Te = Lm(isQird - isdirq) (31) dwr f3 Te=Jd(+ wr+1] (32) The introduction of the Ldq term in the inductance matrix due to the effects of cross saturation between the D and Q axes induces a much greater computational burden on the model a z '-' Qj =' " h 2iJ -1 GO GO Time (msec) Fig. 7. Torque variations for the MTP unsaturated

5 J.F. Reynaud P. Pillay / lectric Power Systems Research 3 (1994) '" Z '" W J [j L : : "''-..j" ' Oms 2ms 4ms 6ms 8ms looms a v(34) Tim Fig. 8. Torque variations for the PSpice unsaturated n order to solve q. (1) a fourth-order Runge- Kutta method is used; hence q. (1) is arranged in state space form: i i = L- ( V - Ri - w dt Gi) r dwr = Te - 13wr- r. dt J 3. Results (33) (34) ::> C" /"' "'. 36 J / '" ) '- "' The motor used in the simulation is a four-pole 5 hp induction motor with the following parameters: Rs = 1.86 Q Rr=2.12Q Ls =.11 H Lr =.6 H Lm(unsaturated) =.4699 J =.625 kg m2fs2 The simulation was carried out at 36 V to emphasize the effects of saturation on the machine performance. A direct on-line start under this input voltage was simulated. Figs. 7 8 and 9 show the results for MTP PSpice and the dedicated program respectively under linear conditions. t can be seen that all results agree as expected. The electric torque reaches about Time (s) Fig. 9. Torque variations for the dedicated program unsaturated case 28 N m at startup. When saturation is included though the results change. Fig. 1 shows the results for MTP. t can be seen that torque peaks are reduced due to the inclusion of saturation in the magnetic core. However higher torque peaks than the other two cases are observed. This is due to the fact that the magnetizing curve of the machine is approximated in a rather inaccurate way; thus the motor operates longer in the unsaturated region producing higher torque values at startup.. The PSpice results (Fig. 11) show the same trend. Torque peaks have decreased even more than in MTP which can be attributed to the more accurate representation of the magnetizing curve of the motor.

6 284 J.F. Reynaud P. Pil/ay / lectric Power Systems Research 3 (/994) ;".; a '-' z Q) C" -< -t 1 5 '-"....:) no "" no..no'.. Fig. 1. Torque variations for the MTP saturated 2 1 ro so Time (msec) 3; t... 2C+ + Z 'V U L f ' :. :. " Orns 2ms "Oms 6ms 8!)ms looms D v(34) Time Fig. 11. Torque variations for the PSpice saturated With cross and magnetic-core nonlinearities included in the machine dynamics the motor shows less developed torque agreeing with the previous results; however a more accurate response is obtained due to the cross-saturation terms in the L matrix. Fig. 12 shows the results for the dedicated program. 4. Conclusions This paper has examined how saturation affects the machine performance during startup conditions. t is shown that the inclusion of cross- and magnetic-saturation factors in the model gives the most accurate re-

7 J.F. Reynaud P. Pillay / lectric Power Systems Research 3 (1994) ( "'t ( 12! -;... j '...!. 36 / / Time (5) L 1 H HL (v(k)-1)*v( i j) Fig. 12. Torque variations for the dedicated program saturated suts. Although saturation was only included in the main flux using a continuous magnetizing curve the PSpice results appear to be more accurate than the results obtained using MTP in which the magnetizing curve of the motor is approximated with a two-segment curve. Simulation time is always a constraint that must be satisfied in all computer models. n this respect MTP shows the best performance followed by the dedicated program. Although it is much simpler to simulate the interaction of the electrical network with the electrical machinery and its loads using an off-the-shelf package such as PSpice or MTP it is shown in this paper that a dedicated computer program provides the most accurate results. Furthermore all models used in this paper are suitable for the calculation of machine performance in a variety of situations such as bus transfer and power disturbance studies. Acknowledgements The work reported in this paper was supported by the lectric Power Research nstitute the ntergy Corporation Louisiana Power and Light Co. and the Mobil Oil Chalmette Refinery. Fig. A. Nonlinear inductor. Appendix The model of the nonlinear inductor used to implement saturation in the magnetizing branch is shown in Fig. A where k is the voltage source node defining LmD or LmQ' References [] J.e. Das ffects of momentary voltage dips on the operation of induction and synchronous motors Trans. nd. Appl. 26 (199) [2] K.J. Sanghani Protection of large induction motors against restarting on out-of-phase power 2nd Biennial Symp. lectric ndustry Applications New Orleans LA USA 199. [3] J.. Brown K.P. Kovacs and P. Vas A method of including the effects of main flux path saturation in the generalized equations of A.C. machines Trans. Power Appar. 3yst. PAS-12 (1983) [4] K.-. Hallenius P. Vas and J.. Brown The analysis of a saturated self-excited asynchronous generator Trans. nergy Conv. 6 (1991) [5] J.O. Ojo and A. Lipo An improved model of saturated induction machines Trans. nd. Appl. 26 (199)

THE DYNAMIC BEHAVIOUR OF SYNCHRONOUS AND ASYNCHRONOUS MACHINES WITH TWO-SIDE ASYMMETRY CONSIDERING SATURATION

THE DYNAMIC BEHAVIOUR OF SYNCHRONOUS AND ASYNCHRONOUS MACHINES WITH TWO-SIDE ASYMMETRY CONSIDERING SATURATION THE DYNAMIC BEHAVIOUR OF SYNCHRONOUS AND ASYNCHRONOUS MACHINES WITH TWO-SIDE ASYMMETRY CONSIDERING SATURATION By P. VAS Department of Electric IIIachines. Technical University. Bndapest Received February

More information

INDUCTION MOTOR MODEL AND PARAMETERS

INDUCTION MOTOR MODEL AND PARAMETERS APPENDIX C INDUCTION MOTOR MODEL AND PARAMETERS C.1 Dynamic Model of the Induction Motor in Stationary Reference Frame A three phase induction machine can be represented by an equivalent two phase machine

More information

TURBO-GENERATOR MODEL WITH MAGNETIC SATURATION

TURBO-GENERATOR MODEL WITH MAGNETIC SATURATION TURBO-GENERATOR MODEL WITH MAGNETIC SATURATION R. HADIK Department for Electrotechnics, Technical University, H-1521 Budapest Received May 8, 1984 Presented by Prof. Or. I. Nagy Summary In this paper a

More information

CHAPTER 3 ANALYSIS OF THREE PHASE AND SINGLE PHASE SELF-EXCITED INDUCTION GENERATORS

CHAPTER 3 ANALYSIS OF THREE PHASE AND SINGLE PHASE SELF-EXCITED INDUCTION GENERATORS 26 CHAPTER 3 ANALYSIS OF THREE PHASE AND SINGLE PHASE SELF-EXCITED INDUCTION GENERATORS 3.1. INTRODUCTION Recently increase in energy demand and limited energy sources in the world caused the researchers

More information

Mathematical Modelling of an 3 Phase Induction Motor Using MATLAB/Simulink

Mathematical Modelling of an 3 Phase Induction Motor Using MATLAB/Simulink 2016 IJSRSET Volume 2 Issue 3 Print ISSN : 2395-1990 Online ISSN : 2394-4099 Themed Section: Engineering and Technology Mathematical Modelling of an 3 Phase Induction Motor Using MATLAB/Simulink ABSTRACT

More information

TRANSIENT ANALYSIS OF SELF-EXCITED INDUCTION GENERATOR UNDER BALANCED AND UNBALANCED OPERATING CONDITIONS

TRANSIENT ANALYSIS OF SELF-EXCITED INDUCTION GENERATOR UNDER BALANCED AND UNBALANCED OPERATING CONDITIONS TRANSIENT ANALYSIS OF SELF-EXCITED INDUCTION GENERATOR UNDER BALANCED AND UNBALANCED OPERATING CONDITIONS G. HARI BABU Assistant Professor Department of EEE Gitam(Deemed to be University), Visakhapatnam

More information

MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator

MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator 628 Progress In Electromagnetics Research Symposium 2006, Cambridge, USA, March 26-29 MATLAB SIMULINK Based DQ Modeling and Dynamic Characteristics of Three Phase Self Excited Induction Generator A. Kishore,

More information

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines)

Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines) Equivalent Circuits with Multiple Damper Windings (e.g. Round rotor Machines) d axis: L fd L F - M R fd F L 1d L D - M R 1d D R fd R F e fd e F R 1d R D Subscript Notations: ( ) fd ~ field winding quantities

More information

Parameter Estimation of Three Phase Squirrel Cage Induction Motor

Parameter Estimation of Three Phase Squirrel Cage Induction Motor International Conference On Emerging Trends in Mechanical and Electrical Engineering RESEARCH ARTICLE OPEN ACCESS Parameter Estimation of Three Phase Squirrel Cage Induction Motor Sonakshi Gupta Department

More information

ABOUT DYNAMIC STABILITY OF HIGH POWER SYNCHRONOUS MACHINE. A REVIEW

ABOUT DYNAMIC STABILITY OF HIGH POWER SYNCHRONOUS MACHINE. A REVIEW Rev. Roum. Sci. Techn. Électrotechn. et Énerg. Vol. 62, 1, pp. 8 13, Bucarest, 217 Dedicated to the memory of Academician Toma Dordea ABOUT DYNAMIC STABILITY OF HIGH POWER SYNCHRONOUS MACHINE. A REVIEW

More information

International Journal of Advance Engineering and Research Development

International Journal of Advance Engineering and Research Development Scientific Journal of Impact Factor (SJIF): 4.7 International Journal of Advance Engineering and Research Development Volume 4, Issue 5, May-07 e-issn (O): 348-4470 p-issn (P): 348-6406 Mathematical modeling

More information

Comparative Analysis of an integration of a Wind Energy Conversion System of PMSG and DFIG Models Connected to Power Grid

Comparative Analysis of an integration of a Wind Energy Conversion System of PMSG and DFIG Models Connected to Power Grid International Journal of Electrical Engineering. ISSN 0974-2158 Volume 6, Number 3 (2013), pp. 231-248 International Research Publication House http://www.irphouse.com Comparative Analysis of an integration

More information

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India

Power System Stability and Control. Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Power System Stability and Control Dr. B. Kalyan Kumar, Department of Electrical Engineering, Indian Institute of Technology Madras, Chennai, India Contents Chapter 1 Introduction to Power System Stability

More information

From now, we ignore the superbar - with variables in per unit. ψ ψ. l ad ad ad ψ. ψ ψ ψ

From now, we ignore the superbar - with variables in per unit. ψ ψ. l ad ad ad ψ. ψ ψ ψ From now, we ignore the superbar - with variables in per unit. ψ 0 L0 i0 ψ L + L L L i d l ad ad ad d ψ F Lad LF MR if = ψ D Lad MR LD id ψ q Ll + Laq L aq i q ψ Q Laq LQ iq 41 Equivalent Circuits for

More information

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR

DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR DEVELOPMENT OF DIRECT TORQUE CONTROL MODELWITH USING SVI FOR THREE PHASE INDUCTION MOTOR MUKESH KUMAR ARYA * Electrical Engg. Department, Madhav Institute of Technology & Science, Gwalior, Gwalior, 474005,

More information

Transient Analysis of Three Phase Squirrel Cage Induction Machine using Matlab

Transient Analysis of Three Phase Squirrel Cage Induction Machine using Matlab Transient Analysis of Three Phase Squirrel Cage Induction Machine using Matlab Mukesh Kumar Arya*, Dr.Sulochana Wadhwani** *( Department of Electrical Engineering, Madhav Institute of Technology & Science,

More information

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS

CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 47 CHAPTER 5 SIMULATION AND TEST SETUP FOR FAULT ANALYSIS 5.1 INTRODUCTION This chapter describes the simulation model and experimental set up used for the fault analysis. For the simulation set up, the

More information

A GENERALISED OPERATIONAL EQUIVALENT CIRCUIT OF INDUCTION MACHINES FOR TRANSIENT/DYNAMIC STUDIES UNDER DIFFERENT OPERATING CONDITIONS

A GENERALISED OPERATIONAL EQUIVALENT CIRCUIT OF INDUCTION MACHINES FOR TRANSIENT/DYNAMIC STUDIES UNDER DIFFERENT OPERATING CONDITIONS A GENERALISED OPERATIONAL EQUIVALENT CIRCUIT OF INDUCTION MACHINES FOR TRANSIENT/DYNAMIC STUDIES UNDER DIFFERENT OPERATING CONDITIONS S. S. Murthy Department of Electrical Engineering Indian Institute

More information

Step Motor Modeling. Step Motor Modeling K. Craig 1

Step Motor Modeling. Step Motor Modeling K. Craig 1 Step Motor Modeling Step Motor Modeling K. Craig 1 Stepper Motor Models Under steady operation at low speeds, we usually do not need to differentiate between VR motors and PM motors (a hybrid motor is

More information

Modelling of Closed Loop Speed Control for Pmsm Drive

Modelling of Closed Loop Speed Control for Pmsm Drive Modelling of Closed Loop Speed Control for Pmsm Drive Vikram S. Sathe, Shankar S. Vanamane M. Tech Student, Department of Electrical Engg, Walchand College of Engineering, Sangli. Associate Prof, Department

More information

Dynamic Modeling Of A Dual Winding Induction Motor Using Rotor Reference Frame

Dynamic Modeling Of A Dual Winding Induction Motor Using Rotor Reference Frame American Journal of Engineering Research (AJER) e-issn: 2320-0847 p-issn : 2320-0936 Volume-7, Issue-11, pp-323-329 www.ajer.org Research Paper Open Access Dynamic Modeling Of A Dual Winding Induction

More information

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference

Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mathematical Modelling of Permanent Magnet Synchronous Motor with Rotor Frame of Reference Mukesh C Chauhan 1, Hitesh R Khunt 2 1 P.G Student (Electrical),2 Electrical Department, AITS, rajkot 1 mcchauhan1@aits.edu.in

More information

Dynamics of the synchronous machine

Dynamics of the synchronous machine ELEC0047 - Power system dynamics, control and stability Dynamics of the synchronous machine Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct October 2018 1 / 38 Time constants and

More information

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application

Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application 797 Dynamic Modeling of Surface Mounted Permanent Synchronous Motor for Servo motor application Ritu Tak 1, Sudhir Y Kumar 2, B.S.Rajpurohit 3 1,2 Electrical Engineering, Mody University of Science & Technology,

More information

JRE SCHOOL OF Engineering

JRE SCHOOL OF Engineering JRE SCHOOL OF Engineering Class Test-1 Examinations September 2014 Subject Name Electromechanical Energy Conversion-II Subject Code EEE -501 Roll No. of Student Max Marks 30 Marks Max Duration 1 hour Date

More information

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors

Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,

More information

MODELING AND SIMULATION OF ENGINE DRIVEN INDUCTION GENERATOR USING HUNTING NETWORK METHOD

MODELING AND SIMULATION OF ENGINE DRIVEN INDUCTION GENERATOR USING HUNTING NETWORK METHOD MODELING AND SIMULATION OF ENGINE DRIVEN INDUCTION GENERATOR USING HUNTING NETWORK METHOD K. Ashwini 1, G. N. Sreenivas 1 and T. Giribabu 2 1 Department of Electrical and Electronics Engineering, JNTUH

More information

STEADY STATE AND TRANSIENT ANALYSIS OF INDUCTION MOTOR DRIVING A PUMP LOAD

STEADY STATE AND TRANSIENT ANALYSIS OF INDUCTION MOTOR DRIVING A PUMP LOAD Nigerian Journal of Technology, Vol. 22, No. 1, March 2003, Okoro 46 STEADY STATE AND TRANSIENT ANALYSIS OF INDUCTION MOTOR DRIVING A PUMP LOAD O. I. Okoro Department of Electrical Engineering, University

More information

Lesson 17: Synchronous Machines

Lesson 17: Synchronous Machines Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines

More information

Modeling of Power System Components During Electromagnetic Transients

Modeling of Power System Components During Electromagnetic Transients Modeling of Power System Components During Electromagnetic Transients 1 Paweł Sowa, 2 Rafał Kumala and 3 Katarzyna Łuszcz 1, 2,3 Faculty of Electrical Engineering, Silesian University of Technology/ Institute

More information

DYNAMIC PERFORMANCE OF RELUCTANCE SYNCHRONOUS MACHINES

DYNAMIC PERFORMANCE OF RELUCTANCE SYNCHRONOUS MACHINES Annals of the University of Craiova, Electrical Engineering series, No 33, 9; ISSN 184-485 7 TH INTERNATIONAL CONFERENCE ON ELECTROMECHANICAL AN POWER SYSTEMS October 8-9, 9 - Iaşi, Romania YNAMIC PERFORMANCE

More information

Implementation of Twelve-Sector based Direct Torque Control for Induction motor

Implementation of Twelve-Sector based Direct Torque Control for Induction motor International Journal of Engineering Science Invention ISSN (Online): 2319 6734, ISSN (Print): 2319 6726 Volume 2 Issue 4 ǁ April. 2013 ǁ PP.32-37 Implementation of Twelve-Sector based Direct Torque Control

More information

INDUCTION MOTOR TORQUE DURING FAST BUS TRANSFERS

INDUCTION MOTOR TORQUE DURING FAST BUS TRANSFERS INDUCTION MOTOR TORQUE DURING FAST BUS TRANSFERS BY JAMES W. KOLODZIEJ THESIS Submitted in partial fulfillment of the requirements for the degree of Master of Science in Electrical and Computer Engineering

More information

SECTION - I. PULL-IN-OPERATION Op SYNCHRONOUS MOTORS

SECTION - I. PULL-IN-OPERATION Op SYNCHRONOUS MOTORS SECTION - I PULL-IN-OPERATION Op SYNCHRONOUS MOTORS 14 S 1.1 INTRODUCTION The starting of synchronous, reluctance and permanent magnet synchronous motors is normally carried out by damper winding. The

More information

MATHEMATICAL MODEL OF GENERALIZED ELECTRICAL MACHINES

MATHEMATICAL MODEL OF GENERALIZED ELECTRICAL MACHINES Chapter4 MATHEMATICAL MODEL OF GENERALIZED ELECTRICAL MACHINES 4.1 Introduction: The generalized theory of Electrical Machines is used to cover a wide range of electrical machines in a unified manner.

More information

CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR

CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR 21 CHAPTER 2 MODELLING OF INTERIOR PERMANENT MAGNET SYNCHRONOUS MOTOR 2.1 INTRODUCTION The need for adjustable speed drives in industrial applications has been increasing progressively. The variable speed

More information

Vector Controlled Power Generation in a Point Absorber Based Wave Energy Conversion System

Vector Controlled Power Generation in a Point Absorber Based Wave Energy Conversion System Vector Controlled Power Generation in a Point Absorber Based Wave Energy Conversion System Jisha Thomas Chandy 1 and Mr. Vishnu J 2 1,2 Electrical & Electronics Dept of Engineering, Sree Buddha College

More information

Deriving a Fast and Accurate PMSM Motor Model from Finite Element Analysis The MathWorks, Inc. 1

Deriving a Fast and Accurate PMSM Motor Model from Finite Element Analysis The MathWorks, Inc. 1 Deriving a Fast and Accurate PMSM Motor Model from Finite Element Analysis Dakai Hu, Ph.D Haiwei Cai, Ph.D MathWorks Application Engineer ANSYS Application Engineer 2017 The MathWorks, Inc. 1 Motivation

More information

EFFECTS OF LOAD AND SPEED VARIATIONS IN A MODIFIED CLOSED LOOP V/F INDUCTION MOTOR DRIVE

EFFECTS OF LOAD AND SPEED VARIATIONS IN A MODIFIED CLOSED LOOP V/F INDUCTION MOTOR DRIVE Nigerian Journal of Technology (NIJOTECH) Vol. 31, No. 3, November, 2012, pp. 365 369. Copyright 2012 Faculty of Engineering, University of Nigeria. ISSN 1115-8443 EFFECTS OF LOAD AND SPEED VARIATIONS

More information

The Enlarged d-q Model of Induction Motor with the Iron Loss and Saturation Effect of Magnetizing and Leakage Inductance

The Enlarged d-q Model of Induction Motor with the Iron Loss and Saturation Effect of Magnetizing and Leakage Inductance The Enlarged d-q Model of Induction Motor with the Iron Loss and Saturation Effect of Magnetizing and Leakage Inductance Jan Otýpka, Petr Orság, Vítězslav Stýskala, Dmitrii Kolosov, Stanislav Kocman and

More information

Synchronous machine with PM excitation Two-axis model

Synchronous machine with PM excitation Two-axis model Synchronous machine with PM excitation q Two-axis model q i q u q d i Q d Q D i d N S i D u d Voltage, flux-linkage and motion equations for a PM synchronous machine dd ud Ri s d q dt dq uq Ri s q d dt

More information

Available online at ScienceDirect. Procedia Technology 25 (2016 )

Available online at   ScienceDirect. Procedia Technology 25 (2016 ) Available online at www.sciencedirect.com ScienceDirect Procedia Technology 25 (2016 ) 801 807 Global Colloquium in Recent Advancement and Effectual Researches in Engineering, Science and Technology (RAEREST

More information

Dynamic Performance Improvement of an Isolated Wind Turbine Induction Generator

Dynamic Performance Improvement of an Isolated Wind Turbine Induction Generator Dynamic Performance Improvement of an Isolated Wind Turbine Induction Generator A.H.M.A. Rahim, M. Ahsanul Alam and M.F. Kandlawala King Fahd University of Petroleum & Minerals, Dhahran, Saudi Arabia Abstract

More information

Nonlinear Electrical FEA Simulation of 1MW High Power. Synchronous Generator System

Nonlinear Electrical FEA Simulation of 1MW High Power. Synchronous Generator System Nonlinear Electrical FEA Simulation of 1MW High Power Synchronous Generator System Jie Chen Jay G Vaidya Electrodynamics Associates, Inc. 409 Eastbridge Drive, Oviedo, FL 32765 Shaohua Lin Thomas Wu ABSTRACT

More information

DcMotor_ Model Help File

DcMotor_ Model Help File Name of Model: DcMotor_021708 Author: Vladimir L. Chervyakov Date: 2002-10-26 Executable file name DcMotor_021708.vtm Version number: 1.0 Description This model represents a Nonlinear model of a permanent

More information

ECEN 667 Power System Stability Lecture 11: Exciter Models

ECEN 667 Power System Stability Lecture 11: Exciter Models CN 667 Power System Stability Lecture : xciter Models Prof. Tom Overbye Dept. of lectrical and Computer ngineering Texas A&M University, overbye@tamu.edu Announcements Read Chapter 4 Homework 3 is due

More information

Dynamic Behavior of Three phase Inductions Motors as Loads in an Electric Power System with Distributed Generation, a Case of Study.

Dynamic Behavior of Three phase Inductions Motors as Loads in an Electric Power System with Distributed Generation, a Case of Study. Dynamic Behavior of Three phase Inductions Motors as Loads in an Electric Power System with Distributed Generation, a Case of Study. Marcelo Rodrigo García Saquicela, Ernesto Ruppert Filho, José Luis Azcue

More information

CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM

CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM 20 CHAPTER 2 DYNAMIC STABILITY MODEL OF THE POWER SYSTEM 2. GENERAL Dynamic stability of a power system is concerned with the dynamic behavior of the system under small perturbations around an operating

More information

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory

Modeling Free Acceleration of a Salient Synchronous Machine Using Two-Axis Theory 1 Modeling ree Acceleration of a Salient Synchronous Machine Using Two-Axis Theory Abdullah H. Akca and Lingling an, Senior Member, IEEE Abstract This paper investigates a nonlinear simulation model of

More information

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic

Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Force Motor action Generator action Types and parts

More information

PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR

PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR HUNGARIAN JOURNAL OF INDUSTRIAL CHEMISTRY VESZPRÉM Vol. 39(1) pp. 157-161 (2011) PARAMETER SENSITIVITY ANALYSIS OF AN INDUCTION MOTOR P. HATOS, A. FODOR, A. MAGYAR University of Pannonia, Department of

More information

II. Mathematical Modeling of

II. Mathematical Modeling of SICE Annual Conference in Fukui, August 4-62003 Fukui University, Japan MRAS Based Sensorless Control of Permanent Magnet Synchronous Motor Young Sam Kim, Sang Kyoon Kim and Young Ahn Kwon Department of

More information

You know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1).

You know for EE 303 that electrical speed for a generator equals the mechanical speed times the number of poles, per eq. (1). Stability 1 1. Introduction We now begin Chapter 14.1 in your text. Our previous work in this course has focused on analysis of currents during faulted conditions in order to design protective systems

More information

Stability Analysis of a Slip Power Recovery System under Open Loop and Field Orientation Control

Stability Analysis of a Slip Power Recovery System under Open Loop and Field Orientation Control Stability Analysis of a Slip Power Recovery System under Open Loop and Field Orientation Control Yifan Tang, Student Member, IEEE Longya Xu, Senior Member, IEEE The Ohio State University Department of

More information

Final Exam, Second Semester: 2015/2016 Electrical Engineering Department

Final Exam, Second Semester: 2015/2016 Electrical Engineering Department Philadelphia University Faculty of Engineering Student Name Student No: Serial No Final Exam, Second Semester: 2015/2016 Electrical Engineering Department Course Title: Power II Date: 21 st June 2016 Course

More information

Speed Control of PMSM Drives by Using Neural Network Controller

Speed Control of PMSM Drives by Using Neural Network Controller Advance in Electronic and Electric Engineering. ISSN 2231-1297, Volume 4, Number 4 (2014), pp. 353-360 Research India Publications http://www.ripublication.com/aeee.htm Speed Control of PMSM Drives by

More information

Electromagnetic Torque From Event Report Data A Measure of Machine Performance

Electromagnetic Torque From Event Report Data A Measure of Machine Performance Electromagnetic Torque From Event Report Data A Measure of Machine Performance Derrick Haas and Dale Finney Schweitzer Engineering Laboratories, Inc. 7 SEL Overview Electromagnetic torque calculation Modeling

More information

The synchronous machine (detailed model)

The synchronous machine (detailed model) ELEC0029 - Electric Power System Analysis The synchronous machine (detailed model) Thierry Van Cutsem t.vancutsem@ulg.ac.be www.montefiore.ulg.ac.be/~vct February 2018 1 / 6 Objectives The synchronous

More information

A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives

A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives A Novel Adaptive Estimation of Stator and Rotor Resistance for Induction Motor Drives Nagaraja Yadav Ponagani Asst.Professsor, Department of Electrical & Electronics Engineering Dhurva Institute of Engineering

More information

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18,

Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, Proceedings of the 6th WSEAS/IASME Int. Conf. on Electric Power Systems, High Voltages, Electric Machines, Tenerife, Spain, December 16-18, 2006 196 A Method for the Modeling and Analysis of Permanent

More information

Unity Power Factor Control of Permanent Magnet Motor Drive System

Unity Power Factor Control of Permanent Magnet Motor Drive System Unity Power Factor Control of Permanent Magnet Motor Drive System M. F. Moussa* A. Helal Y. Gaber H. A. Youssef (Arab Academy for science and technology) Alexandria University *mona.moussa@yahoo.com Abstract-The

More information

Understanding the Inductances

Understanding the Inductances Understanding the Inductances We have identified six different inductances (or reactances) for characterizing machine dynamics. These are: d, q (synchronous), ' d, ' q (transient), '' d,'' q (subtransient)

More information

CONTROL ASPECTS OF WIND TURBINES. Faizal Hafiz, Wind Energy Research Group, SET Center

CONTROL ASPECTS OF WIND TURBINES. Faizal Hafiz, Wind Energy Research Group, SET Center CONTROL ASPECTS OF WIND TURBINES Faizal Hafiz, Wind Energy Research Group, SET Center Presentation Outline 2 Power in Wind Maximum Power Point Tracking Connection Topologies Active Power Control How? Grid

More information

CHAPTER 6 STEADY-STATE ANALYSIS OF SINGLE-PHASE SELF-EXCITED INDUCTION GENERATORS

CHAPTER 6 STEADY-STATE ANALYSIS OF SINGLE-PHASE SELF-EXCITED INDUCTION GENERATORS 79 CHAPTER 6 STEADY-STATE ANALYSIS OF SINGLE-PHASE SELF-EXCITED INDUCTION GENERATORS 6.. INTRODUCTION The steady-state analysis of six-phase and three-phase self-excited induction generators has been presented

More information

338 Applied Electromagnetic Engineering for Magnetic, Superconducting, Multifunctional and Nano Materials

338 Applied Electromagnetic Engineering for Magnetic, Superconducting, Multifunctional and Nano Materials Materials Science Forum Online: 2014-08-11 ISSN: 1662-9752, Vol. 792, pp 337-342 doi:10.4028/www.scientific.net/msf.792.337 2014 Trans Tech Publications, Switzerland Torque Characteristic Analysis of an

More information

DTC Based Induction Motor Speed Control Using 10-Sector Methodology For Torque Ripple Reduction

DTC Based Induction Motor Speed Control Using 10-Sector Methodology For Torque Ripple Reduction DTC Based Induction Motor Speed Control Using 10-Sector Methodology For Torque Ripple Reduction S. Pavithra, Dinesh Krishna. A. S & Shridharan. S Netaji Subhas Institute of Technology, Delhi University

More information

Unity Power Factor Control of Permanent Magnet Motor Drive System

Unity Power Factor Control of Permanent Magnet Motor Drive System Unity Power Factor Control of Permanent Magnet Motor Drive System M. F. Moussa* A. Helal Y. Gaber H. A. Youssef (Arab Academy for science and technology) Alexandria University *mona.moussa@yahoo.com Abstract-The

More information

Synergetic Control for Electromechanical Systems

Synergetic Control for Electromechanical Systems Synergetic Control for Electromechanical Systems Anatoly A. Kolesnikov, Roger Dougal, Guennady E. Veselov, Andrey N. Popov, Alexander A. Kolesnikov Taganrog State University of Radio-Engineering Automatic

More information

2014 Texas Instruments Motor Control Training Series. -V th. Dave Wilson

2014 Texas Instruments Motor Control Training Series. -V th. Dave Wilson 2014 Texas Instruments Motor Control Training Series V th NewtonMeters Maximum Torque Per Amp (MTPA) Maximum torque per amp (MTPA) 2 0 0 V 200 V (tr e a c ti o n ) 150 1 5 0 V 100 1 0 0 V 50 5 0 V Simulated

More information

SIMULATION OF STEADY-STATE PERFORMANCE OF THREE PHASE INDUCTION MOTOR BY MATLAB

SIMULATION OF STEADY-STATE PERFORMANCE OF THREE PHASE INDUCTION MOTOR BY MATLAB olume No.0, Issue No. 08, August 014 ISSN (online): 48 7550 SIMULATION OF STEADY-STATE PERFORMANCE OF THREE PHASE INDUCTION MOTOR BY MATLAB Harish Kumar Mishra 1, Dr.Anurag Tripathi 1 Research Scholar,

More information

Anakapalli Andhra Pradesh, India I. INTRODUCTION

Anakapalli Andhra Pradesh, India I. INTRODUCTION Robust MRAS Based Sensorless Rotor Speed Measurement of Induction Motor against Variations in Stator Resistance Using Combination of Back Emf and Reactive Power Methods Srikanth Mandarapu Pydah College

More information

Chapter 6. Induction Motors. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Chapter 6. Induction Motors. Copyright The McGraw-Hill Companies, Inc. Permission required for reproduction or display. Chapter 6 Induction Motors 1 The Development of Induced Torque in an Induction Motor Figure 6-6 The development of induced torque in an induction motor. (a) The rotating stator field B S induces a voltage

More information

Inertia Identification and Auto-Tuning. of Induction Motor Using MRAS

Inertia Identification and Auto-Tuning. of Induction Motor Using MRAS Inertia Identification and Auto-Tuning of Induction Motor Using MRAS Yujie GUO *, Lipei HUANG *, Yang QIU *, Masaharu MURAMATSU ** * Department of Electrical Engineering, Tsinghua University, Beijing,

More information

Characteristic Study for Integration of Fixed and Variable Speed Wind Turbines into Transmission Grid

Characteristic Study for Integration of Fixed and Variable Speed Wind Turbines into Transmission Grid Characteristic Study for Integration of Fixed and Variable Speed Wind Turbines into Transmission Grid Shuhui Li 1, Tim Haskew 1, R. Challoo 1 Department of Electrical and Computer Engineering The University

More information

Speed Sensorless Field Oriented Control of Induction Machines using Flux Observer. Hisao Kubota* and Kouki Matsuse**

Speed Sensorless Field Oriented Control of Induction Machines using Flux Observer. Hisao Kubota* and Kouki Matsuse** Speed Sensorless Field Oriented Control of Induction Machines using Flux Observer Hisao Kubota* and Kouki Matsuse** Dept. of Electrical Engineering, Meiji University, Higashimit Tama-ku, Kawasaki 214,

More information

Mathematical MATLAB Model and Performance Analysis of Asynchronous Machine

Mathematical MATLAB Model and Performance Analysis of Asynchronous Machine Mathematical MATLAB Model and Performance Analysis of Asynchronous Machine Bikram Dutta 1, Suman Ghosh 2 Assistant Professor, Dept. of EE, Guru Nanak Institute of Technology, Kolkata, West Bengal, India

More information

CHAPTER 2 CAPACITANCE REQUIREMENTS OF SIX-PHASE SELF-EXCITED INDUCTION GENERATORS

CHAPTER 2 CAPACITANCE REQUIREMENTS OF SIX-PHASE SELF-EXCITED INDUCTION GENERATORS 9 CHAPTER 2 CAPACITANCE REQUIREMENTS OF SIX-PHASE SELF-EXCITED INDUCTION GENERATORS 2.. INTRODUCTION Rapidly depleting rate of conventional energy sources, has led the scientists to explore the possibility

More information

Sensorless Field Oriented Control of Permanent Magnet Synchronous Motor

Sensorless Field Oriented Control of Permanent Magnet Synchronous Motor International Journal of Current Engineering and Technology E-ISSN 2277 4106, P-ISSN 2347 5161 2015 INPRESSCO, All Rights Reserved Available at http://inpressco.com/category/ijcet Research Article Sensorless

More information

MODELING AND SIMULATION OF ROTOR FLUX OBSERVER BASED INDIRECT VECTOR CONTROL OF INDUCTION MOTOR DRIVE USING FUZZY LOGIC CONTROL

MODELING AND SIMULATION OF ROTOR FLUX OBSERVER BASED INDIRECT VECTOR CONTROL OF INDUCTION MOTOR DRIVE USING FUZZY LOGIC CONTROL MODELING AND SIMULATION OF ROTOR FLUX OBSERVER BASED INDIRECT VECTOR CONTROL OF INDUCTION MOTOR DRIVE USING FUZZY LOGIC CONTROL B. MOULI CHANDRA 1 & S.TARA KALYANI 2 1 Electrical and Electronics Department,

More information

School of Mechanical Engineering Purdue University. ME375 ElectroMechanical - 1

School of Mechanical Engineering Purdue University. ME375 ElectroMechanical - 1 Electro-Mechanical Systems DC Motors Principles of Operation Modeling (Derivation of fg Governing Equations (EOM)) Block Diagram Representations Using Block Diagrams to Represent Equations in s - Domain

More information

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES

MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES MODELING AND HIGH-PERFORMANCE CONTROL OF ELECTRIC MACHINES JOHN CHIASSON IEEE PRESS ü t SERIES ON POWER ENGINEERING IEEE Press Series on Power Engineering Mohamed E. El-Hawary, Series Editor The Institute

More information

ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models

ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models ECEN 667 Power System Stability Lecture 18: Voltage Stability, Load Models Prof. Tom Overbye Dept. of Electrical and Computer Engineering Texas A&M University, overbye@tamu.edu 1 Announcements Read Chapter

More information

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle

Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Page 359 World Electric Vehicle Journal Vol. 3 - ISSN 232-6653 - 29 AVERE Parameter Prediction and Modelling Methods for Traction Motor of Hybrid Electric Vehicle Tao Sun, Soon-O Kwon, Geun-Ho Lee, Jung-Pyo

More information

The Linear Induction Motor, a Useful Model for examining Finite Element Methods on General Induction Machines

The Linear Induction Motor, a Useful Model for examining Finite Element Methods on General Induction Machines The Linear Induction Motor, a Useful Model for examining Finite Element Methods on General Induction Machines Herbert De Gersem, Bruno Renier, Kay Hameyer and Ronnie Belmans Katholieke Universiteit Leuven

More information

Speed Sensorless Control of a Long-Stator Linear Synchronous-Motor arranged by Multiple Sections

Speed Sensorless Control of a Long-Stator Linear Synchronous-Motor arranged by Multiple Sections Speed Sensorless Control of a Long-Stator Linear Synchronous-Motor arranged by Multiple Sections Roberto Leidhold Peter Mutschler Department of Power Electronics and Control of Drives Darmsta University

More information

Model of Induction Machine to Transient Stability Programs

Model of Induction Machine to Transient Stability Programs Model of Induction Machine to Transient Stability Programs Pascal Garcia Esteves Instituto Superior Técnico Lisbon, Portugal Abstract- this paper reports the work performed on the MSc dissertation Model

More information

Prediction of Electromagnetic Forces and Vibrations in SRMs Operating at Steady State and Transient Speeds

Prediction of Electromagnetic Forces and Vibrations in SRMs Operating at Steady State and Transient Speeds Prediction of Electromagnetic Forces and Vibrations in SRMs Operating at Steady State and Transient Speeds Zhangjun Tang Stryker Instruments Kalamazoo, MI 491 Phone: 269-323-77 Ext.363 Fax: 269-323-394

More information

Dynamic d-q Model of Induction Motor Using Simulink

Dynamic d-q Model of Induction Motor Using Simulink Dynamic d-q Model of Induction Motor Using Simulink Anand Bellure #1, Dr. M.S Aspalli #2, #1,2 Electrical and Electronics Engineering Department, Poojya Doddappa Appa College of Engineering, Gulbarga,

More information

Regulation of the Excitation Reactive Power of the Asynchronous Wind Turbine at Variable Speed

Regulation of the Excitation Reactive Power of the Asynchronous Wind Turbine at Variable Speed Smart Grid and Renewable Energy, 013, 4, 7-80 http://dx.doi.org/10.436/sgre.013.43033 Published Online June 013 (http://www.scirp.org/journal/sgre) Regulation of the Excitation Reactive Power of the Asynchronous

More information

Finite Element Based Transformer Operational Model for Dynamic Simulations

Finite Element Based Transformer Operational Model for Dynamic Simulations 496 Progress In Electromagnetics Research Symposium 2005, Hangzhou, China, August 22-26 Finite Element Based Transformer Operational Model for Dynamic Simulations O. A. Mohammed 1, Z. Liu 1, S. Liu 1,

More information

EE 451 Power System Stability

EE 451 Power System Stability EE 451 Power System Stability Power system operates in synchronous mode Power system is subjected to a wide range of disturbances (small and large) - Loads and generation changes - Network changes - Faults

More information

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67

ECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67 1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure

More information

Sensorless Torque and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model Reference Adaptive System

Sensorless Torque and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model Reference Adaptive System 5 th SASTech 211, Khavaran Higher-education Institute, Mashhad, Iran. May 12-14. 1 Sensorless Torue and Speed Control of Traction Permanent Magnet Synchronous Motor for Railway Applications based on Model

More information

Modelling and Parameter Determination of an Induction Servo-Motor

Modelling and Parameter Determination of an Induction Servo-Motor British Journal of Applied Science & Technology 13(2): 1-11, 2016, Article no.bjast.21969 ISSN: 2231-0843, NLM ID: 101664541 SCIENCEDOMAIN international www.sciencedomain.org Modelling and Parameter Determination

More information

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR

PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR PERFORMANCE ANALYSIS OF DIRECT TORQUE CONTROL OF 3-PHASE INDUCTION MOTOR 1 A.PANDIAN, 2 Dr.R.DHANASEKARAN 1 Associate Professor., Department of Electrical and Electronics Engineering, Angel College of

More information

The influence of the self-excited induction machine into the electrical grid under instability situation - Real case measurement

The influence of the self-excited induction machine into the electrical grid under instability situation - Real case measurement International Conference on Renewable Energies and Power Quality (ICREPQ 17) Malaga (Spain), 4 th to 6 th April, 2017 Renewable Energy and Power Quality Journal (RE&PQJ) ISSN 2172-08 X, No.15 April 2017

More information

SIMULATION OF A SHIP PROPULSION SYSTEM WITH DTC DRIVING SCHEME

SIMULATION OF A SHIP PROPULSION SYSTEM WITH DTC DRIVING SCHEME 562 SMULATON OF A SHP PROPULSON SYSTEM WTH DTC DRVNG SCHEME G. Diamantis J.M. Prousalidis School of Naval Architecture and Marine Engineering National Technical University of Athens Greece Keywords: Direct

More information

Keywords: Electric Machines, Rotating Machinery, Stator faults, Fault tolerant control, Field Weakening, Anisotropy, Dual rotor, 3D modeling

Keywords: Electric Machines, Rotating Machinery, Stator faults, Fault tolerant control, Field Weakening, Anisotropy, Dual rotor, 3D modeling Analysis of Electromagnetic Behavior of Permanent Magnetized Electrical Machines in Fault Modes M. U. Hassan 1, R. Nilssen 1, A. Røkke 2 1. Department of Electrical Power Engineering, Norwegian University

More information

The effect of voltage dips on wound rotor induction motors used in slip energy recovery drives implications for converters

The effect of voltage dips on wound rotor induction motors used in slip energy recovery drives implications for converters The effect of voltage dips on wound rotor induction motors used in slip energy recovery drives implications for converters Simon Quail Davies A dissertation submitted to the Faculty of Engineering and

More information

INVESTIGATION OF A COMPUTER MODEL OF THREE-PHASE MOTOR REGULATED BY FREQUENCY MODE

INVESTIGATION OF A COMPUTER MODEL OF THREE-PHASE MOTOR REGULATED BY FREQUENCY MODE INVESTIGATION OF A COMPUTER MODEL OF THREE-PHASE MOTOR REGULATED BY FREQUENCY MODE Dinko Petkov Gospodinov, Pencho Venkov Georgiev TU-Gabrovo 5300, H.Dimitar str. 4, Department of Electronics, e-mail:

More information