on an open connected region D, then F is conservative on D. (c) If curl F=curl G on R 3, then C F dr = C G dr for all closed path C.

Size: px
Start display at page:

Download "on an open connected region D, then F is conservative on D. (c) If curl F=curl G on R 3, then C F dr = C G dr for all closed path C."

Transcription

1 . (5%) Determine the statement is true ( ) or false ( ). 微甲 -4 班期末考解答和評分標準 (a) If f(x, y) is continuous on the rectangle R = {(x, y) a x b, c y d} except for finitely many points, then f(x, y) is integrable on R and R f(x, y)da = (b) If F(x, y) = P (x, y)i + Q(x, y)j and P y = Q x c d a b f(x, y)dxdy = (c) If curl F=curl G on R, then C F dr = C G dr for all closed path C. a b d f(x, y)dydx. c on an open connected region D, then F is conservative on D. (d) If F and G are vector fields and curl F=curl G, div F=div G, then F G is a constant vector field. (e) Let B be a rigid body rotating about the z-axis with constant angular speed ω. If v(x, y, z) is the velocity at point (x, y, z) B, then curl v is parallel to k. Answer. ( 每小題各 分 ) (a) (b) (c) (d) (e). (%) Write the integral y x Answer. ( 每小題錯一格扣 分, 錯兩格以上全錯 ) f(x, y, z)dzdydx in 5 other orders. (a) y y f(x, y, z)dzdxdy (b) z y f(x, y, z)dxdydz (c) y y f(x, y, z)dxdzdy (d) x z x f(x, y, z)dydzdx (e) ( z) z x f(x, y, z)dydxdz Page of 9

2 . (5%) Evaluate the integrals. (a) (b) 4 tan y y cos x tan(cos x)dxdy. x + y dxdy + y x + y dxdy + x x + y dydx. (a) 4 tan y cos x tan (cos x)dxdy = = = 4 4 tan x cos x tan (cos x)dydx (pt) sin x tan (cos x)dx (Let u = cos x, du = sin xdx) tan udu = ln (cos u) (pt) = ln (cos ) ln (cos ) (pt) (b) y x x + y dxdy + y x + y dxdy + = D x + y da, where D is bounded by = and =. By polar coordinate, we have D x + y da = = = cos θ+sin θ cos θ+sin θ r cos θ + r sin θ r (cos θ + sin θ)drdθ (cos θ + sin θ) dθ = (sin θ cos θ) (pt) = (pt) rdrdθ (4pt) x + y dydx Page of 9

3 4. (%) Let S be the surface x + y + z = a, x, y, z (a > ), and let C be the boundary of S. Find the centroid of C. For a quarter circle of radius a (named C ) on a plane, its centroid can be found to be at ( a, a ) by either way: () Parametrize the curve: Parametrize C by r(t) = a cos t, a sin t, t [, ]. r (t) = a sin t, a cos t = a. Arc length s = 4 a = a. x s = C x ds = x = a a = a By the symmetry of the arc, y = x = a. x(t) r (t) dt = a cos(t)adt = a () Pappus s Theorem: Knowing that the surface area of a hemisphere of radius a is a and the arc length of a quarter circle of radius a is a, if the quarter circle is in the first quadrant and is rotated about the x-axis, Pappus s Theorem gives By the symmetry of the arc, x = y = a. (7 points up to this point.) A = y s a = y a y = a The curve C is composed of quarter circles C, C, and C on the xy-, yz-, and xz-planes, respectively. By the above discussion, their centroids are ( a, a, ), (, a, a ), and ( a,, a ), respectively. Since they have equal masses, the centroid of C is the average of them, namely ( 4a, 4a, 4a ). ( points) (Note: if you misunderstood the problem but correctly calculated the centroid of the surface S to be at ( a, a, a ), you still get 4 points. But no points will be given if you calculated the centroid of the part of the volume inside the sphere in the first octant.) Page of 9

4 5. (%) Let C be the curve of intersection of x + y + z = 4, x + y = x, z, oriented C to be counterclockwise when viewed from above. Evaluate C y dx + z dy + x dz. ˆ Solution : Using line integral to solve this problem directly. r(θ) =< + cos θ, sin θ, sin θ >, θ [, ]. ( points) The original equation = [ sin θ + sin θ cos θ + ( + cos θ) cos θ ] dθ ( points) By symmetry, the first and the third term will be zero in the end. Therefore, the above equation will change as follows: 4 sin θ dθ = 4 cos θ cos θ dθ = (4 points) ˆ Solution : Using Stokes Theorem to solve this problem. F =< y, z, x > F =< z, x, y > ( points) r(x, y) =< x, y, 4 x y > x r x =<,, > 4 x y r y =<,, r x r y =< y 4 x y > x 4 x y, y 4 x y, > ( points) By Stokes Theorem, c F dr = S ( F ) ds = D < 4 x y, x, y > < = D ( x xy y) da 4 x y x 4 x y, ( points) y 4 x y, > da By symmetry, the second and the third term will be zero in the end. Therefore, the above equation will change as follows: r cos θrdrdθ cos θ = 6 = = = 8 cos θ ( r ) cos θ rdrdθ cos 4 θ dθ cos4 θ dθ cos θ ( ) dθ (cos θ cos θ + ) dθ By symmetry, the second term will be zero in the end. Therefore, the above equation will change as follows: = 8 =. ( points) Page 4 of 9

5 6. (%) Let F = (x y) y (x +y ) i + (x y) x (x +y ) j. (a) erify that F is conservative on the right half plane x >. Find a potential function of F on the right half plane. (b) Evaluate C F dr where C is the ellipse x 4 + (y ) =. (c) Evaluate C F dr where C is the curve with polar equation r = e θ, 9 4 θ 9 4. y x (a) (6%) y f = (x y) x x f = tan ( y (x +y ) (x +y ) x ) + g(x) x f = xy y + + g (x) = (x y) y + g (x) = (x y) y (x +y ) (x +y ) (x +y ) (x +y ) g (x) = g is constant x f = tan ( y (x +y ) x ) or + x tan ( y (x +y ) x ) = y tan ( y (x +y ) x ) (6%) Other point: P y = Q x = x4 4x y+4xy y 4 (%); P (x +y ) y = Q x implies f is conservative (%) (b) (4%) Since {y > } is simple connected, F is conservative on {y > }. On the other hand, C is closed curve on y > (%); therefore, C F dr = (%) (c) (%) method the integral on C is equal to the integral on unit circle times two and integral on the tail. D F dr = (cos θ sin θ) dθ = (4%), where D is unit circle. The integral on tail is independent of path, which equals to f(cos 9 4 e 9 4, sin 9 4 e 9 4 ) f(cos 9 4 e 9 4, sin 9 4 e 9 4 ) = (%), where f is potential function of F Therefore, C F dr = 4 = 9 (%) method C F dr = γ F dr + γ F dr, where γ is the θ part of C, γ is θ < part of C, in which x(θ) and y(θ) is differentiable. 9 4 C F dr = (cos θ sin θ) dθ + = (cos θ sin θ) dθ = (cos θ sin θ) dθ (4%) (6%) (the answer worth point) Page 5 of 9

6 7. (%) Evaluate C (y +sin x)dx+(z +cos 4 y)dy +(x +tan 5 z)dz where C is the curve r(t) = sin t i+cos t j+sin t k, t. [Hint: C lies on the surface z = xy.] First observe that r(t) = sin t i + cos t j + sin t k is negative oriented. Thus by Stoke s theorem: C (y + sin x) dx + (z + cos 4 y) dy + (x + tan 5 z) dz = S F ds (%) where S is the surface z = xy bounded by D = {x + y } i j k F = x y z = z i x j k (%) y + sin x z + cos 4 y x + tan 5 z n = ( z x, z z, )/ ( y x, z, ) = ( y, x, )/ ( y, x, ) (%) y F ds = ( z, x, ) ( y, x, ) da S D = 4yz + 6x da D = 8x y + 6x da D = (8r cos θ sin θ + 6r cos θ )r dr dθ = (4%) (y + sin x) dx + (z + cos 4 y) dy + (x + tan 5 z) dz = C Page 6 of 9

7 8. (%) Evaluate S xds where S is the part of the cone z = (x + y ) that lies below the plane z = + x. Step. Find the projection onto the xy-plane of the curve of intersection of the cone z = (x + y ) and the plane z = + x. { z = (x + y ) z = + x (x + y ) = (x + ) ( x ) + y = (pt) Step. If we regard x and y as parameters, then we can write the parametric equations of S as x = x y = y z = (x + y ) (pt) where ( y ) x + ( y ), y (pt) and the vector equation is r(x, y) = xi + yj + (x + y )k Step. Find r x r y. r x = i + j + r y = i + j + x k x +y y k x +y r x r y = x i + y j + k (pts) r x r y = (pt) Step4. Evaluate S xds. S xds = D x r x r y dxdy (pts) = = + ( y ) ( y ) = 6 = 6 (pts) y dy xdxdy Page 7 of 9

8 9. (%) Let S be the surface of the solid bounded by x + y + z = and z. Find the total flux of F(x, y, z) = x i + y j + z k across S. (Method I) Let = {(x, y, z) R x + y + z, z }, then by Divergence Theorem, Flux of F = F ds = divf ds = ( + z) ds (%) S From the symmetry of, we have Therefore, divf ds = z ds = x ds = y ds =. sec φ ρ cos φρ sin φdρdφdθ = 4 ρ cos φρ sin φdρdφdθ = sec φ cos φ sin φ 6 tan φ sec φ dφ = 4 4 ( sin φ ρ 4 cos φ sin φ sec φdφdθ tan φ) = 9 64 S F ds = z ds = 9 64 = 9 (7 %) (Method II) Let S = {(x, y, z) R x + y + z =, z } and S = {(x, y, z) R x + y 4, z = } Flux of F = S = S F ds = (x, y, z ) ds + (x, y, z ) ds S S (x, y, z ) (x, y, z) ds + (x, y, z ) (,, ) ds. S = S x + y + z ds S z ds = S x + y + z ds 4 Area(S ). (%) From the symmetry of S, we have x ds = y ds =. S S Thus, we only need to calculate z ds, then by Spherical coordinate S S z ds = cos φ sin φ dφdθ = ( 4 cos4 φ) = [( ) 4 ] = 5. S F ds = z ds 4 Area(S ) = 5 4 ( ) = 9 (7 %) S Page 8 of 9

9 . (%) Solve the differential equation y + y = x e x + tan x, x (, ). Complementary equation: y + y =. Auxiliary equation: r + = r = ±i y c = c sin x + c cos x. ( points) For the particular solution: () For y + y = x e x it s a better idea to use the method of undetermined coefficients: Let y p = (Ax + Bx + C)e x, y p = [Ax + (A + B)x + (B + C)]e x, y p = [Ax + (4A + B)x + (A + B + C)]e x. y p + y p = [Ax + (4A + B)x + (A + B + C)]e x x e x A =, B =, C = y p = ( x x + )ex. ( points for the formulation, points for solving the coefficients.) () For y + y = tan x we use the method of variation of parameters: Let y p = u sin x + u cos x, y p = (u sin x + u cos x) + u cos x u sin x. Setting u sin x + u cos x = (equation ), we have y p = u cos x u sin x u sin x u cos x. y p + y p = u cos x u sin x tan x (equation ). Solving the system of equations and, we have { u sin x + u cos x = u cos x u sin x = tan x { u (x) = sin x, u (x) = tan x sin x = sin x cos x = cos x = cos x sec x cos x { u (x) = cos x, u (x) = sin x ln sec x + tan x = sin x ln(sec x + tan x) for x (, ) y p (x) = u sin x + u cos x = (cos x) ln(sec x + tan x) ( points for the system of equations, points for solving and integrating them.) Combining the above results, we have the general solution y(x) = c sin x + c cos x + ( x x + )ex (cos x) ln(sec x + tan x) Page 9 of 9

we can conclude that ϕ(x, y, z) = sin (xz) + e yz + const. If ϕ is written as a vector but the above three calculations are right, you lose 3pts.

we can conclude that ϕ(x, y, z) = sin (xz) + e yz + const. If ϕ is written as a vector but the above three calculations are right, you lose 3pts. 5 微甲 6- 班期末考解答和評分標準. (%) Let F = z cos(z)i + ze yz j + ( cos(z) + ye yz )k. (a) (8%) Find a scalar function ϕ(, y, z) such that ϕ = F. (b) (%) Evaluate C F dr, where C is the curve r(t) = (cos(t ), ln(t

More information

1. (13%) Find the orthogonal trajectories of the family of curves y = tan 1 (kx), where k is an arbitrary constant. Solution: For the original curves:

1. (13%) Find the orthogonal trajectories of the family of curves y = tan 1 (kx), where k is an arbitrary constant. Solution: For the original curves: 5 微甲 6- 班期末考解答和評分標準. (%) Find the orthogonal trajectories of the family of curves y = tan (kx), where k is an arbitrary constant. For the original curves: dy dx = tan y k = +k x x sin y cos y = +tan y

More information

2( 2 r 2 2r) rdrdθ. 4. Your result fits the correct answer: get 2 pts, if you make a slight mistake, get 1 pt. 0 r 1

2( 2 r 2 2r) rdrdθ. 4. Your result fits the correct answer: get 2 pts, if you make a slight mistake, get 1 pt. 0 r 1 Page 1 of 1 112 微甲 7-11 班期末考解答和評分標準 1. (1%) Find the volume of the solid bounded below by the cone z 2 4(x 2 + y 2 ) and above by the ellipsoid 4(x 2 + y 2 ) + z 2 8. Method 1 Use cylindrical coordinates:

More information

dzdydx. [Hint: switch dzdydx into dxdydz.] z(2 z) dzdydx. z(2 z) 2 )dz z(2 z) 2 sin(πz)dz = 1 x = u + 3v (2 points) y = v (2 points) (u, v) = 1 2

dzdydx. [Hint: switch dzdydx into dxdydz.] z(2 z) dzdydx. z(2 z) 2 )dz z(2 z) 2 sin(πz)dz = 1 x = u + 3v (2 points) y = v (2 points) (u, v) = 1 2 Page of 6. (%) Evaluate x z( z) 微甲 8- 班期末考解答和評分標準 dzddx. [Hint: switch dzddx into dxddz.] We need to compute x z( z) dzddx. The region of integration is bounded b [, ] [, ] [, ] {(x,, z) 3 x +, z }. (4%

More information

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

More information

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr. 1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

More information

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane.

Let s estimate the volume under this surface over the rectangle R = [0, 4] [0, 2] in the xy-plane. Math 54 - Vector Calculus Notes 3. - 3. Double Integrals Consider f(x, y) = 8 x y. Let s estimate the volume under this surface over the rectangle R = [, 4] [, ] in the xy-plane. Here is a particular estimate:

More information

MATH 52 FINAL EXAM SOLUTIONS

MATH 52 FINAL EXAM SOLUTIONS MAH 5 FINAL EXAM OLUION. (a) ketch the region R of integration in the following double integral. x xe y5 dy dx R = {(x, y) x, x y }. (b) Express the region R as an x-simple region. R = {(x, y) y, x y }

More information

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l. . If the line l has symmetric equations MA 6 PRACTICE PROBLEMS x = y = z+ 7, find a vector equation for the line l that contains the point (,, ) and is parallel to l. r = ( + t) i t j + ( + 7t) k B. r

More information

e x2 dxdy, e x2 da, e x2 x 3 dx = e

e x2 dxdy, e x2 da, e x2 x 3 dx = e STS26-4 Calculus II: The fourth exam Dec 15, 214 Please show all your work! Answers without supporting work will be not given credit. Write answers in spaces provided. You have 1 hour and 2minutes to complete

More information

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

More information

HOMEWORK 8 SOLUTIONS

HOMEWORK 8 SOLUTIONS HOMEWOK 8 OLUTION. Let and φ = xdy dz + ydz dx + zdx dy. let be the disk at height given by: : x + y, z =, let X be the region in 3 bounded by the cone and the disk. We orient X via dx dy dz, then by definition

More information

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours) SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

More information

Math 6A Practice Problems II

Math 6A Practice Problems II Math 6A Practice Problems II Written by Victoria Kala vtkala@math.ucsb.edu SH 64u Office Hours: R : :pm Last updated 5//6 Answers This page contains answers only. Detailed solutions are on the following

More information

Math 23b Practice Final Summer 2011

Math 23b Practice Final Summer 2011 Math 2b Practice Final Summer 211 1. (1 points) Sketch or describe the region of integration for 1 x y and interchange the order to dy dx dz. f(x, y, z) dz dy dx Solution. 1 1 x z z f(x, y, z) dy dx dz

More information

7a3 2. (c) πa 3 (d) πa 3 (e) πa3

7a3 2. (c) πa 3 (d) πa 3 (e) πa3 1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

More information

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0)

(b) Find the range of h(x, y) (5) Use the definition of continuity to explain whether or not the function f(x, y) is continuous at (0, 0) eview Exam Math 43 Name Id ead each question carefully. Avoid simple mistakes. Put a box around the final answer to a question (use the back of the page if necessary). For full credit you must show your

More information

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11

Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11 1. ompute the surface integral M255 alculus III Tutorial Worksheet 11 x + y + z) d, where is a surface given by ru, v) u + v, u v, 1 + 2u + v and u 2, v 1. olution: First, we know x + y + z) d [ ] u +

More information

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions alculus III Math 33 pring 7 Final exam May 3rd. uggested solutions This exam contains twenty problems numbered 1 through. All problems are multiple choice problems, and each counts 5% of your total score.

More information

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3

M273Q Multivariable Calculus Spring 2017 Review Problems for Exam 3 M7Q Multivariable alculus Spring 7 Review Problems for Exam Exam covers material from Sections 5.-5.4 and 6.-6. and 7.. As you prepare, note well that the Fall 6 Exam posted online did not cover exactly

More information

Math 212-Lecture Integration in cylindrical and spherical coordinates

Math 212-Lecture Integration in cylindrical and spherical coordinates Math 22-Lecture 6 4.7 Integration in cylindrical and spherical coordinates Cylindrical he Jacobian is J = (x, y, z) (r, θ, z) = cos θ r sin θ sin θ r cos θ = r. Hence, d rdrdθdz. If we draw a picture,

More information

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain

More information

Math Exam IV - Fall 2011

Math Exam IV - Fall 2011 Math 233 - Exam IV - Fall 2011 December 15, 2011 - Renato Feres NAME: STUDENT ID NUMBER: General instructions: This exam has 16 questions, each worth the same amount. Check that no pages are missing and

More information

One side of each sheet is blank and may be used as scratch paper.

One side of each sheet is blank and may be used as scratch paper. Math 244 Spring 2017 (Practice) Final 5/11/2017 Time Limit: 2 hours Name: No calculators or notes are allowed. One side of each sheet is blank and may be used as scratch paper. heck your answers whenever

More information

Double Integrals. Advanced Calculus. Lecture 2 Dr. Lahcen Laayouni. Department of Mathematics and Statistics McGill University.

Double Integrals. Advanced Calculus. Lecture 2 Dr. Lahcen Laayouni. Department of Mathematics and Statistics McGill University. Lecture Department of Mathematics and Statistics McGill University January 9, 7 Polar coordinates Change of variables formula Polar coordinates In polar coordinates, we have x = r cosθ, r = x + y y = r

More information

Practice problems. m zδdv. In our case, we can cancel δ and have z =

Practice problems. m zδdv. In our case, we can cancel δ and have z = Practice problems 1. Consider a right circular cone of uniform density. The height is H. Let s say the distance of the centroid to the base is d. What is the value d/h? We can create a coordinate system

More information

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9

Contents. MATH 32B-2 (18W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables. 1 Multiple Integrals 3. 2 Vector Fields 9 MATH 32B-2 (8W) (L) G. Liu / (TA) A. Zhou Calculus of Several Variables Contents Multiple Integrals 3 2 Vector Fields 9 3 Line and Surface Integrals 5 4 The Classical Integral Theorems 9 MATH 32B-2 (8W)

More information

MATH H53 : Final exam

MATH H53 : Final exam MATH H53 : Final exam 11 May, 18 Name: You have 18 minutes to answer the questions. Use of calculators or any electronic items is not permitted. Answer the questions in the space provided. If you run out

More information

Laplace equation in polar coordinates

Laplace equation in polar coordinates Laplace equation in polar coordinates The Laplace equation is given by 2 F 2 + 2 F 2 = 0 We have x = r cos θ, y = r sin θ, and also r 2 = x 2 + y 2, tan θ = y/x We have for the partials with respect to

More information

Math 233. Practice Problems Chapter 15. i j k

Math 233. Practice Problems Chapter 15. i j k Math 233. Practice Problems hapter 15 1. ompute the curl and divergence of the vector field F given by F (4 cos(x 2 ) 2y)i + (4 sin(y 2 ) + 6x)j + (6x 2 y 6x + 4e 3z )k olution: The curl of F is computed

More information

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere.

(a) The points (3, 1, 2) and ( 1, 3, 4) are the endpoints of a diameter of a sphere. MATH 4 FINAL EXAM REVIEW QUESTIONS Problem. a) The points,, ) and,, 4) are the endpoints of a diameter of a sphere. i) Determine the center and radius of the sphere. ii) Find an equation for the sphere.

More information

Line and Surface Integrals. Stokes and Divergence Theorems

Line and Surface Integrals. Stokes and Divergence Theorems Math Methods 1 Lia Vas Line and urface Integrals. tokes and Divergence Theorems Review of urves. Intuitively, we think of a curve as a path traced by a moving particle in space. Thus, a curve is a function

More information

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6

Multiple Choice. Compute the Jacobian, (u, v), of the coordinate transformation x = u2 v 4, y = uv. (a) 2u 2 + 4v 4 (b) xu yv (c) 3u 2 + 7v 6 .(5pts) y = uv. ompute the Jacobian, Multiple hoice (x, y) (u, v), of the coordinate transformation x = u v 4, (a) u + 4v 4 (b) xu yv (c) u + 7v 6 (d) u (e) u v uv 4 Solution. u v 4v u = u + 4v 4..(5pts)

More information

MATHS 267 Answers to Stokes Practice Dr. Jones

MATHS 267 Answers to Stokes Practice Dr. Jones MATH 267 Answers to tokes Practice Dr. Jones 1. Calculate the flux F d where is the hemisphere x2 + y 2 + z 2 1, z > and F (xz + e y2, yz, z 2 + 1). Note: the surface is open (doesn t include any of the

More information

Page Points Score Total: 210. No more than 200 points may be earned on the exam.

Page Points Score Total: 210. No more than 200 points may be earned on the exam. Name: PID: Section: Recitation Instructor: DO NOT WRITE BELOW THIS LINE. GO ON TO THE NEXT PAGE. Page Points Score 3 18 4 18 5 18 6 18 7 18 8 18 9 18 10 21 11 21 12 21 13 21 Total: 210 No more than 200

More information

Mathematics (Course B) Lent Term 2005 Examples Sheet 2

Mathematics (Course B) Lent Term 2005 Examples Sheet 2 N12d Natural Sciences, Part IA Dr M. G. Worster Mathematics (Course B) Lent Term 2005 Examples Sheet 2 Please communicate any errors in this sheet to Dr Worster at M.G.Worster@damtp.cam.ac.uk. Note that

More information

Jim Lambers MAT 280 Fall Semester Practice Final Exam Solution

Jim Lambers MAT 280 Fall Semester Practice Final Exam Solution Jim Lambers MAT 8 Fall emester 6-7 Practice Final Exam olution. Use Lagrange multipliers to find the point on the circle x + 4 closest to the point (, 5). olution We have f(x, ) (x ) + ( 5), the square

More information

Math 32B Discussion Session Session 3 Notes August 14, 2018

Math 32B Discussion Session Session 3 Notes August 14, 2018 Math 3B Discussion Session Session 3 Notes August 4, 8 In today s discussion we ll think about two common applications of multiple integrals: locating centers of mass and moments of inertia. Centers of

More information

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8

Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8 Name: SOLUTIONS Date: /9/7 M55 alculus III Tutorial Worksheet 8. ompute R da where R is the region bounded by x + xy + y 8 using the change of variables given by x u + v and y v. Solution: We know R is

More information

Problem Points S C O R E

Problem Points S C O R E MATH 34F Final Exam March 19, 13 Name Student I # Your exam should consist of this cover sheet, followed by 7 problems. Check that you have a complete exam. Unless otherwise indicated, show all your work

More information

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives. PRACTICE PROBLEMS Please let me know if you find any mistakes in the text so that i can fix them. 1.1. Let Show that f is C 1 and yet How is that possible? 1. Mixed partial derivatives f(x, y) = {xy x

More information

e x3 dx dy. 0 y x 2, 0 x 1.

e x3 dx dy. 0 y x 2, 0 x 1. Problem 1. Evaluate by changing the order of integration y e x3 dx dy. Solution:We change the order of integration over the region y x 1. We find and x e x3 dy dx = y x, x 1. x e x3 dx = 1 x=1 3 ex3 x=

More information

Math Review for Exam 3

Math Review for Exam 3 1. ompute oln: (8x + 36xy)ds = Math 235 - Review for Exam 3 (8x + 36xy)ds, where c(t) = (t, t 2, t 3 ) on the interval t 1. 1 (8t + 36t 3 ) 1 + 4t 2 + 9t 4 dt = 2 3 (1 + 4t2 + 9t 4 ) 3 2 1 = 2 3 ((14)

More information

Review problems for the final exam Calculus III Fall 2003

Review problems for the final exam Calculus III Fall 2003 Review problems for the final exam alculus III Fall 2003 1. Perform the operations indicated with F (t) = 2t ı 5 j + t 2 k, G(t) = (1 t) ı + 1 t k, H(t) = sin(t) ı + e t j a) F (t) G(t) b) F (t) [ H(t)

More information

Final Exam. Monday March 19, 3:30-5:30pm MAT 21D, Temple, Winter 2018

Final Exam. Monday March 19, 3:30-5:30pm MAT 21D, Temple, Winter 2018 Name: Student ID#: Section: Final Exam Monday March 19, 3:30-5:30pm MAT 21D, Temple, Winter 2018 Show your work on every problem. orrect answers with no supporting work will not receive full credit. Be

More information

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS MATH 228: Calculus III (FALL 216) Sample Problems for FINAL EXAM SOLUTIONS MATH 228 Page 2 Problem 1. (2pts) Evaluate the line integral C xy dx + (x + y) dy along the parabola y x2 from ( 1, 1) to (2,

More information

Print Your Name: Your Section:

Print Your Name: Your Section: Print Your Name: Your Section: Mathematics 1c. Practice Final Solutions This exam has ten questions. J. Marsden You may take four hours; there is no credit for overtime work No aids (including notes, books,

More information

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2 Math Prelim II Solutions Spring Note: Each problem is worth points except numbers 5 and 6 which are 5 points. x. Compute x da where is the region in the second quadrant between the + y circles x + y and

More information

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the 1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

More information

Practice problems **********************************************************

Practice problems ********************************************************** Practice problems I will not test spherical and cylindrical coordinates explicitly but these two coordinates can be used in the problems when you evaluate triple integrals. 1. Set up the integral without

More information

DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START

DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START Math 265 Student name: KEY Final Exam Fall 23 Instructor & Section: This test is closed book and closed notes. A (graphing) calculator is allowed for this test but cannot also be a communication device

More information

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. MTH 34 Review for Exam 4 ections 16.1-16.8. 5 minutes. 5 to 1 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. Review for Exam 4 (16.1) Line

More information

Solutions to old Exam 3 problems

Solutions to old Exam 3 problems Solutions to old Exam 3 problems Hi students! I am putting this version of my review for the Final exam review here on the web site, place and time to be announced. Enjoy!! Best, Bill Meeks PS. There are

More information

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know.

Disclaimer: This Final Exam Study Guide is meant to help you start studying. It is not necessarily a complete list of everything you need to know. Disclaimer: This is meant to help you start studying. It is not necessarily a complete list of everything you need to know. The MTH 234 final exam mainly consists of standard response questions where students

More information

Practice problems ********************************************************** 1. Divergence, curl

Practice problems ********************************************************** 1. Divergence, curl Practice problems 1. Set up the integral without evaluation. The volume inside (x 1) 2 + y 2 + z 2 = 1, below z = 3r but above z = r. This problem is very tricky in cylindrical or Cartesian since we must

More information

Math 31CH - Spring Final Exam

Math 31CH - Spring Final Exam Math 3H - Spring 24 - Final Exam Problem. The parabolic cylinder y = x 2 (aligned along the z-axis) is cut by the planes y =, z = and z = y. Find the volume of the solid thus obtained. Solution:We calculate

More information

Practice problems. 1. Evaluate the double or iterated integrals: First: change the order of integration; Second: polar.

Practice problems. 1. Evaluate the double or iterated integrals: First: change the order of integration; Second: polar. Practice problems 1. Evaluate the double or iterated integrals: R x 3 + 1dA where R = {(x, y) : 0 y 1, y x 1}. 1/ 1 y 0 3y sin(x + y )dxdy First: change the order of integration; Second: polar.. Consider

More information

MATH 52 FINAL EXAM DECEMBER 7, 2009

MATH 52 FINAL EXAM DECEMBER 7, 2009 MATH 52 FINAL EXAM DECEMBER 7, 2009 THIS IS A CLOSED BOOK, CLOSED NOTES EXAM. NO CALCULATORS OR OTHER ELECTRONIC DEVICES ARE PERMITTED. IF YOU NEED EXTRA SPACE, PLEASE USE THE BACK OF THE PREVIOUS PROB-

More information

Math 32B Discussion Session Week 10 Notes March 14 and March 16, 2017

Math 32B Discussion Session Week 10 Notes March 14 and March 16, 2017 Math 3B iscussion ession Week 1 Notes March 14 and March 16, 17 We ll use this week to review for the final exam. For the most part this will be driven by your questions, and I ve included a practice final

More information

McGill University April 20, Advanced Calculus for Engineers

McGill University April 20, Advanced Calculus for Engineers McGill University April 0, 016 Faculty of Science Final examination Advanced Calculus for Engineers Math 64 April 0, 016 Time: PM-5PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer Student

More information

In general, the formula is S f ds = D f(φ(u, v)) Φ u Φ v da. To compute surface area, we choose f = 1. We compute

In general, the formula is S f ds = D f(φ(u, v)) Φ u Φ v da. To compute surface area, we choose f = 1. We compute alculus III Test 3 ample Problem Answers/olutions 1. Express the area of the surface Φ(u, v) u cosv, u sinv, 2v, with domain u 1, v 2π, as a double integral in u and v. o not evaluate the integral. In

More information

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C

Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C Math 35 Solutions for Final Exam Page Problem. ( points) (a) ompute the line integral F ds for the path c(t) = (t 2, t 3, t) with t and the vector field F (x, y, z) = xi + zj + xk. (b) ompute the line

More information

MLC Practice Final Exam

MLC Practice Final Exam Name: Section: Recitation/Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 13. Show all your work on the standard

More information

Assignment 11 Solutions

Assignment 11 Solutions . Evaluate Math 9 Assignment olutions F n d, where F bxy,bx y,(x + y z and is the closed surface bounding the region consisting of the solid cylinder x + y a and z b. olution This is a problem for which

More information

( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem

( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem alculus III - Problem Drill 4: tokes and Divergence Theorem Question No. 1 of 1 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as needed () Pick the 1. Use

More information

v n ds where v = x z 2, 0,xz+1 and S is the surface that

v n ds where v = x z 2, 0,xz+1 and S is the surface that M D T P. erif the divergence theorem for d where is the surface of the sphere + + = a.. Calculate the surface integral encloses the solid region + +,. (a directl, (b b the divergence theorem. v n d where

More information

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers.

No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers. Name: Section: Recitation Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic devices can be used on this exam. Clear

More information

Problem Solving 1: Line Integrals and Surface Integrals

Problem Solving 1: Line Integrals and Surface Integrals A. Line Integrals MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics Problem Solving 1: Line Integrals and Surface Integrals The line integral of a scalar function f ( xyz),, along a path C is

More information

( ) ( ) Math 17 Exam II Solutions

( ) ( ) Math 17 Exam II Solutions Math 7 Exam II Solutions. Sketch the vector field F(x,y) -yi + xj by drawing a few vectors. Draw the vectors associated with at least one point in each quadrant and draw the vectors associated with at

More information

Page Problem Score Max Score a 8 12b a b 10 14c 6 6

Page Problem Score Max Score a 8 12b a b 10 14c 6 6 Fall 14 MTH 34 FINAL EXAM December 8, 14 Name: PID: Section: Instructor: DO NOT WRITE BELOW THIS LINE. Go to the next page. Page Problem Score Max Score 1 5 5 1 3 5 4 5 5 5 6 5 7 5 8 5 9 5 1 5 11 1 3 1a

More information

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14

14.1. Multiple Integration. Iterated Integrals and Area in the Plane. Iterated Integrals. Iterated Integrals. MAC2313 Calculus III - Chapter 14 14 Multiple Integration 14.1 Iterated Integrals and Area in the Plane Objectives Evaluate an iterated integral. Use an iterated integral to find the area of a plane region. Copyright Cengage Learning.

More information

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH

UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH UNIVERSITY of LIMERICK OLLSCOIL LUIMNIGH College of Informatics and Electronics END OF SEMESTER ASSESSMENT PAPER MODULE CODE: MS4613 SEMESTER: Autumn 2002/03 MODULE TITLE: Vector Analysis DURATION OF EXAMINATION:

More information

MATH 332: Vector Analysis Summer 2005 Homework

MATH 332: Vector Analysis Summer 2005 Homework MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

More information

Ma 1c Practical - Solutions to Homework Set 7

Ma 1c Practical - Solutions to Homework Set 7 Ma 1c Practical - olutions to omework et 7 All exercises are from the Vector Calculus text, Marsden and Tromba (Fifth Edition) Exercise 7.4.. Find the area of the portion of the unit sphere that is cut

More information

MATH2000 Flux integrals and Gauss divergence theorem (solutions)

MATH2000 Flux integrals and Gauss divergence theorem (solutions) DEPARTMENT O MATHEMATIC MATH lux integrals and Gauss divergence theorem (solutions ( The hemisphere can be represented as We have by direct calculation in terms of spherical coordinates. = {(r, θ, φ r,

More information

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π 1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P 3, 3π, r t) 3 cos t, 4t, 3 sin t 3 ). b) 5 points) Find curvature of the curve at the point P. olution:

More information

Marking Scheme for the end semester examination of MTH101, (I) for n N. Show that (x n ) converges and find its limit. [5]

Marking Scheme for the end semester examination of MTH101, (I) for n N. Show that (x n ) converges and find its limit. [5] Marking Scheme for the end semester examination of MTH, 3-4 (I). (a) Let x =, x = and x n+ = xn+x for n N. Show that (x n ) converges and find its limit. [5] Observe that x n+ x = x x n [] The sequence

More information

Problem 1. Use a line integral to find the plane area enclosed by the curve C: r = a cos 3 t i + b sin 3 t j (0 t 2π). Solution: We assume a > b > 0.

Problem 1. Use a line integral to find the plane area enclosed by the curve C: r = a cos 3 t i + b sin 3 t j (0 t 2π). Solution: We assume a > b > 0. MATH 64: FINAL EXAM olutions Problem 1. Use a line integral to find the plane area enclosed by the curve C: r = a cos 3 t i + b sin 3 t j ( t π). olution: We assume a > b >. A = 1 π (xy yx )dt = 3ab π

More information

tan θ(t) = 5 [3 points] And, we are given that d [1 points] Therefore, the velocity of the plane is dx [4 points] (km/min.) [2 points] (The other way)

tan θ(t) = 5 [3 points] And, we are given that d [1 points] Therefore, the velocity of the plane is dx [4 points] (km/min.) [2 points] (The other way) 1051 微甲 06-10 班期中考解答和評分標準 1. (10%) A plane flies horizontally at an altitude of 5 km and passes directly over a tracking telescope on the ground. When the angle of elevation is π/3, this angle is decreasing

More information

18.01 Single Variable Calculus Fall 2006

18.01 Single Variable Calculus Fall 2006 MIT OpenCourseWare http://ocw.mit.edu 18.01 Single Variable Calculus Fall 2006 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. Exam 4 Review 1. Trig substitution

More information

Solutions to Sample Questions for Final Exam

Solutions to Sample Questions for Final Exam olutions to ample Questions for Final Exam Find the points on the surface xy z 3 that are closest to the origin. We use the method of Lagrange Multipliers, with f(x, y, z) x + y + z for the square of the

More information

Created by T. Madas LINE INTEGRALS. Created by T. Madas

Created by T. Madas LINE INTEGRALS. Created by T. Madas LINE INTEGRALS LINE INTEGRALS IN 2 DIMENSIONAL CARTESIAN COORDINATES Question 1 Evaluate the integral ( x + 2y) dx, C where C is the path along the curve with equation y 2 = x + 1, from ( ) 0,1 to ( )

More information

MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. Spring Jennings. Show your work! MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

More information

Multiple Integrals and Vector Calculus: Synopsis

Multiple Integrals and Vector Calculus: Synopsis Multiple Integrals and Vector Calculus: Synopsis Hilary Term 28: 14 lectures. Steve Rawlings. 1. Vectors - recap of basic principles. Things which are (and are not) vectors. Differentiation and integration

More information

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1

f dr. (6.1) f(x i, y i, z i ) r i. (6.2) N i=1 hapter 6 Integrals In this chapter we will look at integrals in more detail. We will look at integrals along a curve, and multi-dimensional integrals in 2 or more dimensions. In physics we use these integrals

More information

Figure 25:Differentials of surface.

Figure 25:Differentials of surface. 2.5. Change of variables and Jacobians In the previous example we saw that, once we have identified the type of coordinates which is best to use for solving a particular problem, the next step is to do

More information

Without fully opening the exam, check that you have pages 1 through 12.

Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 12. Show all your work on the standard

More information

Math Review for Exam Compute the second degree Taylor polynomials about (0, 0) of the following functions: (a) f(x, y) = e 2x 3y.

Math Review for Exam Compute the second degree Taylor polynomials about (0, 0) of the following functions: (a) f(x, y) = e 2x 3y. Math 35 - Review for Exam 1. Compute the second degree Taylor polynomial of f e x+3y about (, ). Solution. A computation shows that f x(, ), f y(, ) 3, f xx(, ) 4, f yy(, ) 9, f xy(, ) 6. The second degree

More information

Math 211, Fall 2014, Carleton College

Math 211, Fall 2014, Carleton College A. Let v (, 2, ) (1,, ) 1, 2, and w (,, 3) (1,, ) 1,, 3. Then n v w 6, 3, 2 is perpendicular to the plane, with length 7. Thus n/ n 6/7, 3/7, 2/7 is a unit vector perpendicular to the plane. [The negation

More information

MTHE 227 Problem Set 2 Solutions

MTHE 227 Problem Set 2 Solutions MTHE 7 Problem Set Solutions 1 (Great Circles). The intersection of a sphere with a plane passing through its center is called a great circle. Let Γ be the great circle that is the intersection of the

More information

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c.

MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c. MATH 35 PRACTICE FINAL FALL 17 SAMUEL S. WATSON Problem 1 Verify that if a and b are nonzero vectors, the vector c = a b + b a bisects the angle between a and b. The cosine of the angle between a and c

More information

Classroom Voting Questions: Multivariable Calculus

Classroom Voting Questions: Multivariable Calculus Classroom Voting Questions: Multivariable Calculus 12.1 Functions of Two Variables 1. A function f(x, y) can be an increasing function of x with y held fixed, and be a decreasing function of y with x held

More information

MTH 234 Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 12.

MTH 234 Exam 2 November 21st, Without fully opening the exam, check that you have pages 1 through 12. Name: Section: Recitation Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 12. Show all your work on the standard

More information

51. General Surface Integrals

51. General Surface Integrals 51. General urface Integrals The area of a surface in defined parametrically by r(u, v) = x(u, v), y(u, v), z(u, v) over a region of integration in the input-variable plane is given by d = r u r v da.

More information

29.3. Integral Vector Theorems. Introduction. Prerequisites. Learning Outcomes

29.3. Integral Vector Theorems. Introduction. Prerequisites. Learning Outcomes Integral ector Theorems 9. Introduction arious theorems exist relating integrals involving vectors. Those involving line, surface and volume integrals are introduced here. They are the multivariable calculus

More information

MATH 263 ASSIGNMENT 9 SOLUTIONS. F dv =

MATH 263 ASSIGNMENT 9 SOLUTIONS. F dv = MAH AIGNMEN 9 OLUION ) Let F = (x yz)î + (y + xz)ĵ + (z + xy)ˆk and let be the portion of the cylinder x + y = that lies inside the sphere x + y + z = 4 be the portion of the sphere x + y + z = 4 that

More information

Review Sheet for the Final

Review Sheet for the Final Review Sheet for the Final Math 6-4 4 These problems are provided to help you study. The presence of a problem on this handout does not imply that there will be a similar problem on the test. And the absence

More information

MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014

MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014 MA 441 Advanced Engineering Mathematics I Assignments - Spring 2014 Dr. E. Jacobs The main texts for this course are Calculus by James Stewart and Fundamentals of Differential Equations by Nagle, Saff

More information

Solutions for the Practice Final - Math 23B, 2016

Solutions for the Practice Final - Math 23B, 2016 olutions for the Practice Final - Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy

More information

Vector Calculus, Maths II

Vector Calculus, Maths II Section A Vector Calculus, Maths II REVISION (VECTORS) 1. Position vector of a point P(x, y, z) is given as + y and its magnitude by 2. The scalar components of a vector are its direction ratios, and represent

More information