Solution to Homework 1. Vector Analysis (P201)

Size: px
Start display at page:

Download "Solution to Homework 1. Vector Analysis (P201)"

Transcription

1 Solution to Homework 1. Vector Analysis (P1) Q1. A = 3î + ĵ ˆk, B = î + 3ĵ + 4ˆk, C = 4î ĵ 6ˆk. The sides AB, BC and AC are, AB = 4î ĵ 6ˆk AB = 7.48 BC = 5î + 5ĵ + 1ˆk BC = CA = î 3ĵ 4ˆk CA = From which it follows that sum of any two sides is greater than the third. The angles are, AB cos(ab, BC) = BC AB.BC = BC cos(bc, CA) = CA BC.CA = CA cos(ca, AB) = AB CA.AB = 9 15 (AB, BC) = 18 o o = 1.9 o (AB, BC) = 18 o o = 16.1 o 34 6 (AB, BC) = 18 o 7 o = 153 o So the angles add up to 18 o. Or we can directly use A, B, C as sides of the triangle in which case we have A = 14 = 3.74 B = 6 = 5.1 C = = 7.48 We get sum of any two sides is greater than the third. The angles are cos(a, B) = cos(a, C) = cos(b, C) = Again the angles add upto π c or 18 o (A, B) = c = o 14 (A, C) =.67 c = 38.1 o 34 6 (B, C) = (π.67) c =.47 c = 7. o Q. The diagonals on the same face, say on y-plane, connect the corners (,,) to (,1,1) and (,1,) to (,,1). The vectors in this case are f 1 = ĵ + ˆk and f = ĵ + ˆk. Hence the angle θ f is θ f = cos 1 f 1 f = cos = θ f = 9 o. f 1.f The diagonals on the adjacent faces, say on y and x-planes, connect the corners (,,) to (,1,1) and (,,) to (1,,1). The vectors in this case are f 1 = ĵ + ˆk and f = î + ˆk. The angle θ f is θ f = cos 1 f 1 f = cos 1 1 = 1 f 1.f θ f = 6 o. Consider the body diagonals connecting the corners (1,,) to (,1,1) and (,,) to (1,1,1) and the corresponding vectors are b 1 = î + ĵ + ˆk and b = î + ĵ + ˆk. The angle between them θ b is θ b = cos 1 b 1 b = cos 1 1 = 1 b 1.b θ b 7.5 o. 1

2 Q3. The sides of the triangle are AB = î + ĵ, BC = ĵ + 3ˆk and CA = î 3ˆk. Use any two sides, say AB and BS to calculate the area of the triangle formed by AB, BC, CA and unit normal ˆn: area = 1 AB BC = 1 î ĵ ˆk 1 3 = î + 3ĵ + ˆk = = 7 units ˆn = 1 (6î + 3ĵ + ˆk) 7 Q4. Since the vector we are looking for is parallel to xy-plane, it does not depend not and let that vector be v = xî + yĵ. Perpendicular to 4î 3ĵ + ˆk implies, Therefore the unit vector ˆv is (xî + yĵ) (4î 3ĵ + ˆk) = ˆv = 4x 3y = x = 3 4 y 3 4yî + yĵ 3 = 9 16 y + y 5î + 4 5ĵ. Q5. In terms of components, let the vector be A = A x î + A y ĵ + A ˆk. Then the direction cosines are cos α = A x A where, A = A x + A y + A. Hence, cos β = A y A cos γ = A A cos α + cos β + cos γ = A x A x + A y + A A y + A x + A y + A A x + A + A y + A = 1. Q6. The displacement vector is s = ( 3)î + ( 1 )ĵ + (4 + 1)ˆk = î 3ĵ + 5ˆk. Therefore the work done is W = F s = (4î 3ĵ + ˆk) ( î 3ĵ + 5ˆk) = 15 units. Q7. The vector A = A x î + A y ĵ + A ˆk changes to A = A xî + A yĵ + A ˆk under rotation by θ about y-axis, A x cos θ sin θ A x A y = 1 A y. A sin θ cos θ A Then A x = A x cos θ + A sin θ, A y = A y, A = A x sin θ + A cos θ, and therefore, A x + A y + A = A x + A y + A.

3 Q8. The gradient of φ(x, y, ) = e x sin y ln is φ = î ex sin y ln x + ĵ ex sin y ln y = îe x sin y ln + ĵe x cos y ln + ˆk ex sin y φ (,,) = îe sin ln + ĵe cos ln + ˆk e sin = 4.66î.13ĵ ˆk + ˆk ex sin y ln Q9. For φ(x, y, ) = c we have dφ(x, y, ) = φ d l = Then either d l =, which cannot be true because we have some displacement along the surface, or φ = which also cannot be true because it must be a function of at least x or y or, or φ d l which is the only option that implies φ is perpendicular to the surface on which we have the displacement d l. Q1. The unit vector ˆn 1 perpendicular to the surface x + y + = 9 at (,-1,) is (x + y + 9) = xî + yĵ + ˆk (x + y + 9) (, 1,) = 4î ĵ + 4ˆk ˆn 1 = 4 î ĵ + 4 ˆk Similarly, the unit vector ˆn perpendicular to the surface x + y = 3 at (,-1,) is (x + y 3) = xî + yĵ ˆk (x + y 3) (, 1,) = 4î ĵ ˆk ˆn = 4 î ĵ 1 ˆk Hence the angle between the surfaces at (,-1,) is θ = cos 1 (ˆn 1 ˆn ) = cos ( ) = 1.55 c = 88.8 o Q11. The volume element in spherical coordinate is dτ = r sin θdθdφdr and hence the total volume is Volume = R r dr π sin θ dθ π dφ = 4 3 πr3. The surface element of a sphere of radius R is ds = R sin θdθdφ and hence the total surface area of a sphere is, π π Surface = R sin θ dθ dφ = 4πR. 3

4 Q1. The gradient operator in spherical polar coordinate is ˆr + ˆθ 1 r θ + ˆφ 1 r sin θ φ. (a) ln r = ˆr r ln r = ˆr r (b) r n = ˆr r rn = nr n 1ˆr (c) f(r) = ˆr r f(r) = ˆrf (r) Q13. The divergence is A = x x3 + y ( x y) + y4 = 3 x + 8y 3 Q14. The divergence operator in spherical polar coordinate is A = 1 1 r sin θ θ (sin θa θ) + 1 r sin θ r r (r A r ) + A φ φ. Here our A r = r cos θ, A θ = r sin θ, A φ = r sin θ cos φ. So, A = 1 (r 3 cos θ) r + 1 (r sin θ) + 1 r r sin θ θ r sin θ = 3 cos θ + cos θ sin φ = 5 cos θ sin φ. (r sin θ cos φ) φ Q15. and Q16. are standard stuff, hence the calculations are not provided here. Consult any text book containing vector analysis. Q17. The φ = x + 4xy + y 3 evaluated at a (,, ) and b (1, 1, 1) are φ a = and φ b = 7. So, φ b φ a = 7. To integrate b a φ d l, we first calculate φ d l = [(x + 4y)î + (4x + 3 )ĵ + (6y )ˆk] [dxî + dyĵ + dˆk] = (x + 4y) dx + (4x + 3 ) dy + 6y d For path (,,) to (1,,) the dy = d = and y = = since y and do not change and y and are always along that path, hence 1 (x + 4y) dx = 1 x dx = x 1 = 1 For path (1,,) to (1,1,) the dx = d = and x = 1, = along this path, hence 1 (4x + 3 ) dy = 1 4 dy = 4y 1 = 4 Finally, for path (1,1,) to (1,1,1) we have dx = dy = and x = y = 1 along this path, hence 1 1 6y d = 6 d = 3 1 = Summing all the path contributions, b a φ d l = 7 = φ b φ a. Q18. To do the surface integral, we would project the surface of the hemisphere x + y + = a on xy-plane. For that first we calculate the unit normal to the hemisphere at some 4

5 arbitrary point (x, y, ) which is (x + y + a ) = xî + yĵ + ˆk. Therefore, ˆn = x 4x + 4y + 4 î + y 4x + 4y + 4 ĵ + 4x + 4y + 4 ˆk = x a î + y aĵ + a ˆk The projection of an element of surface area ds on hemisphere surface onto xy-plane ds is ds cos θ = ds where θ is the angle between ˆn and ˆk which is ds dx dy = ds cos θ = ds (ˆn ˆk) = ds a ds = Then the surface integral becomes A d s = A ˆnds = dx dy a ( x (xî + yĵ ˆk) a î + y aĵ + a ˆk ) dx dy a The limit of the integrals are: a x a and a x y a x. Note that = on xy-plane and we could have expressed x = ± a y etc. A d s = x + y dx dy = x=a y= a x x= a 3(x + y ) a y= a x a x y dx dy To fecilitate integration we can change over to polar coordinate as, x = r cos φ, y = r sin φ, dx dy = r dr dφ and the limits are r a and φ π (please convince yourself). The answer, therefore, is A d s = φ=π r=a φ= r= 3r a r dr dφ = a r You could have changed the coordinates (x, y, ) to (r, θ, φ) at the very begining and done the calculation. Q19. The divergence of v = xyî + yĵ + 3xˆk is v = x (xy) + y (y) + (3x) = y + + 3x The volume integral is, ( v) dτ = dx ydy d + dx dy d + 3 xdx dy d = 48 5

6 Next we do the surface integrals v d s on the faces of the cube xy plane at = xy plane at = y plane at x = y plane at x = x plane at y = x plane at y = 3x dx dy = 3x dx dy = 4 xy dy d = xy dy d = 8 y d dx = y d dx = 16 Threfore, v d s = 48 = v dτ, the divergence theorem is verified. Q(a) The curl of v = xyî + yĵ + 3xˆk and the area element on shaded area are, v = yî 3ĵ xˆk and d s = dy d î Since y + =, the surface integral is ( v) d s = ydy d = [ ] y dy d = 8 3 Next we do the line integrals, where the line element is d l = dxî + dyĵ + dˆk, (,, ) (,, ) v d l = y dy = (,, ) (,, ) (,, ) (,, ) v d l = v d l = (y dy + 3x d) = 3x d = Therefore, ( v) d s = 8 3 = v d l, the Stoke s theorem is verified. y( y) dy = 8 3 Q(b) The equation of the inclined surface is x + y + = 8 and unit vector on the surface is ˆn = 3î + 1 3ĵ + ˆk. 3 The surface area element written in terms of area element of the projected surface on xy-plane is ds = dxdy = 3 ˆn ˆk dxdy. The curl of v is x î + (x xy)ĵ. The surface integral is, [ ( v) ˆnds = [x î+(x xy)ĵ] 3î + 3ĵ + 1 ] 3 ˆk 3 dx dy = [x + 1 (x xy)] dx dy To perform the above integral, we note that x and y are related by x + y = 8. [ 8 8 y ] [ ( v) ˆnds 8 8 y ] = x 1 dx dy + (x xy)dx dy = = 3 3 6

7 Next we consider the line integral v d l = (x dx y dy + x y d), (4,, ) (, 8, ) (, 8, ) (,, 4) (,, 4) (4,, ) (x dx y dy + x y d) = (x dx y dy + x y d) = (x dx y dy + x y d) = y dy = 3 y dy = 3 x(4 x) dx = 3 3 Therefore, ( v) d s = 3 3 = v d l, the Stoke s theorem is verified. 7

7 Curvilinear coordinates

7 Curvilinear coordinates 7 Curvilinear coordinates Read: Boas sec. 5.4, 0.8, 0.9. 7. Review of spherical and cylindrical coords. First I ll review spherical and cylindrical coordinate systems so you can have them in mind when

More information

Gradient operator. In our calculation of dφ along the vector ds, we see that it can be described as the scalar product

Gradient operator. In our calculation of dφ along the vector ds, we see that it can be described as the scalar product Gradient operator In our calculation of dφ along the vector ds, we see that it can be described as the scalar product ( φ dφ = x î + φ y ĵ + φ ) z ˆk ( ) u x dsî + u y dsĵ + u z dsˆk We take dφ = φ ds

More information

Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative,

Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative, Integral Theorems eptember 14, 215 1 Integral of the gradient We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative, F (b F (a f (x provided f (x

More information

Two dimensional oscillator and central forces

Two dimensional oscillator and central forces Two dimensional oscillator and central forces September 4, 04 Hooke s law in two dimensions Consider a radial Hooke s law force in -dimensions, F = kr where the force is along the radial unit vector and

More information

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives. PRACTICE PROBLEMS Please let me know if you find any mistakes in the text so that i can fix them. 1.1. Let Show that f is C 1 and yet How is that possible? 1. Mixed partial derivatives f(x, y) = {xy x

More information

Ma 1c Practical - Solutions to Homework Set 7

Ma 1c Practical - Solutions to Homework Set 7 Ma 1c Practical - olutions to omework et 7 All exercises are from the Vector Calculus text, Marsden and Tromba (Fifth Edition) Exercise 7.4.. Find the area of the portion of the unit sphere that is cut

More information

Summary: Curvilinear Coordinates

Summary: Curvilinear Coordinates Physics 2460 Electricity and Magnetism I, Fall 2007, Lecture 10 1 Summary: Curvilinear Coordinates 1. Summary of Integral Theorems 2. Generalized Coordinates 3. Cartesian Coordinates: Surfaces of Constant

More information

Physics 3323, Fall 2016 Problem Set 2 due Sep 9, 2016

Physics 3323, Fall 2016 Problem Set 2 due Sep 9, 2016 Physics 3323, Fall 26 Problem Set 2 due Sep 9, 26. What s my charge? A spherical region of radius R is filled with a charge distribution that gives rise to an electric field inside of the form E E /R 2

More information

Chapter 6: Vector Analysis

Chapter 6: Vector Analysis Chapter 6: Vector Analysis We use derivatives and various products of vectors in all areas of physics. For example, Newton s 2nd law is F = m d2 r. In electricity dt 2 and magnetism, we need surface and

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

6 Div, grad curl and all that

6 Div, grad curl and all that 6 Div, grad curl and all that 6.1 Fundamental theorems for gradient, divergence, and curl Figure 1: Fundamental theorem of calculus relates df/dx over[a, b] and f(a), f(b). You will recall the fundamental

More information

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11 1. ompute the surface integral M255 alculus III Tutorial Worksheet 11 x + y + z) d, where is a surface given by ru, v) u + v, u v, 1 + 2u + v and u 2, v 1. olution: First, we know x + y + z) d [ ] u +

More information

Mathematics for Chemistry: Exam Set 1

Mathematics for Chemistry: Exam Set 1 Mathematics for Chemistry: Exam Set 1 June 18, 017 1 mark Questions 1. The minimum value of the rank of any 5 3 matrix is 0 1 3. The trace of an identity n n matrix is equal to 1-1 0 n 3. A square matrix

More information

Attempt QUESTIONS 1 and 2, and THREE other questions. penalised if you attempt additional questions.

Attempt QUESTIONS 1 and 2, and THREE other questions. penalised if you attempt additional questions. UNIVERSITY OF EAST ANGLIA School of Mathematics Main Series UG Examination 2017 18 CALCULUS AND MULTIVARIABLE CALCULUS MTHA4005Y Time allowed: 3 Hours Attempt QUESTIONS 1 and 2, and THREE other questions.

More information

Stokes s Theorem 17.2

Stokes s Theorem 17.2 Stokes s Theorem 17.2 6 December 213 Stokes s Theorem is the generalization of Green s Theorem to surfaces not just flat surfaces (regions in R 2 ). Relate a double integral over a surface with a line

More information

APPENDIX 2.1 LINE AND SURFACE INTEGRALS

APPENDIX 2.1 LINE AND SURFACE INTEGRALS 2 APPENDIX 2. LINE AND URFACE INTEGRAL Consider a path connecting points (a) and (b) as shown in Fig. A.2.. Assume that a vector field A(r) exists in the space in which the path is situated. Then the line

More information

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

Mathematics (Course B) Lent Term 2005 Examples Sheet 2 N12d Natural Sciences, Part IA Dr M. G. Worster Mathematics (Course B) Lent Term 2005 Examples Sheet 2 Please communicate any errors in this sheet to Dr Worster at M.G.Worster@damtp.cam.ac.uk. Note that

More information

Mathematics for Chemistry: Exam Set 1

Mathematics for Chemistry: Exam Set 1 Mathematics for Chemistry: Exam Set 1 March 19, 017 1 mark Questions 1. The maximum value of the rank of any 5 3 matrix is (a (b3 4 5. The determinant of an identity n n matrix is equal to (a 1 (b -1 0

More information

29.3. Integral Vector Theorems. Introduction. Prerequisites. Learning Outcomes

29.3. Integral Vector Theorems. Introduction. Prerequisites. Learning Outcomes Integral ector Theorems 9. Introduction arious theorems exist relating integrals involving vectors. Those involving line, surface and volume integrals are introduced here. They are the multivariable calculus

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

S12.1 SOLUTIONS TO PROBLEMS 12 (ODD NUMBERS)

S12.1 SOLUTIONS TO PROBLEMS 12 (ODD NUMBERS) OLUTION TO PROBLEM 2 (ODD NUMBER) 2. The electric field is E = φ = 2xi + 2y j and at (2, ) E = 4i + 2j. Thus E = 2 5 and its direction is 2i + j. At ( 3, 2), φ = 6i + 4 j. Thus the direction of most rapid

More information

One side of each sheet is blank and may be used as scratch paper.

One side of each sheet is blank and may be used as scratch paper. Math 244 Spring 2017 (Practice) Final 5/11/2017 Time Limit: 2 hours Name: No calculators or notes are allowed. One side of each sheet is blank and may be used as scratch paper. heck your answers whenever

More information

Additional Mathematical Tools: Detail

Additional Mathematical Tools: Detail Additional Mathematical Tools: Detail September 9, 25 The material here is not required, but gives more detail on the additional mathmatical tools: coordinate systems, rotations, the Dirac delta function

More information

MATH 280 Multivariate Calculus Fall Integration over a surface. da. A =

MATH 280 Multivariate Calculus Fall Integration over a surface. da. A = MATH 28 Multivariate Calculus Fall 212 Integration over a surface Given a surface S in space, we can (conceptually) break it into small pieces each of which has area da. In me cases, we will add up these

More information

Course Notes Math 275 Boise State University. Shari Ultman

Course Notes Math 275 Boise State University. Shari Ultman Course Notes Math 275 Boise State University Shari Ultman Fall 2017 Contents 1 Vectors 1 1.1 Introduction to 3-Space & Vectors.............. 3 1.2 Working With Vectors.................... 7 1.3 Introduction

More information

Laplace equation in polar coordinates

Laplace equation in polar coordinates Laplace equation in polar coordinates The Laplace equation is given by 2 F 2 + 2 F 2 = 0 We have x = r cos θ, y = r sin θ, and also r 2 = x 2 + y 2, tan θ = y/x We have for the partials with respect to

More information

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN:

Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, ISBN: MIT OpenCourseWare http://ocw.mit.edu Haus, Hermann A., and James R. Melcher. Electromagnetic Fields and Energy. Englewood Cliffs, NJ: Prentice-Hall, 989. ISBN: 978032490207. Please use the following citation

More information

Electric fields in matter

Electric fields in matter Electric fields in matter November 2, 25 Suppose we apply a constant electric field to a block of material. Then the charges that make up the matter are no longer in equilibrium: the electrons tend to

More information

CURRENT MATERIAL: Vector Calculus.

CURRENT MATERIAL: Vector Calculus. Math 275, section 002 (Ultman) Spring 2012 FINAL EXAM REVIEW The final exam will be held on Wednesday 9 May from 8:00 10:00am in our regular classroom. You will be allowed both sides of two 8.5 11 sheets

More information

McGill University April 20, Advanced Calculus for Engineers

McGill University April 20, Advanced Calculus for Engineers McGill University April 0, 016 Faculty of Science Final examination Advanced Calculus for Engineers Math 64 April 0, 016 Time: PM-5PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer Student

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017

FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 2017 MASSACHUSETTS INSTITUTE OF TECHNOLOGY Physics Department Physics 8.07: Electromagnetism II November 5, 207 Prof. Alan Guth FORMULA SHEET FOR QUIZ 2 Exam Date: November 8, 207 A few items below are marked

More information

Math 23b Practice Final Summer 2011

Math 23b Practice Final Summer 2011 Math 2b Practice Final Summer 211 1. (1 points) Sketch or describe the region of integration for 1 x y and interchange the order to dy dx dz. f(x, y, z) dz dy dx Solution. 1 1 x z z f(x, y, z) dy dx dz

More information

Integral Vector Calculus

Integral Vector Calculus ontents 29 Integral Vector alculus 29.1 Line Integrals Involving Vectors 2 29.2 Surface and Volume Integrals 34 29.3 Integral Vector Theorems 54 Learning outcomes In this Workbook you will learn how to

More information

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1.

xy 2 e 2z dx dy dz = 8 3 (1 e 4 ) = 2.62 mc. 12 x2 y 3 e 2z 2 m 2 m 2 m Figure P4.1: Cube of Problem 4.1. Problem 4.1 A cube m on a side is located in the first octant in a Cartesian coordinate system, with one of its corners at the origin. Find the total charge contained in the cube if the charge density

More information

MATH 280 Multivariate Calculus Fall Integrating a vector field over a surface

MATH 280 Multivariate Calculus Fall Integrating a vector field over a surface MATH 280 Multivariate Calculus Fall 2011 Definition Integrating a vector field over a surface We are given a vector field F in space and an oriented surface in the domain of F as shown in the figure below

More information

Curvilinear Coordinates

Curvilinear Coordinates University of Alabama Department of Physics and Astronomy PH 106-4 / LeClair Fall 2008 Curvilinear Coordinates Note that we use the convention that the cartesian unit vectors are ˆx, ŷ, and ẑ, rather than

More information

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr. 1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

More information

Sept , 17, 23, 29, 37, 41, 45, 47, , 5, 13, 17, 19, 29, 33. Exam Sept 26. Covers Sept 30-Oct 4.

Sept , 17, 23, 29, 37, 41, 45, 47, , 5, 13, 17, 19, 29, 33. Exam Sept 26. Covers Sept 30-Oct 4. MATH 23, FALL 2013 Text: Calculus, Early Transcendentals or Multivariable Calculus, 7th edition, Stewart, Brooks/Cole. We will cover chapters 12 through 16, so the multivariable volume will be fine. WebAssign

More information

2.20 Fall 2018 Math Review

2.20 Fall 2018 Math Review 2.20 Fall 2018 Math Review September 10, 2018 These notes are to help you through the math used in this class. This is just a refresher, so if you never learned one of these topics you should look more

More information

Keble College - Hilary 2015 CP3&4: Mathematical methods I&II Tutorial 4 - Vector calculus and multiple integrals II

Keble College - Hilary 2015 CP3&4: Mathematical methods I&II Tutorial 4 - Vector calculus and multiple integrals II Keble ollege - Hilary 2015 P3&4: Mathematical methods I&II Tutorial 4 - Vector calculus and multiple integrals II Tomi Johnson 1 Prepare full solutions to the problems with a self assessment of your progress

More information

Page Points Score Total: 210. No more than 200 points may be earned on the exam.

Page Points Score Total: 210. No more than 200 points may be earned on the exam. Name: PID: Section: Recitation Instructor: DO NOT WRITE BELOW THIS LINE. GO ON TO THE NEXT PAGE. Page Points Score 3 18 4 18 5 18 6 18 7 18 8 18 9 18 10 21 11 21 12 21 13 21 Total: 210 No more than 200

More information

Print Your Name: Your Section:

Print Your Name: Your Section: Print Your Name: Your Section: Mathematics 1c. Practice Final Solutions This exam has ten questions. J. Marsden You may take four hours; there is no credit for overtime work No aids (including notes, books,

More information

Read this cover page completely before you start.

Read this cover page completely before you start. I affirm that I have worked this exam independently, without texts, outside help, integral tables, calculator, solutions, or software. (Please sign legibly.) Read this cover page completely before you

More information

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve

MATH 280 Multivariate Calculus Fall Integrating a vector field over a curve MATH 280 Multivariate alculus Fall 2012 Definition Integrating a vector field over a curve We are given a vector field F and an oriented curve in the domain of F as shown in the figure on the left below.

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

MP204 Electricity and Magnetism

MP204 Electricity and Magnetism MATHEMATICAL PHYSICS SEMESTER 2, REPEAT 2016 2017 MP204 Electricity and Magnetism Prof. S. J. Hands, Dr. M. Haque and Dr. J.-I. Skullerud Time allowed: 1 1 2 hours Answer ALL questions MP204, 2016 2017,

More information

Math 11 Fall 2016 Final Practice Problem Solutions

Math 11 Fall 2016 Final Practice Problem Solutions Math 11 Fall 216 Final Practice Problem olutions Here are some problems on the material we covered since the second midterm. This collection of problems is not intended to mimic the final in length, content,

More information

Review problems for the final exam Calculus III Fall 2003

Review problems for the final exam Calculus III Fall 2003 Review problems for the final exam alculus III Fall 2003 1. Perform the operations indicated with F (t) = 2t ı 5 j + t 2 k, G(t) = (1 t) ı + 1 t k, H(t) = sin(t) ı + e t j a) F (t) G(t) b) F (t) [ H(t)

More information

Problem Set #3: 2.11, 2.15, 2.21, 2.26, 2.40, 2.42, 2.43, 2.46 (Due Thursday Feb. 27th)

Problem Set #3: 2.11, 2.15, 2.21, 2.26, 2.40, 2.42, 2.43, 2.46 (Due Thursday Feb. 27th) Chapter Electrostatics Problem Set #3:.,.5,.,.6,.40,.4,.43,.46 (Due Thursday Feb. 7th). Coulomb s Law Coulomb showed experimentally that for two point charges the force is - proportional to each of the

More information

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS MATH 228: Calculus III (FALL 216) Sample Problems for FINAL EXAM SOLUTIONS MATH 228 Page 2 Problem 1. (2pts) Evaluate the line integral C xy dx + (x + y) dy along the parabola y x2 from ( 1, 1) to (2,

More information

Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin

Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin Math 45 Homework et olutions Points. ( pts) The integral is, x + z y d = x + + z da 8 6 6 where is = x + z 8 x + z = 4 o, is the disk of radius centered on the origin. onverting to polar coordinates then

More information

on an open connected region D, then F is conservative on D. (c) If curl F=curl G on R 3, then C F dr = C G dr for all closed path C.

on an open connected region D, then F is conservative on D. (c) If curl F=curl G on R 3, then C F dr = C G dr for all closed path C. . (5%) Determine the statement is true ( ) or false ( ). 微甲 -4 班期末考解答和評分標準 (a) If f(x, y) is continuous on the rectangle R = {(x, y) a x b, c y d} except for finitely many points, then f(x, y) is integrable

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

7a3 2. (c) πa 3 (d) πa 3 (e) πa3 1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

More information

Math Exam IV - Fall 2011

Math Exam IV - Fall 2011 Math 233 - Exam IV - Fall 2011 December 15, 2011 - Renato Feres NAME: STUDENT ID NUMBER: General instructions: This exam has 16 questions, each worth the same amount. Check that no pages are missing and

More information

Introduction to Vector Calculus (29) SOLVED EXAMPLES. (d) B. C A. (f) a unit vector perpendicular to both B. = ˆ 2k = = 8 = = 8

Introduction to Vector Calculus (29) SOLVED EXAMPLES. (d) B. C A. (f) a unit vector perpendicular to both B. = ˆ 2k = = 8 = = 8 Introduction to Vector Calculus (9) SOLVED EXAMPLES Q. If vector A i ˆ ˆj k, ˆ B i ˆ ˆj, C i ˆ 3j ˆ kˆ (a) A B (e) A B C (g) Solution: (b) A B (c) A. B C (d) B. C A then find (f) a unit vector perpendicular

More information

University of Alabama Department of Physics and Astronomy. PH 125 / LeClair Spring A Short Math Guide. Cartesian (x, y) Polar (r, θ)

University of Alabama Department of Physics and Astronomy. PH 125 / LeClair Spring A Short Math Guide. Cartesian (x, y) Polar (r, θ) University of Alabama Department of Physics and Astronomy PH 125 / LeClair Spring 2009 A Short Math Guide 1 Definition of coordinates Relationship between 2D cartesian (, y) and polar (r, θ) coordinates.

More information

Second Order ODEs. Second Order ODEs. In general second order ODEs contain terms involving y, dy But here only consider equations of the form

Second Order ODEs. Second Order ODEs. In general second order ODEs contain terms involving y, dy But here only consider equations of the form Second Order ODEs Second Order ODEs In general second order ODEs contain terms involving y, dy But here only consider equations of the form A d2 y dx 2 + B dy dx + Cy = 0 dx, d2 y dx 2 and F(x). where

More information

Department of Mathematics and Statistics

Department of Mathematics and Statistics Applied mathematics @ eading University of eading Department of Mathematics and Statistics Useful reading: Calculus: A Complete Course 6 th Ed.,.A. Adams, Pearson Addison Wesley. Mathematical Methods in

More information

Figure 25:Differentials of surface.

Figure 25:Differentials of surface. 2.5. Change of variables and Jacobians In the previous example we saw that, once we have identified the type of coordinates which is best to use for solving a particular problem, the next step is to do

More information

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015 Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction

More information

Homework Assignment 4 Solution Set

Homework Assignment 4 Solution Set Homework Assignment 4 Solution Set PHYCS 442 7 February, 24 Problem (Griffiths 2.37 If the plates are sufficiently large the field near them does not depend on d. The field between the plates is zero (the

More information

Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems

Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems Problem Solving 1: The Mathematics of 8.02 Part I. Coordinate Systems In 8.02 we regularly use three different coordinate systems: rectangular (Cartesian), cylindrical and spherical. In order to become

More information

231 Outline Solutions Tutorial Sheet 4, 5 and November 2007

231 Outline Solutions Tutorial Sheet 4, 5 and November 2007 31 Outline Solutions Tutorial Sheet 4, 5 and 6. 1 Problem Sheet 4 November 7 1. heck that the Jacobian for the transformation from cartesian to spherical polar coordinates is J = r sin θ. onsider the hemisphere

More information

Multivariable Calculus

Multivariable Calculus Math Spring 05 BY: $\ Ron Buckmire Multivariable alculus Worksheet 6 TITLE Path-Dependent Vector Fields and Green s Theorem URRENT READING Mcallum, Section 8.4 HW # (DUE Wednesday 04/ BY 5PM) Mcallum,

More information

Math 11 Fall 2007 Practice Problem Solutions

Math 11 Fall 2007 Practice Problem Solutions Math 11 Fall 27 Practice Problem olutions Here are some problems on the material we covered since the second midterm. This collection of problems is not intended to mimic the final in length, content,

More information

Vectors. September 2, 2015

Vectors. September 2, 2015 Vectors September 2, 2015 Our basic notion of a vector is as a displacement, directed from one point of Euclidean space to another, and therefore having direction and magnitude. We will write vectors in

More information

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li

Summary for Vector Calculus and Complex Calculus (Math 321) By Lei Li Summary for Vector alculus and omplex alculus (Math 321) By Lei Li 1 Vector alculus 1.1 Parametrization urves, surfaces, or volumes can be parametrized. Below, I ll talk about 3D case. Suppose we use e

More information

0 MATH Last Updated: September 7, 2012

0 MATH Last Updated: September 7, 2012 Problem List 0.1 Trig. Identity 0.2 Basic vector properties (Numeric) 0.3 Basic vector properties (Conceptual) 0.4 Vector decomposition (Conceptual) 0.5 Div, grad, curl, and all that 0.6 Curl of a grad

More information

Vector Calculus, Maths II

Vector Calculus, Maths II Section A Vector Calculus, Maths II REVISION (VECTORS) 1. Position vector of a point P(x, y, z) is given as + y and its magnitude by 2. The scalar components of a vector are its direction ratios, and represent

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

Coordinates 2D and 3D Gauss & Stokes Theorems

Coordinates 2D and 3D Gauss & Stokes Theorems Coordinates 2 and 3 Gauss & Stokes Theorems Yi-Zen Chu 1 2 imensions In 2 dimensions, we may use Cartesian coordinates r = (x, y) and the associated infinitesimal area We may also employ polar coordinates

More information

Solutions to Practice Test 3

Solutions to Practice Test 3 Solutions to Practice Test 3. (a) Find the equation for the plane containing the points (,, ), (, 2, ), and (,, 3). (b) Find the area of the triangle with vertices (,, ), (, 2, ), and (,, 3). Answer: (a)

More information

Integration is the reverse of the process of differentiation. In the usual notation. k dx = kx + c. kx dx = 1 2 kx2 + c.

Integration is the reverse of the process of differentiation. In the usual notation. k dx = kx + c. kx dx = 1 2 kx2 + c. PHYS122 - Electricity and Magnetism Integration Reminder Integration is the reverse of the process of differentiation. In the usual notation f (x)dx = f(x) + constant The derivative of the RHS gives you

More information

Notes 3 Review of Vector Calculus

Notes 3 Review of Vector Calculus ECE 3317 Applied Electromagnetic Waves Prof. David R. Jackson Fall 2018 A ˆ Notes 3 Review of Vector Calculus y ya ˆ y x xa V = x y ˆ x Adapted from notes by Prof. Stuart A. Long 1 Overview Here we present

More information

Calculus III 2004 Summer Practice Final 8/3/2004

Calculus III 2004 Summer Practice Final 8/3/2004 .. Calculus III 4 ummer Practice Final 8/3/4. Compute the following limits if they exist: (a) lim (x,y) (,) e xy x+. cos x (b) lim x. (x,y) (,) x 4 +y 4 (a) ince lim (x,y) (,) exy and lim x + 6 in a (x,y)

More information

THE IMPORTANCE OF GEOMETRIC REASONING

THE IMPORTANCE OF GEOMETRIC REASONING THE IMPORTANCE OF GEOMETRIC REASONING Tevian Dray & Corinne Manogue Oregon State University I: Mathematics Physics II: The Bridge Project III: Geometric Visualization QUESTIONS I: Suppose T (x, y) = k(x

More information

MATH2000 Flux integrals and Gauss divergence theorem (solutions)

MATH2000 Flux integrals and Gauss divergence theorem (solutions) DEPARTMENT O MATHEMATIC MATH lux integrals and Gauss divergence theorem (solutions ( The hemisphere can be represented as We have by direct calculation in terms of spherical coordinates. = {(r, θ, φ r,

More information

Scattering. March 20, 2016

Scattering. March 20, 2016 Scattering March 0, 06 The scattering of waves of any kind, by a compact object, has applications on all scales, from the scattering of light from the early universe by intervening galaxies, to the scattering

More information

MLC Practice Final Exam

MLC Practice Final Exam Name: Section: Recitation/Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 13. Show all your work on the standard

More information

E&M. 1 Capacitors. January 2009

E&M. 1 Capacitors. January 2009 E&M January 2009 1 Capacitors Consider a spherical capacitor which has the space between its plates filled with a dielectric of permittivity ɛ. The inner sphere has radius r 1 and the outer sphere has

More information

Figure 21:The polar and Cartesian coordinate systems.

Figure 21:The polar and Cartesian coordinate systems. Figure 21:The polar and Cartesian coordinate systems. Coordinate systems in R There are three standard coordinate systems which are used to describe points in -dimensional space. These coordinate systems

More information

Vector Integrals. Scott N. Walck. October 13, 2016

Vector Integrals. Scott N. Walck. October 13, 2016 Vector Integrals cott N. Walck October 13, 16 Contents 1 A Table of Vector Integrals Applications of the Integrals.1 calar Line Integral.........................1.1 Finding Total Charge of a Line Charge..........1.

More information

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C Math 35 Solutions for Final Exam Page Problem. ( points) (a) ompute the line integral F ds for the path c(t) = (t 2, t 3, t) with t and the vector field F (x, y, z) = xi + zj + xk. (b) ompute the line

More information

Multiple Integrals and Vector Calculus: Synopsis

Multiple Integrals and Vector Calculus: Synopsis Multiple Integrals and Vector Calculus: Synopsis Hilary Term 28: 14 lectures. Steve Rawlings. 1. Vectors - recap of basic principles. Things which are (and are not) vectors. Differentiation and integration

More information

Math 233. Practice Problems Chapter 15. i j k

Math 233. Practice Problems Chapter 15. i j k Math 233. Practice Problems hapter 15 1. ompute the curl and divergence of the vector field F given by F (4 cos(x 2 ) 2y)i + (4 sin(y 2 ) + 6x)j + (6x 2 y 6x + 4e 3z )k olution: The curl of F is computed

More information

Vector Calculus. Dr. D. Sukumar. February 1, 2016

Vector Calculus. Dr. D. Sukumar. February 1, 2016 Vector Calculus Dr. D. Sukumar February 1, 2016 Green s Theorem Tangent form or Ciculation-Curl form c Mdx + Ndy = R ( N x M ) da y Green s Theorem Tangent form or Ciculation-Curl form Stoke s Theorem

More information

4 Chapter. Electric Potential

4 Chapter. Electric Potential 4 Chapter Electric Potential 4.1 Potential and Potential Energy... 4-3 4.2 Electric Potential in a Uniform Field... 4-7 4.3 Electric Potential due to Point Charges... 4-8 4.3.1 Potential Energy in a System

More information

MP204 Electricity and Magnetism

MP204 Electricity and Magnetism MATHEMATICAL PHYSICS SEMESTER 2 2016 2017 MP204 Electricity and Magnetism Prof. S. J. Hands, Dr. M. Haque and Dr. J.-I. Skullerud Time allowed: 1 1 2 hours Answer ALL questions MP204, 2016 2017, May Exam

More information

Continuum Polarization Induced by Tidal Distortion in Binary Stars

Continuum Polarization Induced by Tidal Distortion in Binary Stars Continuum Polarization Induced by Tidal Distortion in Binary Stars J. Patrick Harrington 1 1. On the Roche Potential of Close Binary Stars Let Ψ be the potential of a particle due to the gravitational

More information

18.02 Multivariable Calculus Fall 2007

18.02 Multivariable Calculus Fall 2007 MIT OpenourseWare http://ocw.mit.edu 18.02 Multivariable alculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.02 Lecture 21. Test for

More information

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6 .(5pts) y = uv. ompute the Jacobian, Multiple hoice (x, y) (u, v), of the coordinate transformation x = u v 4, (a) u + 4v 4 (b) xu yv (c) u + 7v 6 (d) u (e) u v uv 4 Solution. u v 4v u = u + 4v 4..(5pts)

More information

Lecture 21 Gravitational and Central Forces

Lecture 21 Gravitational and Central Forces Lecture 21 Gravitational and Central Forces 21.1 Newton s Law of Universal Gravitation According to Newton s Law of Universal Graviation, the force on a particle i of mass m i exerted by a particle j of

More information

Math 210, Final Exam, Fall 2010 Problem 1 Solution. v cosθ = u. v Since the magnitudes of the vectors are positive, the sign of the dot product will

Math 210, Final Exam, Fall 2010 Problem 1 Solution. v cosθ = u. v Since the magnitudes of the vectors are positive, the sign of the dot product will Math, Final Exam, Fall Problem Solution. Let u,, and v,,3. (a) Is the angle between u and v acute, obtuse, or right? (b) Find an equation for the plane through (,,) containing u and v. Solution: (a) The

More information

Math 211, Fall 2014, Carleton College

Math 211, Fall 2014, Carleton College A. Let v (, 2, ) (1,, ) 1, 2, and w (,, 3) (1,, ) 1,, 3. Then n v w 6, 3, 2 is perpendicular to the plane, with length 7. Thus n/ n 6/7, 3/7, 2/7 is a unit vector perpendicular to the plane. [The negation

More information

Name (please print) π cos(θ) + sin(θ)dθ

Name (please print) π cos(θ) + sin(θ)dθ Mathematics 2443-3 Final Eamination Form B December 2, 27 Instructions: Give brief, clear answers. I. Evaluate by changing to polar coordinates: 2 + y 2 3 and above the -ais. + y d 23 3 )/3. π 3 Name please

More information

Orthogonal Curvilinear Coordinates

Orthogonal Curvilinear Coordinates olc.tex 1 Orthogonal Curvilinear Coordinates Phyllis R. Nelson Electrical and Computer Engineering California State Polytechnic University, Pomona Spring 214 1 Introduction This article reviews the basic

More information

Page Problem Score Max Score a 8 12b a b 10 14c 6 6

Page Problem Score Max Score a 8 12b a b 10 14c 6 6 Fall 14 MTH 34 FINAL EXAM December 8, 14 Name: PID: Section: Instructor: DO NOT WRITE BELOW THIS LINE. Go to the next page. Page Problem Score Max Score 1 5 5 1 3 5 4 5 5 5 6 5 7 5 8 5 9 5 1 5 11 1 3 1a

More information

Bridging the Gap between Mathematics and the Physical Sciences

Bridging the Gap between Mathematics and the Physical Sciences Bridging the Gap between Mathematics and the Physical Sciences Department of Mathematics Oregon State University http://www.math.oregonstate.edu/~tevian Mathematics vs. Physics Math vs. Physics Functions

More information