School of Mechanical Engineering Purdue University. ME375 ElectroMechanical  1


 Eunice Wilkins
 2 years ago
 Views:
Transcription
1 ElectroMechanical Systems DC Motors Principles of Operation Modeling (Derivation of fg Governing Equations (EOM)) Block Diagram Representations Using Block Diagrams to Represent Equations in s  Domain Block Diagram Representation of DC Motors Example ME375 ElectroMechanical  1
2 DC Motors Motors are actuation devices (actuators) that generate torque as actuation. Terminology Rotor : the rotating part of the motor. Stator : the stationary part of the motor. Field System : the part of the motor that provides the magnetic flux. Armature : the part of the motor which carries current that interacts with the magnetic flux to produce torque. Brushes : the part of the electrical circuit through which the current is supplied to the armature. Commutator : the part of the rotor that is in contact with the brushes. ME375 ElectroMechanical  2
3 DC Motors  Principles of Operation Torque Generation B B df dl i Force will act on a conductor in a magnetic field with current flowing through the conductor. d f i dl B a Integrate over the entire length: f Total torque generated: Coil B i ME375 ElectroMechanical  3
4 DC Motors  Principles of Operation Let N be the number of coils in the motor. The total torque generated from the N coils is: m N ( 2 i B L R) a For a given motor, (N, B,, L, R) ) are fixed. We can define K T 2 N B L R Nm /A as the Torque Constant of the motor. The torque generated by a DC motor is proportional to the armature current i a : a m K T i a For a DC motor, it is desirable to have a large K T. However, size and other physical limitations often limits the achievable K T. Large K T : Large (N, L, R). (N, L, R) is limited by the size and weight of the motor. Large B: Need to understand the methods of generating flux... ME375 ElectroMechanical  4
5 DC Motors  Principles of Operation BackEMF Generation Electromotive force (EMF) is generated in a conductor moving in a magnetic field: deemf ( v B ) dl v B Integrate over the entire length L: v e emf Since the N armature coils are in series, the total EMF is: Define the Back Eemf 2 N ( R ) L v BackEMF Constant K b : K N R L The BackEMF generated due to the rotation of the motor armature is opposing the applied voltage and is proportional to the angular speed of the motor: E emf K b B b 2 B V / (rad / sec) Note: K T = K b is true only if consistent SI units are used! ME375 ElectroMechanical  5
6 DC Motors  Principles of Operation Generating Magnetic Flux Permanent Magnet PermanentMagnet DC Motors (PMDC) Field Coil Induced Magnetic Field (a) Series Wound DC Motor High starting torque and noload speed Unidirectional (b) Shunt Wound DC Motor Low starting torque and noload speed Good speed regulation Unidirectional (c) Compound DC Motor High starting torque & good speed regulation (d) Separately Excited DC Motor ME375 ElectroMechanical  6
7 DC Motors  Modeling Schematic + e i (t) _ + e Ra + e La Element Laws: Electrical Subsystem R A i A L A + E emf _ m J A L FBD: B Mechanical Subsystem Interconnection Laws: ME375 ElectroMechanical  7
8 DC Motors  Modeling Derive I/O Model: I/O Model from e i (t) and L to angular speed : LAJ K T A F HG L B RJ RB A A A A Kb ei() t K K K I/O Model from e i (t) and L to angular position : LAJ K T A T T I F KJ HG T I KJ b L K R A L A L F L B R J I F RB I L R A A A A b A L A L g Kb ei t HG KT KT KJ HG KT KJ KT () T g ME375 ElectroMechanical  8
9 DC Motors  Modeling Transfer Function: () s E() s () s i L () s E () s () s i L Q: Let the load torque be zero (No Load), what is the steady state t speed (NoLoad ds Speed) of the motor for a constant input voltage V? Q: Let the load torque L = T, what is the steady state speed of the motor for a constant input voltage V? ME375 ElectroMechanical  9
10 Block Diagram Representation Differential Equation Transfer Signal Addition/Subtraction Function (System & Signals) Y ( s ) U 1( s) U 2( s ) Y() s G() s U() s U 1 (s) + Y(s) U(s) Y(s) G(s) ( ) Input Signal Output Signal U 2 (s) Ex: Draw the block diagram for the following DE: J Ex: Draw the block diagram for the following DE: J B ME375 ElectroMechanical  10
11 Block Diagram Representation Transfer Function in Series Multiple Inputs Ys ( ) G 2 ( s ) Y 1 ( s ), Y 1 ( s ) G 1 ( s ) U ( s ) Y 1 ( s ) G 1 ( s ) U 1 ( s ), Y 2 ( s ) G 2 ( s ) U 2 ( s ) Ys () bg2() sg1() sgus () Ys () Ys 1() Y2() s G1() s U1() s G2() s U2() s U(s) Y 1 (s) Y(s) G 1 (s) G 2 (s) U Input Output 1 (s) Y 1 (s) G Signal 1 (s) Signal Y(s) Transfer Function in Parallel X1() s G1() s U() s, X2() s G2() s U() s Ys () X() s X() s b 1 2 G() s G () s U() s 1 2 g U 2 (s) Input Signals G 2 (s) Y 2 (s) Output Signal U(s) G 1 (s) X 1 (s) Y(s) Input Signal G 2 (s) X 2 (s) Output Signal ME375 ElectroMechanical  11
12 Block Diagram Representation Feedback Loop U(s) Input Signal X (s) G (s) Y(s) Output Signal H(s) ME375 ElectroMechanical  12
13 Block Diagram Representation of DC Motors Schematic + e Ra + e La ElectroMechanical Coupling: Take Laplace Transform of the Eqs. + e i (t) _ R A i A L A + E emf _ m J A L B Governing Equations: d LA ia RAiA Eemf ei( t) ( ) dt J B ( ) A m L m KT ia E emf Kb ME375 ElectroMechanical  13
14 Block Diagram Representation of DC Motors Electrical Subsystem: Take Laplace Transform of the Eqs. Mechanical Subsystem: Take Laplace Transform of the Eqs. Q: Now that we generated a block diagram of a voltage driven DC Motor, can we derive the transfer function of this motor from its block diagram? ( This is the same as asking you to reduce the multiblock diagram to a simpler form just relating inputs e i (t) and L to the output, either or.) ME375 ElectroMechanical  14
15 Block Diagram Reduction From Block Diagram to Transfer Function Label each signal and block 1 L A s +R A K T 1 J A s +B K b Write down the relationships between signals ME375 ElectroMechanical  15
16 Block Diagram Reduction Solve for the output signal in terms of the input signals Substitute tute the transfer functions label with the actual formula and simplify () s KT Ei () s LJs ( BL RJ) s( RBKK) LAs RA L() s LJs ( BL RJ) s( RBKK) 2 2 A A A A A A b T A A A A A A b T ( s) KT LAs RA Ei () s sljs ( ( BL RJ) s( RBKK)) sljs ( ( BL RJ) s( RBKK)) 2 2 L A A A A A A b T A A A A A A b T () s ME375 ElectroMechanical  16
17 Example (A) Given the following specification of a DC motor and assume there is no load, find its transfer function from input voltage to motor angular speed L A = 10 mh R A = 10 K T = 0.06 Nm/A J A = Kg m 2 B = Nm/(rad/sec) (B) Find the poles of the transfer function. (C) Plot the Bode diagram of the transfer function ME375 ElectroMechanical  17
18 Example 20 Phase (deg) Magnitude (db) Frequency (rad/sec) Q:If we are only interested t in the system response up to 1000 rad/sec, can we simplify our model? How would you simplify the model? ME375 ElectroMechanical  18
19 Model Reduction Neglect Electrical Dynamics Derive the model for the DC motor, if the armature inductance L A is neglected: 1 L A s+r A K T 1 J A s+b K b () s KT Ei () s LJs ( BL RJ) s( RBKK) Ls A RA L() s LJs ( BL RJ) s( RBKK) 2 2 A A A A A A b T A A A A A A b T KT () s E() s () s By neglecting the effect of armature inductance, we reduced the order of our model from two to one. i L ME375 ElectroMechanical  19
20 Model Reduction Q: Physically, what do we mean by neglecting armature inductance? By neglecting the armature inductance, we are assuming that it takes no time for the current to reach its steady state value when there is astep change in input voltage, i.e., a sudden change in input voltage will result in a sudden change in the armature current, which in turn will result in a sudden change in the motor torque output. This is equivalent to having direct control over the motor current. Mathematically: L d dt i R i E e () t J E A A A A emf i B K i U K V A m L m T A emf b W From Block Diagram: 1 L A s + R A K T ME375 ElectroMechanical  20
21 Example Media Advance System in InkJet Printers The figure on the right shows the media advance system of a typical inkjet printer. The objective of the system is to precisely and quickly position the media such that ink droplets can be precisely dropped on to the media to form nice looking images. The system is driven by a DC motor through two sets of gear trains. You, as the new kid on the development team, are given the task of specifying a motor and designing the control system that will achieve the desirable performance. Some time your manager will also walk by your desk and ask you if a certain level of performance is achievable. How would you start your first engineering g project? ME375 ElectroMechanical  21
22 Example Schematic + e i (t) _ + e Ra R A i A DC Motor + e La L A + E emf _ m J A N 2 N 1 L L J L B L Assumptions: Gears and shafts are rigid and massless. B Block diagram of the load inertia: Block diagram of the gear train: ME375 ElectroMechanical  22
23 Example Block diagram of the DC motor subsystem: 1 L A s + R A K T 1 J A s + B K b Reduce the mechanical portion of the block diagram: ME375 ElectroMechanical  23
24 Example Simplified block diagram: 1 L A s + R A K T K b Transfer Function from input voltage E i (s) to the angular position of the load (s): G E i () s () s E() s i Q: Is this system stable? Q: What command (voltage voltage) ) would you use to move the roller s angular position by, say 60 o? ME375 ElectroMechanical  24
Introduction to Feedback Control
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More information(a) Torsional springmass system. (b) Spring element.
m v s T s v a (a) T a (b) T a FIGURE 2.1 (a) Torsional springmass system. (b) Spring element. by ky Wall friction, b Mass M k y M y r(t) Force r(t) (a) (b) FIGURE 2.2 (a) Springmassdamper system. (b)
More informationSchool of Mechanical Engineering Purdue University. ME375 Feedback Control  1
Introduction to Feedback Control Control System Design Why Control? OpenLoop vs ClosedLoop (Feedback) Why Use Feedback Control? ClosedLoop Control System Structure Elements of a Feedback Control System
More informationENGG4420 LECTURE 7. CHAPTER 1 BY RADU MURESAN Page 1. September :29 PM
CHAPTER 1 BY RADU MURESAN Page 1 ENGG4420 LECTURE 7 September 21 10 2:29 PM MODELS OF ELECTRIC CIRCUITS Electric circuits contain sources of electric voltage and current and other electronic elements such
More informationTexas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos
Texas A & M University Department of Mechanical Engineering MEEN 364 Dynamic Systems and Controls Dr. Alexander G. Parlos Lecture 6: Modeling of Electromechanical Systems Principles of Motor Operation
More informationOverview of motors and motion control
Overview of motors and motion control. Elements of a motioncontrol system Power upply Highlevel controller owlevel controller Driver Motor. Types of motors discussed here; Brushed, PM DC Motors Cheap,
More informationIntroduction to Control (034040) lecture no. 2
Introduction to Control (034040) lecture no. 2 Leonid Mirkin Faculty of Mechanical Engineering Technion IIT Setup: Abstract control problem to begin with y P(s) u where P is a plant u is a control signal
More informationDC Motor Position: System Modeling
1 of 7 01/03/2014 22:07 Tips Effects TIPS ABOUT BASICS INDEX NEXT INTRODUCTION CRUISE CONTROL MOTOR SPEED MOTOR POSITION SUSPENSION INVERTED PENDULUM SYSTEM MODELING ANALYSIS DC Motor Position: System
More informationEE 410/510: Electromechanical Systems Chapter 4
EE 410/510: Electromechanical Systems Chapter 4 Chapter 4. Direct Current Electric Machines and Motion Devices Permanent Magnet DC Electric Machines Radial Topology Simulation and Experimental Studies
More informationMODELING AND HIGHPERFORMANCE CONTROL OF ELECTRIC MACHINES
MODELING AND HIGHPERFORMANCE CONTROL OF ELECTRIC MACHINES JOHN CHIASSON IEEE PRESS ü t SERIES ON POWER ENGINEERING IEEE Press Series on Power Engineering Mohamed E. ElHawary, Series Editor The Institute
More informationMATHEMATICAL MODELING OF OPEN LOOP PMDC MOTOR USING MATLAB/SIMULINK
MATHEMATICAL MODELING OF OPEN LOOP PMDC MOTOR USING MATLAB/SIMULINK 1 Mr.Dhaval K.Patel 1 Assistant Professor, Dept. of Electrical Engineering. Gidc Degree Engineering College Abrama, Navsari. ABSTRACT:
More informationMechatronics Engineering. Li Wen
Mechatronics Engineering Li Wen Bioinspired robotdc motor drive Unstable system Mirko Kovac,EPFL Modeling and simulation of the control system Problems 1. Why we establish mathematical model of the control
More informationIntroduction. Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy
Introduction Energy is needed in different forms: Light bulbs and heaters need electrical energy Fans and rolling miles need mechanical energy What does AC and DC stand for? Electrical machines Motors
More informationAn Introduction to Electrical Machines. P. Di Barba, University of Pavia, Italy
An Introduction to Electrical Machines P. Di Barba, University of Pavia, Italy Academic year 00 Contents Transformer. An overview of the device. Principle of operation of a singlephase transformer 3.
More informationEqual Pitch and Unequal Pitch:
Equal Pitch and Unequal Pitch: EqualPitch MultipleStack Stepper: For each rotor stack, there is a toothed stator segment around it, whose pitch angle is identical to that of the rotor (θs = θr). A stator
More informationLesson 17: Synchronous Machines
Lesson 17: Synchronous Machines ET 332b Ac Motors, Generators and Power Systems Lesson 17_et332b.pptx 1 Learning Objectives After this presentation you will be able to: Explain how synchronous machines
More informationMCE380: Measurements and Instrumentation Lab. Chapter 5: Electromechanical Transducers
MCE380: Measurements and Instrumentation Lab Chapter 5: Electromechanical Transducers Part I Topics: Transducers and Impedance Magnetic Electromechanical Coupling Reference: Holman, CH 4. Cleveland State
More informationApplied Electronics and Electrical Machines
School of Electrical and Computer Engineering Applied Electronics and Electrical Machines (ELEC 365) Fall 2015 DC Machines 1 DC Machines Key educational goals: Develop the basic principle of operation
More informationE11 Lecture 13: Motors. Professor Lape Fall 2010
E11 Lecture 13: Motors Professor Lape Fall 2010 Overview How do electric motors work? Electric motor types and general principles of operation How well does your motor perform? Torque and power output
More informationFEEDBACK CONTROL SYSTEMS
FEEDBAC CONTROL SYSTEMS. Control System Design. Open and ClosedLoop Control Systems 3. Why ClosedLoop Control? 4. Case Study  Speed Control of a DC Motor 5. SteadyState Errors in Unity Feedback Control
More informationExample: DC Motor Speed Modeling
Page 1 of 5 Example: DC Motor Speed Modeling Physical setup and system equations Design requirements MATLAB representation and openloop response Physical setup and system equations A common actuator in
More informationLezione 9 30 March. Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota
Control Laboratory: a.a. 2015/2016 Lezione 9 30 March Instructor: Luca Schenato Scribes: Arianna Marangon, Matteo Vitturi, Riccardo Prota What is left to do is how to design the low pass pole τ L for the
More informationRevision Guide for Chapter 15
Revision Guide for Chapter 15 Contents tudent s Checklist Revision otes Transformer... 4 Electromagnetic induction... 4 Generator... 5 Electric motor... 6 Magnetic field... 8 Magnetic flux... 9 Force on
More informationRotational Systems, Gears, and DC Servo Motors
Rotational Systems Rotational Systems, Gears, and DC Servo Motors Rotational systems behave exactly like translational systems, except that The state (angle) is denoted with rather than x (position) Inertia
More informationELECTRICALMACHINESI QUESTUION BANK
ELECTRICALMACHINESI QUESTUION BANK UNITI INTRODUCTION OF MAGNETIC MATERIAL PART A 1. What are the three basic rotating Electric machines? 2. Name the three materials used in machine manufacture. 3. What
More informationROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I
ROEVER COLLEGE OF ENGINEERING & TECHNOLOGY ELAMBALUR, PERAMBALUR621220 DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING ELECTRICAL MACHINES I Unit I Introduction 1. What are the three basic types
More informationINC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II
INC 341 Feedback Control Systems: Lecture 3 Transfer Function of Dynamic Systems II Asst. Prof. Dr.Ing. Sudchai Boonto Department of Control Systems and Instrumentation Engineering King Mongkut s University
More informationINDUCTION MOTOR MODEL AND PARAMETERS
APPENDIX C INDUCTION MOTOR MODEL AND PARAMETERS C.1 Dynamic Model of the Induction Motor in Stationary Reference Frame A three phase induction machine can be represented by an equivalent two phase machine
More informationTwoMass, ThreeSpring Dynamic System Investigation Case Study
Twoass, ThreeSpring Dynamic System Investigation Case Study easurements, Calculations, anufacturer's Specifications odel Parameter Identification Which Parameters to Identify? What Tests to Perform?
More informationExample: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and OpenLoop Response
Page 1 of 5 Example: Modeling DC Motor Position Physical Setup System Equations Design Requirements MATLAB Representation and OpenLoop Response Physical Setup A common actuator in control systems is the
More informationTutorial 1  Drive fundamentals and DC motor characteristics
University of New South Wales School of Electrical Engineering & elecommunications ELEC4613 ELECRIC DRIVE SYSEMS utorial 1  Drive fundamentals and DC motor characteristics 1. In the hoist drive system
More informationLecture 1: Introduction to System Modeling and Control. Introduction Basic Definitions Different Model Types System Identification
Lecture 1: Introduction to System Modeling and Control Introduction Basic Definitions Different Model Types System Identification What is Mathematical Model? A set of mathematical equations (e.g., differential
More informationEDEXCEL NATIONALS UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES. ASSIGNMENT No. 3  ELECTRO MAGNETIC INDUCTION
EDEXCEL NATIONALS UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES ASSIGNMENT No. 3  ELECTRO MAGNETIC INDUCTION NAME: I agree to the assessment as contained in this assignment. I confirm that the work submitted
More informationFeedback Control Systems
ME Homework #0 Feedback Control Systems Last Updated November 06 Text problem 67 (Revised Chapter 6 Homework Problems attached) 65 Chapter 6 Homework Problems 65 Transient Response of a Second Order Model
More informationElectric Machines I Three Phase Induction Motor. Dr. Firas Obeidat
Electric Machines I Three Phase Induction Motor Dr. Firas Obeidat 1 Table of contents 1 General Principles 2 Construction 3 Production of Rotating Field 4 Why Does the Rotor Rotate 5 The Slip and Rotor
More informationDefinition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic
Definition Application of electrical machines Electromagnetism: review Analogies between electric and magnetic circuits Faraday s Law Electromagnetic Force Motor action Generator action Types and parts
More informationPESIT Bangalore South Campus Hosur road, 1km before Electronic City, Bengaluru 100 Department of Electronics & Communication Engineering
QUESTION PAPER INTERNAL ASSESSMENT TEST 2 Date : /10/2016 Marks: 0 Subject & Code: BASIC ELECTRICAL ENGINEERING 15ELE15 Sec : F,G,H,I,J,K Name of faculty : Dhanashree Bhate, Hema B, Prashanth V Time :
More informationPositioning Servo Design Example
Positioning Servo Design Example 1 Goal. The goal in this design example is to design a control system that will be used in a pickandplace robot to move the link of a robot between two positions. Usually
More informationInternational Journal of Advance Research in Computer Science and Management Studies
Volume 2, Issue 9, September 2014 ISSN: 2321 7782 (Online) International Journal of Advance Research in Computer Science and Management Studies Research Article / Survey Paper / Case Study Available online
More informationSynchronous Machines
Synchronous Machines Synchronous generators or alternators are used to convert mechanical power derived from steam, gas, or hydraulicturbine to ac electric power Synchronous generators are the primary
More informationAutomatic Control Systems. Lecture Note 15
Lecture Note 15 Modeling of Physical Systems 5 1/52 AC Motors AC Motors Classification i) Induction Motor (Asynchronous Motor) ii) Synchronous Motor 2/52 Advantages of AC Motors i) Costeffective ii)
More informationMathematical Modeling and Dynamic Simulation of DC Motors using MATLAB/Simulink Environment
Mathematical Modeling and Dynamic Simulation of DC Motors using MATLAB/Simulink Environment K. Kalaiselvi 1, K.Abinaya 2, P. Ramesh Babu 3 1,2 Under Graduate Scholar, Department of EEE, Saranathan College
More informationJRE SCHOOL OF Engineering
JRE SCHOOL OF Engineering Class Test1 Examinations September 2014 Subject Name Electromechanical Energy ConversionII Subject Code EEE 501 Roll No. of Student Max Marks 30 Marks Max Duration 1 hour Date
More informationStep Motor Modeling. Step Motor Modeling K. Craig 1
Step Motor Modeling Step Motor Modeling K. Craig 1 Stepper Motor Models Under steady operation at low speeds, we usually do not need to differentiate between VR motors and PM motors (a hybrid motor is
More informationPrince Sattam bin Abdulaziz University College of Engineering. Electrical Engineering Department EE 3360 Electrical Machines (II)
Chapter # 4 ThreePhase Induction Machines 1 Introduction (General Principles) Generally, conversion of electrical power into mechanical power takes place in the rotating part of an electric motor. In
More informationRevised October 6, EEL 3211 ( 2008, H. Zmuda) 7. DC Machines 1
DC Machines Revised October 6, 2008 EEL 3211 ( 2008, H. Zmuda) 7. DC Machines 1 DC Machines: DC Motors are rapidly losing popularity. Until recent advances in power electronics DC motors excelled in terms
More informationInternational Journal of Advance Engineering and Research Development SIMULATION OF FIELD ORIENTED CONTROL OF PERMANENT MAGNET SYNCHRONOUS MOTOR
Scientific Journal of Impact Factor(SJIF): 3.134 eissn(o): 23484470 pissn(p): 23486406 International Journal of Advance Engineering and Research Development Volume 2,Issue 4, April 2015 SIMULATION
More informationDcMotor_ Model Help File
Name of Model: DcMotor_021708 Author: Vladimir L. Chervyakov Date: 20021026 Executable file name DcMotor_021708.vtm Version number: 1.0 Description This model represents a Nonlinear model of a permanent
More informationECEN 420 LINEAR CONTROL SYSTEMS. Lecture 6 Mathematical Representation of Physical Systems II 1/67
1/67 ECEN 420 LINEAR CONTROL SYSTEMS Lecture 6 Mathematical Representation of Physical Systems II State Variable Models for Dynamic Systems u 1 u 2 u ṙ. Internal Variables x 1, x 2 x n y 1 y 2. y m Figure
More informationMathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors
Applied and Computational Mechanics 3 (2009) 331 338 Mathematical Modeling and Dynamic Simulation of a Class of Drive Systems with Permanent Magnet Synchronous Motors M. Mikhov a, a Faculty of Automatics,
More informationEE155/255 Green Electronics
EE155/255 Green Electronics Electric Motors 10/19/16 Prof. William Dally Computer Systems Laboratory Stanford University This week is flipped Course Logistics Discussion on 10/17, Motors on 10/19, Isolated
More informationExercise 5  Hydraulic Turbines and Electromagnetic Systems
Exercise 5  Hydraulic Turbines and Electromagnetic Systems 5.1 Hydraulic Turbines Whole courses are dedicated to the analysis of gas turbines. For the aim of modeling hydraulic systems, we analyze here
More informationEE155/255 Green Electronics
EE155/255 Green Electronics Electric Motors 10/16/17 Prof. William Dally Computer Systems Laboratory Stanford University Course Logistics Solar day is Monday 10/23 HW 3 is due today HW 4 out, due next
More informationA FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS. 1 Introduction
A FORCE BALANCE TECHNIQUE FOR MEASUREMENT OF YOUNG'S MODULUS Abhinav A. Kalamdani Dept. of Instrumentation Engineering, R. V. College of Engineering, Bangalore, India. kalamdani@ieee.org Abstract: A new
More information(a) Torsional springmass system. (b) Spring element.
m v s T s v a (a) T a (b) T a FIGURE 2.1 (a) Torsional springmass system. (b) Spring element. by ky Wall friction, b Mass M k y M y r(t) Force r(t) (a) (b) FIGURE 2.2 (a) Springmassdamper system. (b)
More informationSliding Conducting Bar
Motional emf, final For equilibrium, qe = qvb or E = vb A potential difference is maintained between the ends of the conductor as long as the conductor continues to move through the uniform magnetic field
More information3 d Calculate the product of the motor constant and the pole flux KΦ in this operating point. 2 e Calculate the torque.
Exam Electrical Machines and Drives (ET4117) 11 November 011 from 14.00 to 17.00. This exam consists of 5 problems on 4 pages. Page 5 can be used to answer problem 4 question b. The number before a question
More informationControl of Wind Turbine Generators. James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University
Control of Wind Turbine Generators James Cale Guest Lecturer EE 566, Fall Semester 2014 Colorado State University Review from Day 1 Review Last time, we started with basic concepts from physics such as
More informationDESIGN OF ELECTRICAL APPARATUS SOLVED PROBLEMS
DESIGN OF ELECTRICAL APPARATUS SOLVED PROBLEMS 1. A 350 KW, 500V, 450rpm, 6pole, dc generator is built with an armature diameter of 0.87m and core length of 0.32m. The lap wound armature has 660 conductors.
More informationMotion Control. Laboratory assignment. Case study. Lectures. compliance, backlash and nonlinear friction. control strategies to improve performance
436459 Advanced Control and Automation Motion Control Lectures traditional CNC control architecture modelling of components dynamic response of axes effects on contouring performance control strategies
More informationMechatronics Modeling and Analysis of Dynamic Systems CaseStudy Exercise
Mechatronics Modeling and Analysis of Dynamic Systems CaseStudy Exercise Goal: This exercise is designed to take a realworld problem and apply the modeling and analysis concepts discussed in class. As
More informationVideo 5.1 Vijay Kumar and Ani Hsieh
Video 5.1 Vijay Kumar and Ani Hsieh Robo3x1.1 1 The Purpose of Control Input/Stimulus/ Disturbance System or Plant Output/ Response Understand the Black Box Evaluate the Performance Change the Behavior
More informationChapter 4. Synchronous Generators. Basic Topology
Basic Topology Chapter 4 ynchronous Generators In stator, a threephase winding similar to the one described in chapter 4. ince the main voltage is induced in this winding, it is also called armature winding.
More informationMassachusetts Institute of Technology Department of Electrical Engineering and Computer Science Electric Machines
Massachusetts Institute of Technology Department of Electrical Engineering and Computer Science 6.685 Electric Machines Problem Set 10 Issued November 11, 2013 Due November 20, 2013 Problem 1: Permanent
More informationR10 JNTUWORLD B 1 M 1 K 2 M 2. f(t) Figure 1
Code No: R06 R0 SET  II B. Tech II Semester Regular Examinations April/May 03 CONTROL SYSTEMS (Com. to EEE, ECE, EIE, ECC, AE) Time: 3 hours Max. Marks: 75 Answer any FIVE Questions All Questions carry
More informationSRV02Series Rotary Experiment # 1. Position Control. Student Handout
SRV02Series Rotary Experiment # 1 Position Control Student Handout SRV02Series Rotary Experiment # 1 Position Control Student Handout 1. Objectives The objective in this experiment is to introduce the
More information(Refer Slide Time: 00:01:30 min)
Control Engineering Prof. M. Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture  3 Introduction to Control Problem (Contd.) Well friends, I have been giving you various
More information3 Lab 3: DC Motor Transfer Function Estimation by Explicit Measurement
3 Lab 3: DC Motor Transfer Function Estimation by Explicit Measurement 3.1 Introduction There are two common methods for determining a plant s transfer function. They are: 1. Measure all the physical parameters
More informationDYNAMIC ANALYSIS OF DRIVE MECHANISM WITH FUNCTIONAL MODEL
DYNAMIC ANALYSIS OF DRIVE MECHANISM WITH FUNCTIONAL MODEL Yasunobu Uchino Department of Mechanical Engineering, Hosei University 372 Kajinocho, Koganeishi, TOKYO, JAPAN Tatsuhito Aihara Department of
More informationElectromagnetic Induction
362 Mechanical Engineering Technician UNIT 7 Electromagnetic Induction Structure 7.1 Introduction 7.2 Faraday s laws of Electromagnetic Induction 7.3. Lenz s law 7.4. Fleming s right and rule 7.5. Self
More informationQuanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control. DC Motor Control Trainer (DCMCT) Student Manual
Quanser NIELVIS Trainer (QNET) Series: QNET Experiment #02: DC Motor Position Control DC Motor Control Trainer (DCMCT) Student Manual Table of Contents 1 Laboratory Objectives1 2 References1 3 DCMCT Plant
More informationRevision Guide for Chapter 15
Revision Guide for Chapter 15 Contents Revision Checklist Revision otes Transformer...4 Electromagnetic induction...4 Lenz's law...5 Generator...6 Electric motor...7 Magnetic field...9 Magnetic flux...
More informationSAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015
FACULTY OF ENGINEERING AND SCIENCE SAMPLE SOLUTION TO EXAM in MAS501 Control Systems 2 Autumn 2015 Lecturer: Michael Ruderman Problem 1: Frequencydomain analysis and control design (15 pt) Given is a
More informationEC T32  ELECTRICAL ENGINEERING
EC T32  ELECTRICAL ENGINEERING UNITI  TRANSFORMER 1. What is a transformer? 2. Briefly explain the principle of operation of transformers. 3. What are the parts of a transformer? 4. What are the types
More informationTEMPERATURE EFFECTS ON MOTOR PERFORMANCE
TEMPERATURE EFFECTS ON MOTOR PERFORMANCE Authored By: Dan Montone Haydon Kerk Motion Solutions / Pittman Motors hen applying DC motors to any type of application, temperature effects need to be considered
More informationGeneralized Theory of Electrical Machines A Review
Generalized Theory of Electrical Machines A Review Dr. Sandip Mehta Department of Electrical and Electronics Engineering, JIET Group of Institutions, Jodhpur Abstract:This paper provides an overview
More informationUNITI INTRODUCTION. 1. State the principle of electromechanical energy conversion.
UNITI INTRODUCTION 1. State the principle of electromechanical energy conversion. The mechanical energy is converted in to electrical energy which takes place through either by magnetic field or electric
More informationRotary Motion Servo Plant: SRV02. Rotary Experiment #01: Modeling. SRV02 Modeling using QuaRC. Student Manual
Rotary Motion Servo Plant: SRV02 Rotary Experiment #01: Modeling SRV02 Modeling using QuaRC Student Manual SRV02 Modeling Laboratory Student Manual Table of Contents 1. INTRODUCTION...1 2. PREREQUISITES...1
More informationEncoders. Understanding. November design for industry: Help clean up the ocean. Horizon failure forensics
November 2013 www.designworldonline.com INSIDE: design for industry: Help clean up the ocean Page 18 3D CAD: FEA aids Deepwater Horizon failure forensics Page 37 Understanding NETWORKING: Enhancing enterprise
More informationChapter 1 Magnetic Circuits
Principles of Electric Machines and Power Electronics Third Edition P. C. Sen Chapter 1 Magnetic Circuits Chapter 1: Main contents ih relation, BH relation Magnetic circuit and analysis Property of magnetic
More informationDC Shunt Excited Motor
A DC motor has DC hunt Excited Motor A constant (DC) magnetic field for the stator, and A constant (DC) magnetic field in the rotor, That switches as the motor rotates. This switching results in a constant
More informationModule 3 Electrical Fundamentals
3.1 Electron Theory Structure and distribution of electrical charges within: atoms, molecules, ions, compounds; Molecular structure of conductors, semiconductors and insulators. 3.2 Static Electricity
More informationEDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3. OUTCOME 3  MAGNETISM and INDUCTION
EDEXCEL NATIONAL CERTIFICATE/DIPLOMA UNIT 5  ELECTRICAL AND ELECTRONIC PRINCIPLES NQF LEVEL 3 OUTCOME 3  MAGNETISM and INDUCTION 3 Understand the principles and properties of magnetism Magnetic field:
More informationELG4112. Electromechanical Systems and Mechatronics
ELG4112 Electromechanical Systems and Mechatronics 1 Introduction Based on Electromechanical Systems, Electric Machines, and Applied Mechatronics Electromechanical systems integrate the following: Electromechanical
More informationLIAPUNOV S STABILITY THEORYBASED MODEL REFERENCE ADAPTIVE CONTROL FOR DC MOTOR
LIAPUNOV S STABILITY THEORYBASED MODEL REFERENCE ADAPTIVE CONTROL FOR DC MOTOR *Ganta Ramesh, # R. Hanumanth Nayak *#Assistant Professor in EEE, Gudlavalleru Engg College, JNTU, Kakinada University, Gudlavalleru
More informationElectric Machines I DC Machines  DC Generators. Dr. Firas Obeidat
Electric Machines I DC Machines DC Generators Dr. Firas Obeidat 1 Table of contents 1 Construction of Simple Loop Generator 2 Working of Simple Loop Generator 3 Types of DC Generators 4 The Terminal Characteristic
More informationElectrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi
Electrical Machines and Energy Systems: Operating Principles (Part 2) SYED A Rizvi AC Machines Operating Principles: Synchronous Motor In synchronous motors, the stator of the motor has a rotating magnetic
More informationChapter 23 Magnetic Flux and Faraday s Law of Induction
Chapter 23 Magnetic Flux and Faraday s Law of Induction 1 Overview of Chapter 23 Induced Electromotive Force Magnetic Flux Faraday s Law of Induction Lenz s Law Mechanical Work and Electrical Energy Generators
More informationFlux: Examples of Devices
Flux: Examples of Devices xxx Philippe Wendling philippe.wendling@magsoftflux.com Create, Design, Engineer! www.magsoftflux.com www.cedrat.com Solenoid 2 1 The Domain Axisymmetry Open Boundary 3 Mesh
More informationDESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS
DESIGN AND MODELLING OF SENSORLESS VECTOR CONTROLLED INDUCTION MOTOR USING MODEL REFERENCE ADAPTIVE SYSTEMS Janaki Pakalapati 1 Assistant Professor, Dept. of EEE, Avanthi Institute of Engineering and Technology,
More informationIntroduction to Synchronous. Machines. Kevin Gaughan
Introduction to Synchronous Machines Kevin Gaughan The Synchronous Machine An AC machine (generator or motor) with a stator winding (usually 3 phase) generating a rotating magnetic field and a rotor carrying
More informationMagnetic inductance & Solenoids. P.Ravindran, PHY041: Electricity & Magnetism 22 February 2013: Magnetic inductance, and Solenoid
Magnetic inductance & Solenoids Changing Magnetic Flux A changing magnetic flux in a wire loop induces an electric current. The induced current is always in a direction that opposes the change in flux.
More informationHow an Induction Motor Works by Equations (and Physics)
How an Induction Motor Works by Equations (and Physics) The magnetic field in the air gap from the voltage applied to the stator: The stator has three sets of windings that are aligned at 10 degrees to
More informationELECTROMAGNETIC FIELD
UNITIII INTRODUCTION: In our study of static fields so far, we have observed that static electric fields are produced by electric charges, static magnetic fields are produced by charges in motion or by
More informationChapter 3 AUTOMATIC VOLTAGE CONTROL
Chapter 3 AUTOMATIC VOLTAGE CONTROL . INTRODUCTION TO EXCITATION SYSTEM The basic function of an excitation system is to provide direct current to the field winding of the synchronous generator. The excitation
More informationmagnetic dipoles are largely analogous to electric dipole moments both types of dipoles
Student Name Date Manipulating Magnetization Electric dipole moment: Magnetic dipole moment: magnetic dipoles are largely analogous to electric dipole moments both types of dipoles physical separation
More informationa. Type 0 system. b. Type I system. c. Type 2 system. d. Type 3 system.
1The steadystate error of a feedback control system with an acceleration input becomes finite in a a. Type 0 system. b. Type I system. c. Type 2 system. d. Type 3 system. 2A good control system has
More informationBasic Electrical Engineering SYLLABUS. Total No. of Lecture Hrs. : 50 Exam Marks : 80
SYLLABUS Subject Code: /25 No. of Lecture Hrs./ Week : 04 IA Marks : 20 Exam Hours : 03 Total No. of Lecture Hrs. : 50 Exam Marks : 80 Course objectives: Impart a basic knowledge of electrical quantities
More informationUNITIII Maxwell's equations (Time varying fields)
UNITIII Maxwell's equations (Time varying fields) Faraday s law, transformer emf &inconsistency of ampere s law Displacement current density Maxwell s equations in final form Maxwell s equations in word
More informationME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics
ME 3210 Mechatronics II Laboratory Lab 4: DC Motor Characteristics Introduction Often, due to budget constraints or convenience, engineers must use whatever tools are available to create new or improved
More information