Lecture 21 Gravitational and Central Forces

Size: px
Start display at page:

Download "Lecture 21 Gravitational and Central Forces"

Transcription

1 Lecture 21 Gravitational and Central Forces 21.1 Newton s Law of Universal Gravitation According to Newton s Law of Universal Graviation, the force on a particle i of mass m i exerted by a particle j of mass m j is, F ij = Gm ( ) im j rij (21.1) rij 2 r ij This is a central force because it only acts on the line connecting particle i and j (i.e. no angular or orientational dependence). is the universal constant of gravitation. G = Nm 2 kg 2 Implicit in the gravitational force is Newton s third law. Centripetal acceleration of the moon toward the Earth and the gravitational acceleration of an apple falling on the surface of the Earth have a common origin this leap allowed for the development of the law of universal gravitation. Why does the Earth attract as if all of its mass were concentrated at a single point? Consider a thin shell of uniform mass M and radius R and divide the shell up into rings or width R θ: The circumference of the ring is, 2π(R sin θ Therefore, if the mass density (mass per unit area) is, then the mass of the ring is, ρ M A, M ρ A = ρ(2πr sin θ)(r θ) = ρ2πr 2 sin θ θ

2 Q θ R θ O r u φ F Q P What is the gravitational force exerted on a point mass m at P by a single element of the ring at Q (acting in the PQ direction)? We resolve the force into components, one along PO of magnitude F Q cos φ, the other perpendicular to PO, magnitude F Q sin φ. But from symmetry, the vector sum of all of the perpendicular components exerted at P by the whole ring vanishes. Hence, the force F exerted by the entire ring is in the PO direction with magnitude, F = Gm M cos φ = Gm2πρR2 sin θ cos φ φ Taking the limit that θ θ and adding up all the rings, we obtain the total force exerted at P by the whole shell: F = Gm2πρR 2 π o sin θ cos φdθ To perform this integral, we see from the figure above that, = r 2 + R 2 2rR cos θ, from the law of cosines. But since r and R are constant, udu = rr sin θdθ Similarly, cos φ = u2 + r 2 R 2 2ru

3 Therefore, r+r F = Gm2πρR 2 + r 2 R 2 du r R 2Rr 2 = GmM r+r ) (1 + r2 R 2 du 4Rr 2 r R = GmM r 2 where we have substituted in the mass of the shell,m = 4πρR 2. In vector form, this is just, F = GMm ˆr r 2 This is an incredible result! It says that a uniform spherical shell of matter attracts a particle as if the whole mass of the shell were concentrated at its center. Therefore, this will be true for every shell of a solid uniform sphere! 21.2 Kepler s Laws 1. Each planet moves in an ellipse with the sun as a focus. 2. The radius vector sweeps out equal areas in equal times. 3. The square of the period of revolution about the sun is proportional to the cube of the major axis of the orbit.. Newton showed that Kepler s three laws are a consequence of the law of gravity. Before we prove these laws, let us remind ourselves of some properties of central fields Conservative Fields F = f(r)ˆr Take the curl of this force in spherical coordinates: x = r sin θ cos φ y = r sin θ sin φ z = r cos θ dv = r 2 sin θdθdφdr to give us, F = 1 r 2 sin θ ˆr rˆθ r sin θ ˆφ r θ φ F r F θ r F φ r sin θ

4 Now, since F θ = F φ = 0, we are left with, F = 1 f(r) ˆφ 1 f(r) ˆφ = 0 r sin θ r r θ Therefore, since the curl of F vanishes, we say that F is conservative. This implies that there exists a potential V (r) such that, In integral form, this implies V (r) = V (r) F = V = r r r o r F d r = f(r)dr r o where r o is some reference value where the potential is take to be zero (typically at infinity) Central Fields If the force acts on a line connecting the particles, then it is obvious that, r F = 0 But recall our torque equation, dl dt = r F = N Thus, in a central field, dl dt = 0 L = constant and the angular momentum is conserved (as we have discussed before). We now proceed to Kepler s Laws which, for convenience, we will not prove in order Proof of Kepler s Second Law The area da is swept out by the radius vector r in a time dt as a planet orbits the sun. This area is equal to half of the area of a parallelogram formed by r d r (by definition). Therefore, we arrive at Kepler s 2nd law: da = 1 2 r d r = 1 L r vdt = 2 2m dt da dt = A = L 2m = constant (21.2) which is a consequence of the fact that we are dealing with central forces and the angular momentum is conserved.

5 Sun r d r = v d t da Proof of Kepler s 1st law To derive Kepler s 1st law, we start with Newton s second law expressed in polar coordinates: m r = f(r)ˆr (21.3) Recall from the beginning of the course that we derived the radial component of the acceleration to be: a r = r r = r r θ 2 m( r r θ 2 ) = f(r) and the θ component of the acceleration was given as: m(2ṙ θ + r θ) = 0. From the last expression above, we see that: hence, a θ = r θ = 2ṙ θ + r θ d dt (r2 θ) = 0, r 2 θ = constant = l = L m where l is the angular momentum per unit mass. This just reaffirms the fact that the angular momentum is constant when a particle moves in a central force. Lets now play a trick, let r = 1/u, therefore ṙ = u = θ du dθ = ldu dθ

6 since θ = l. Let us now differentiate again to find, r = l d du dt dθ = l θ d2 u dθ = 2 l2 d2 u dθ 2 Therefore, the radial equation of motion, as given above, becomes: d 2 u dθ 2 + u = 1 ml 2 f(u 1 ) (21.4) This is the differential equation (or orbit equation) of the orbit of a particle moving under a central force. The solution of this equation will give u as a function of θ and we will then be able to show that the orbits obtained give us ellipses.

Chapter 13. Gravitation

Chapter 13. Gravitation Chapter 13 Gravitation e = c/a A note about eccentricity For a circle c = 0 à e = 0 a Orbit Examples Mercury has the highest eccentricity of any planet (a) e Mercury = 0.21 Halley s comet has an orbit

More information

Lecture 16. Gravitation

Lecture 16. Gravitation Lecture 16 Gravitation Today s Topics: The Gravitational Force Satellites in Circular Orbits Apparent Weightlessness lliptical Orbits and angular momentum Kepler s Laws of Orbital Motion Gravitational

More information

Newton s Gravitational Law

Newton s Gravitational Law 1 Newton s Gravitational Law Gravity exists because bodies have masses. Newton s Gravitational Law states that the force of attraction between two point masses is directly proportional to the product of

More information

Universal Gravitation

Universal Gravitation Universal Gravitation Newton s Law of Universal Gravitation Every particle in the Universe attracts every other particle with a force that is directly proportional to the product of their masses and inversely

More information

F = ma. G mm r 2. S center

F = ma. G mm r 2. S center In the early 17 th century, Kepler discovered the following three laws of planetary motion: 1. The planets orbit around the sun in an ellipse with the sun at one focus. 2. As the planets orbit around the

More information

Lecture 9 Chapter 13 Gravitation. Gravitation

Lecture 9 Chapter 13 Gravitation. Gravitation Lecture 9 Chapter 13 Gravitation Gravitation UNIVERSAL GRAVITATION For any two masses in the universe: F = Gm 1m 2 r 2 G = a constant evaluated by Henry Cavendish +F -F m 1 m 2 r Two people pass in a hall.

More information

Lesson 9. Luis Anchordoqui. Physics 168. Tuesday, October 24, 17

Lesson 9. Luis Anchordoqui. Physics 168. Tuesday, October 24, 17 Lesson 9 Physics 168 1 Static Equilibrium 2 Conditions for Equilibrium An object with forces acting on it but that is not moving is said to be in equilibrium 3 Conditions for Equilibrium (cont d) First

More information

Chapter 13: universal gravitation

Chapter 13: universal gravitation Chapter 13: universal gravitation Newton s Law of Gravitation Weight Gravitational Potential Energy The Motion of Satellites Kepler s Laws and the Motion of Planets Spherical Mass Distributions Apparent

More information

Chapter 13. Gravitation

Chapter 13. Gravitation Chapter 13 Gravitation 13.2 Newton s Law of Gravitation Here m 1 and m 2 are the masses of the particles, r is the distance between them, and G is the gravitational constant. G =6.67 x10 11 Nm 2 /kg 2

More information

Lecture 22: Gravitational Orbits

Lecture 22: Gravitational Orbits Lecture : Gravitational Orbits Astronomers were observing the motion of planets long before Newton s time Some even developed heliocentric models, in which the planets moved around the sun Analysis of

More information

PLANETARY MOTION IN FOUR DIMENSIONS

PLANETARY MOTION IN FOUR DIMENSIONS PLANETARY MOTION IN FOUR DIMENSIONS PATRICK STEIN 1. Introduction The only independent vector quantities involved in a planetary orbit are the vector from the sun to the planet r and the velocity of the

More information

Gravitation. Luis Anchordoqui

Gravitation. Luis Anchordoqui Gravitation Kepler's law and Newton's Synthesis The nighttime sky with its myriad stars and shinning planets has always fascinated people on Earth. Towards the end of the XVI century the astronomer Tycho

More information

Lecture 1a: Satellite Orbits

Lecture 1a: Satellite Orbits Lecture 1a: Satellite Orbits Meteorological Satellite Orbits LEO view GEO view Two main orbits of Met Satellites: 1) Geostationary Orbit (GEO) 1) Low Earth Orbit (LEO) or polar orbits Orbits of meteorological

More information

Astro 210 Lecture 8 Feb 4, 2011

Astro 210 Lecture 8 Feb 4, 2011 Astro 210 Lecture 8 Feb 4, 2011 Announcements HW2 due apologies for the erratum HW3 available, due next Friday HW1 Q8 bonus still available register your iclicker; link on course webpage Planetarium: shows

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

1 Summary of Chapter 2

1 Summary of Chapter 2 General Astronomy (9:61) Fall 01 Lecture 7 Notes, September 10, 01 1 Summary of Chapter There are a number of items from Chapter that you should be sure to understand. 1.1 Terminology A number of technical

More information

Uniform Circular Motion

Uniform Circular Motion Circular Motion Uniform Circular Motion Uniform Circular Motion Traveling with a constant speed in a circular path Even though the speed is constant, the acceleration is non-zero The acceleration responsible

More information

Steve Smith Tuition: Physics Notes

Steve Smith Tuition: Physics Notes Steve Smith Tuition: Physics Notes E = mc 2 F = GMm sin θ m = mλ d hν = φ + 1 2 mv2 Static Fields IV: Gravity Examples Contents 1 Gravitational Field Equations 3 1.1 adial Gravitational Field Equations.................................

More information

ω = 0 a = 0 = α P = constant L = constant dt = 0 = d Equilibrium when: τ i = 0 τ net τ i Static Equilibrium when: F z = 0 F net = F i = ma = d P

ω = 0 a = 0 = α P = constant L = constant dt = 0 = d Equilibrium when: τ i = 0 τ net τ i Static Equilibrium when: F z = 0 F net = F i = ma = d P Equilibrium when: F net = F i τ net = τ i a = 0 = α dp = 0 = d L = ma = d P = 0 = I α = d L = 0 P = constant L = constant F x = 0 τ i = 0 F y = 0 F z = 0 Static Equilibrium when: P = 0 L = 0 v com = 0

More information

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 5 Centripetal Force and Gravity. Copyright 2010 Pearson Education, Inc. Chapter 5 Centripetal Force and Gravity v Centripetal Acceleration v Velocity is a Vector v It has Magnitude and Direction v If either changes, the velocity vector changes. Tumble Buggy Demo v Centripetal

More information

L03: Kepler problem & Hamiltonian dynamics

L03: Kepler problem & Hamiltonian dynamics L03: Kepler problem & Hamiltonian dynamics 18.354 Ptolemy circa.85 (Egypt) -165 (Alexandria) Greek geocentric view of the universe Tycho Brahe 1546 (Denmark) - 1601 (Prague) "geo-heliocentric" system last

More information

Notes on Planetary Motion

Notes on Planetary Motion (1) Te motion is planar Notes on Planetary Motion Use 3-dimensional coordinates wit te sun at te origin. Since F = ma and te gravitational pull is in towards te sun, te acceleration A is parallel to te

More information

Two dimensional oscillator and central forces

Two dimensional oscillator and central forces Two dimensional oscillator and central forces September 4, 04 Hooke s law in two dimensions Consider a radial Hooke s law force in -dimensions, F = kr where the force is along the radial unit vector and

More information

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture Gravity

Welcome back to Physics 211. Physics 211 Spring 2014 Lecture Gravity Welcome back to Physics 211 Today s agenda: Newtonian gravity Planetary orbits Gravitational Potential Energy Physics 211 Spring 2014 Lecture 14-1 1 Gravity Before 1687, large amount of data collected

More information

Welcome back to Physics 215

Welcome back to Physics 215 Welcome back to Physics 215 Today s agenda: More rolling without slipping Newtonian gravity Planetary orbits Gravitational Potential Energy Physics 215 Spring 2018 Lecture 13-1 1 Rolling without slipping

More information

Phys 7221, Fall 2006: Midterm exam

Phys 7221, Fall 2006: Midterm exam Phys 7221, Fall 2006: Midterm exam October 20, 2006 Problem 1 (40 pts) Consider a spherical pendulum, a mass m attached to a rod of length l, as a constrained system with r = l, as shown in the figure.

More information

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12

Copyright 2010 Pearson Education, Inc. GRAVITY. Chapter 12 GRAVITY Chapter 12 Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Gravitation. Kepler s Law. BSc I SEM II (UNIT I)

Gravitation. Kepler s Law. BSc I SEM II (UNIT I) Gravitation Kepler s Law BSc I SEM II (UNIT I) P a g e 2 Contents 1) Newton s Law of Gravitation 3 Vector representation of Newton s Law of Gravitation 3 Characteristics of Newton s Law of Gravitation

More information

Chapter 9 Circular Motion Dynamics

Chapter 9 Circular Motion Dynamics Chapter 9 Circular Motion Dynamics Chapter 9 Circular Motion Dynamics... 9. Introduction Newton s Second Law and Circular Motion... 9. Universal Law of Gravitation and the Circular Orbit of the Moon...

More information

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration

Handout 6: Rotational motion and moment of inertia. Angular velocity and angular acceleration 1 Handout 6: Rotational motion and moment of inertia Angular velocity and angular acceleration In Figure 1, a particle b is rotating about an axis along a circular path with radius r. The radius sweeps

More information

Chapter 13. Universal Gravitation

Chapter 13. Universal Gravitation Chapter 13 Universal Gravitation Planetary Motion A large amount of data had been collected by 1687. There was no clear understanding of the forces related to these motions. Isaac Newton provided the answer.

More information

Tangent and Normal Vectors

Tangent and Normal Vectors Tangent and Normal Vectors MATH 311, Calculus III J. Robert Buchanan Department of Mathematics Fall 2011 Navigation When an observer is traveling along with a moving point, for example the passengers in

More information

Stellar Dynamics and Structure of Galaxies

Stellar Dynamics and Structure of Galaxies Stellar Dynamics and Structure of Galaxies in a given potential Vasily Belokurov vasily@ast.cam.ac.uk Institute of Astronomy Lent Term 2016 1 / 59 1 Collisions Model requirements 2 in spherical 3 4 Orbital

More information

Celestial Orbits. Adrienne Carter Ottopaskal Rice May 18, 2001

Celestial Orbits. Adrienne Carter Ottopaskal Rice May 18, 2001 Celestial Orbits Adrienne Carter sillyajc@yahoo.com Ottopaskal Rice ottomanbuski@hotmail.com May 18, 2001 1. Tycho Brache, a Danish astronomer of the late 1500s, had collected large amounts of raw data

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 12 Last Lecture Newton s Law of gravitation F grav = GMm R 2 G = 6.67"10 #11 Nm 2 /kg 2 Kepler s Laws of Planetary motion 1. Ellipses with sun at focus 2. Sweep

More information

10/21/2003 PHY Lecture 14 1

10/21/2003 PHY Lecture 14 1 Announcements. Second exam scheduled for Oct. 8 th -- practice exams now available -- http://www.wfu.edu/~natalie/f03phy3/extrapractice/. Thursday review of Chapters 9-4 3. Today s lecture Universal law

More information

CIRCULAR MOTION AND ROTATION

CIRCULAR MOTION AND ROTATION 1. UNIFORM CIRCULAR MOTION So far we have learned a great deal about linear motion. This section addresses rotational motion. The simplest kind of rotational motion is an object moving in a perfect circle

More information

Welcome back to Physics 215

Welcome back to Physics 215 Welcome back to Physics 215 Today s agenda: Gravity 15-2 1 Current assignments HW#15 due Monday, 12/12 Final Exam, Thursday, Dec. 15 th, 3-5pm in 104N. Two sheets of handwritten notes and a calculator

More information

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory

Radial Acceleration. recall, the direction of the instantaneous velocity vector is tangential to the trajectory Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential to the trajectory 1 Radial Acceleration recall, the direction of the instantaneous velocity vector is tangential

More information

Gravitation and Newton s Synthesis

Gravitation and Newton s Synthesis Lecture 10 Chapter 6 Physics I 0.4.014 Gravitation and Newton s Synthesis Course website: http://faculty.uml.edu/andriy_danylov/teaching/physicsi Lecture Capture: http://echo360.uml.edu/danylov013/physics1spring.html

More information

Chapter 8. Orbits. 8.1 Conics

Chapter 8. Orbits. 8.1 Conics Chapter 8 Orbits 8.1 Conics Conic sections first studied in the abstract by the Greeks are the curves formed by the intersection of a plane with a cone. Ignoring degenerate cases (such as a point, or pairs

More information

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc.

Chapter 12 Gravity. Copyright 2010 Pearson Education, Inc. Chapter 12 Gravity Units of Chapter 12 Newton s Law of Universal Gravitation Gravitational Attraction of Spherical Bodies Kepler s Laws of Orbital Motion Gravitational Potential Energy Energy Conservation

More information

Copyright 2009, August E. Evrard.

Copyright 2009, August E. Evrard. Unless otherwise noted, the content of this course material is licensed under a Creative Commons BY 3.0 License. http://creativecommons.org/licenses/by/3.0/ Copyright 2009, August E. Evrard. You assume

More information

Question 1: Spherical Pendulum

Question 1: Spherical Pendulum Question 1: Spherical Pendulum Consider a two-dimensional pendulum of length l with mass M at its end. It is easiest to use spherical coordinates centered at the pivot since the magnitude of the position

More information

Circular Motion. Gravitation

Circular Motion. Gravitation Circular Motion Gravitation Circular Motion Uniform circular motion is motion in a circle at constant speed. Centripetal force is the force that keeps an object moving in a circle. Centripetal acceleration,

More information

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc.

PHYSICS. Chapter 13 Lecture FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E RANDALL D. KNIGHT Pearson Education, Inc. PHYSICS FOR SCIENTISTS AND ENGINEERS A STRATEGIC APPROACH 4/E Chapter 13 Lecture RANDALL D. KNIGHT Chapter 13 Newton s Theory of Gravity IN THIS CHAPTER, you will learn to understand the motion of satellites

More information

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc.

Chapter 9 Lecture. Pearson Physics. Gravity and Circular Motion. Prepared by Chris Chiaverina Pearson Education, Inc. Chapter 9 Lecture Pearson Physics Gravity and Circular Motion Prepared by Chris Chiaverina Chapter Contents Newton's Law of Universal Gravity Applications of Gravity Circular Motion Planetary Motion and

More information

Rotational Kinematics

Rotational Kinematics Rotational Kinematics Rotational Coordinates Ridged objects require six numbers to describe their position and orientation: 3 coordinates 3 axes of rotation Rotational Coordinates Use an angle θ to describe

More information

Phys 2101 Gabriela González

Phys 2101 Gabriela González Phys 2101 Gabriela González Newton s law : F = Gm 1 m 2 /r 2 Explains why apples fall, why the planets move around the Sun, sciencebulletins.amnh.org And in YouTube! Explains just as well as Newtons why

More information

PC 1141 : AY 2012 /13

PC 1141 : AY 2012 /13 NUS Physics Society Past Year Paper Solutions PC 1141 : AY 2012 /13 Compiled by: NUS Physics Society Past Year Solution Team Yeo Zhen Yuan Ryan Goh Published on: November 17, 2015 1. An egg of mass 0.050

More information

5.1. Accelerated Coordinate Systems:

5.1. Accelerated Coordinate Systems: 5.1. Accelerated Coordinate Systems: Recall: Uniformly moving reference frames (e.g. those considered at 'rest' or moving with constant velocity in a straight line) are called inertial reference frames.

More information

Summary: Curvilinear Coordinates

Summary: Curvilinear Coordinates Physics 2460 Electricity and Magnetism I, Fall 2007, Lecture 10 1 Summary: Curvilinear Coordinates 1. Summary of Integral Theorems 2. Generalized Coordinates 3. Cartesian Coordinates: Surfaces of Constant

More information

Motion under the Influence of a Central Force

Motion under the Influence of a Central Force Copyright 004 5 Motion under the Influence of a Central Force The fundamental forces of nature depend only on the distance from the source. All the complex interactions that occur in the real world arise

More information

Integration is the reverse of the process of differentiation. In the usual notation. k dx = kx + c. kx dx = 1 2 kx2 + c.

Integration is the reverse of the process of differentiation. In the usual notation. k dx = kx + c. kx dx = 1 2 kx2 + c. PHYS122 - Electricity and Magnetism Integration Reminder Integration is the reverse of the process of differentiation. In the usual notation f (x)dx = f(x) + constant The derivative of the RHS gives you

More information

Physics Lecture 03: FRI 29 AUG

Physics Lecture 03: FRI 29 AUG Physics 23 Jonathan Dowling Isaac Newton (642 727) Physics 23 Lecture 03: FRI 29 AUG CH3: Gravitation III Version: 8/28/4 Michael Faraday (79 867) 3.7: Planets and Satellites: Kepler s st Law. THE LAW

More information

Topic 6 The Killers LEARNING OBJECTIVES. Topic 6. Circular Motion and Gravitation

Topic 6 The Killers LEARNING OBJECTIVES. Topic 6. Circular Motion and Gravitation Topic 6 Circular Motion and Gravitation LEARNING OBJECTIVES Topic 6 The Killers 1. Centripetal Force 2. Newton s Law of Gravitation 3. Gravitational Field Strength ROOKIE MISTAKE! Always remember. the

More information

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc.

A = 6561 times greater. B. 81 times greater. C. equally strong. D. 1/81 as great. E. (1/81) 2 = 1/6561 as great Pearson Education, Inc. Q13.1 The mass of the Moon is 1/81 of the mass of the Earth. Compared to the gravitational force that the Earth exerts on the Moon, the gravitational force that the Moon exerts on the Earth is A. 81 2

More information

Basic Physics. Isaac Newton ( ) Topics. Newton s Laws of Motion (2) Newton s Laws of Motion (1) PHYS 1411 Introduction to Astronomy

Basic Physics. Isaac Newton ( ) Topics. Newton s Laws of Motion (2) Newton s Laws of Motion (1) PHYS 1411 Introduction to Astronomy PHYS 1411 Introduction to Astronomy Basic Physics Chapter 5 Topics Newton s Laws Mass and Weight Work, Energy and Conservation of Energy Rotation, Angular velocity and acceleration Centripetal Force Angular

More information

VISUAL PHYSICS ONLINE

VISUAL PHYSICS ONLINE VISUAL PHYSICS ONLINE EXCEL SIMULATION MOTION OF SATELLITES DOWNLOAD the MS EXCEL program PA50satellite.xlsx and view the worksheet Display as shown in the figure below. One of the most important questions

More information

Circular Motion and Gravitation. Centripetal Acceleration

Circular Motion and Gravitation. Centripetal Acceleration Circular Motion and Gravitation Centripetal Acceleration Recall linear acceleration! Δv! aavg t 3. Going around urve, at constant speed 1. Speeding up vi vi Δv a ac ac vi ac. Slowing down v velocity and

More information

PHYS 101 Previous Exam Problems. Gravitation

PHYS 101 Previous Exam Problems. Gravitation PHYS 101 Previous Exam Problems CHAPTER 13 Gravitation Newton s law of gravitation Shell theorem Variation of g Potential energy & work Escape speed Conservation of energy Kepler s laws - planets Orbits

More information

HW Chapter 5 Q 7,8,18,21 P 4,6,8. Chapter 5. The Law of Universal Gravitation Gravity

HW Chapter 5 Q 7,8,18,21 P 4,6,8. Chapter 5. The Law of Universal Gravitation Gravity HW Chapter 5 Q 7,8,18,21 P 4,6,8 Chapter 5 The Law of Universal Gravitation Gravity Newton s Law of Universal Gravitation Every particle in the Universe attracts every other particle with a force that

More information

The first term involves the cross product of two parallel vectors and so it vanishes. We then get

The first term involves the cross product of two parallel vectors and so it vanishes. We then get Physics 3550 Angular Momentum. Relevant Sections in Text: 3.4, 3.5 Angular Momentum You have certainly encountered angular momentum in a previous class. The importance of angular momentum lies principally

More information

Astro Lecture 12. Energy and Gravity (Cont d) 13/02/09 Habbal Astro Lecture 12 1

Astro Lecture 12. Energy and Gravity (Cont d) 13/02/09 Habbal Astro Lecture 12 1 Astro 110-01 Lecture 12 Energy and Gravity (Cont d) 13/02/09 Habbal Astro110-01 Lecture 12 1 Energy due to movement of Kinetic Energy: object E k = ½ m v 2 13/02/09 Habbal Astro110-01 Lecture 12 2 Gravitational

More information

Chapter 8 - Gravity Tuesday, March 24 th

Chapter 8 - Gravity Tuesday, March 24 th Chapter 8 - Gravity Tuesday, March 24 th Newton s law of gravitation Gravitational potential energy Escape velocity Kepler s laws Demonstration, iclicker and example problems We are jumping backwards to

More information

Central Force Problem

Central Force Problem Central Force Problem Consider two bodies of masses, say earth and moon, m E and m M moving under the influence of mutual gravitational force of potential V(r). Now Langangian of the system is where, µ

More information

CH 8. Universal Gravitation Planetary and Satellite Motion

CH 8. Universal Gravitation Planetary and Satellite Motion CH 8 Universal Gravitation Planetary and Satellite Motion Sir Isaac Newton UNIVERSAL GRAVITATION Newton: Universal Gravitation Newton concluded that earthly objects and heavenly objects obey the same physical

More information

PHYSICS 231 INTRODUCTORY PHYSICS I

PHYSICS 231 INTRODUCTORY PHYSICS I PHYSICS 231 INTRODUCTORY PHYSICS I Lecture 11 Last Lecture Angular velocity, acceleration " = #$ #t = $ f %$ i t f % t i! = " f # " i t!" #!x $ 0 # v 0 Rotational/ Linear analogy "s = r"# v t = r" $ f

More information

Midterm 3 Thursday April 13th

Midterm 3 Thursday April 13th Welcome back to Physics 215 Today s agenda: rolling friction & review Newtonian gravity Planetary orbits Gravitational Potential Energy Physics 215 Spring 2017 Lecture 13-1 1 Midterm 3 Thursday April 13th

More information

8 Rotational motion of solid objects

8 Rotational motion of solid objects 8 Rotational motion of solid objects Kinematics of rotations PHY166 Fall 005 In this Lecture we call solid objects such extended objects that are rigid (nondeformable) and thus retain their shape. In contrast

More information

Circular Motion and Gravitation. Centripetal Acceleration

Circular Motion and Gravitation. Centripetal Acceleration Circular Motion and Gravitation Centripetal Acceleration Recall linear acceleration 3. Going around a curve, at constant speed 1. Speeding up vi vi Δv a ac ac vi ac 2. Slowing down v velocity and acceleration

More information

Lecture 15: Elasticity (Chapter 11) and Universal Gravity (Chapter 12) 1

Lecture 15: Elasticity (Chapter 11) and Universal Gravity (Chapter 12) 1 Lecture 15: Elasticity (Chapter 11) and Universal Gravity (Chapter 12) 1 REVIEW: Rotational Equilibrium (Chapter 11) With the use of torques one can solve problems in rotational equilibrium. Rotational

More information

AST1100 Lecture Notes

AST1100 Lecture Notes AST1100 Lecture Notes 5 The virial theorem 1 The virial theorem We have seen that we can solve the equation of motion for the two-body problem analytically and thus obtain expressions describing the future

More information

Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM

Nm kg. The magnitude of a gravitational field is known as the gravitational field strength, g. This is defined as the GM Copyright FIST EDUCATION 011 0430 860 810 Nick Zhang Lecture 7 Gravity and satellites Newton's Law of Universal Gravitation Gravitation is a force of attraction that acts between any two masses. The gravitation

More information

CHAPTER 10 GRAVITATION

CHAPTER 10 GRAVITATION CHAPTER 10 GRAVITATION Earth attracts everything towards it by an unseen force of attraction. This force of attraction is known as gravitation or gravitation pull. Universal Law of Gravitation:- Every

More information

Chapter 5 Lecture Notes

Chapter 5 Lecture Notes Formulas: a C = v 2 /r a = a C + a T F = Gm 1 m 2 /r 2 Chapter 5 Lecture Notes Physics 2414 - Strauss Constants: G = 6.67 10-11 N-m 2 /kg 2. Main Ideas: 1. Uniform circular motion 2. Nonuniform circular

More information

Chapter 13. Gravitation. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow

Chapter 13. Gravitation. PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Chapter 13 Gravitation PowerPoint Lectures for University Physics, 14th Edition Hugh D. Young and Roger A. Freedman Lectures by Jason Harlow Next one week Today: Ch 13 Wed: Review of Ch 8-11, focusing

More information

Chapter 10 GRAVITATION

Chapter 10 GRAVITATION Ch. 10--Gravitation Chapter 10 GRAVITATION A.) Introduction--A Little History: 1.) The study of gravitation is a particular favorite of elementary physics texts because it embraces all of classical Newtonian

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation

Preview. Circular Motion and Gravitation Section 1. Section 1 Circular Motion. Section 2 Newton s Law of Universal Gravitation Circular Motion and Gravitation Section 1 Preview Section 1 Circular Motion Section 2 Newton s Law of Universal Gravitation Section 3 Motion in Space Section 4 Torque and Simple Machines Circular Motion

More information

Physics 12. Unit 5 Circular Motion and Gravitation Part 2

Physics 12. Unit 5 Circular Motion and Gravitation Part 2 Physics 12 Unit 5 Circular Motion and Gravitation Part 2 1. Newton s law of gravitation We have seen in Physics 11 that the force acting on an object due to gravity is given by a well known formula: F

More information

Lecture 15 - Orbit Problems

Lecture 15 - Orbit Problems Lecture 15 - Orbit Problems A Puzzle... The ellipse shown below has one focus at the origin and its major axis lies along the x-axis. The ellipse has a semimajor axis of length a and a semi-minor axis

More information

Celestial Mechanics and Orbital Motions. Kepler s Laws Newton s Laws Tidal Forces

Celestial Mechanics and Orbital Motions. Kepler s Laws Newton s Laws Tidal Forces Celestial Mechanics and Orbital Motions Kepler s Laws Newton s Laws Tidal Forces Tycho Brahe (1546-1601) Foremost astronomer after the death of Copernicus. King Frederick II of Denmark set him up at Uraniborg,

More information

106 : Fall Application of calculus to planetary motion

106 : Fall Application of calculus to planetary motion 106 : Fall 2004 Application of calculus to planetary motion 1. One of the greatest accomplishments of classical times is that of Isaac Newton who was able to obtain the entire behaviour of planetary bodies

More information

2. Equations of Stellar Structure

2. Equations of Stellar Structure 2. Equations of Stellar Structure We already discussed that the structure of stars is basically governed by three simple laws, namely hyostatic equilibrium, energy transport and energy generation. In this

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 78 Slide 2 / 78 AP Physics C - Mechanics Universal Gravitation 2015-12-04 www.njctl.org Table of Contents Slide 3 / 78 Click on the topic to go to that section Newton's Law of Universal Gravitation

More information

Downloaded from

Downloaded from Chapter 8 (Gravitation) Multiple Choice Questions Single Correct Answer Type Q1. The earth is an approximate sphere. If the interior contained matter which is not of the same density everywhere, then on

More information

Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics

Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Circular Motion and Gravitation Rotational Motion Fluid Mechanics Momentum Momentum Collisions between objects can be evaluated using the laws of conservation of energy and of momentum. Momentum

More information

AP Physics C - Mechanics

AP Physics C - Mechanics Slide 1 / 78 Slide 2 / 78 AP Physics C - Mechanics Universal Gravitation 2015-12-04 www.njctl.org Table of Contents Slide 3 / 78 Click on the topic to go to that section Newton's Law of Universal Gravitation

More information

Gravitation. chapter 9

Gravitation. chapter 9 chapter 9 Gravitation Circular orbits (Section 9.3) 1, 2, and 3 are simple exercises to supplement the quantitative calculations of Examples 4, 5, and 6 in Section 9.3. 1. Satellite near Earth s surface

More information

CAPA due today. Today will finish up with the hinge problem I started on Wednesday. Will start on Gravity. Universal gravitation

CAPA due today. Today will finish up with the hinge problem I started on Wednesday. Will start on Gravity. Universal gravitation CAPA due today. Today will finish up with the hinge problem I started on Wednesday. Will start on Gravity. Universal gravitation Hinge Problem from Wednesday Hinge Problem cont. F x = 0 = F Nx T cosθ F

More information

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc.

Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity. Copyright 2009 Pearson Education, Inc. Chapter 4 Making Sense of the Universe: Understanding Motion, Energy, and Gravity How do we describe motion? Precise definitions to describe motion: Speed: Rate at which object moves speed = distance time

More information

Supplementary Problems

Supplementary Problems A Supplementary Problems These are practice questions: you do not need to hand in solutions. You can also study past exam papers. PH211 (now PHYS2006) was a new course in 1993, so you ll find some relevant

More information

Gravitation Kepler s Laws

Gravitation Kepler s Laws Gravitation Kepler s Laws Lana heridan De Anza College Mar 15, 2015 Overview Newton s Law of Universal Gravitation Gravitational field Kepler s Laws Gravitation The force that massive objects exert on

More information

Newton s Laws of Motion and Gravity ASTR 2110 Sarazin. Space Shuttle

Newton s Laws of Motion and Gravity ASTR 2110 Sarazin. Space Shuttle Newton s Laws of Motion and Gravity ASTR 2110 Sarazin Space Shuttle Discussion Session This Week Friday, September 8, 3-4 pm Shorter Discussion Session (end 3:40), followed by: Intro to Astronomy Department

More information

Questions Chapter 13 Gravitation

Questions Chapter 13 Gravitation Questions Chapter 13 Gravitation 13-1 Newton's Law of Gravitation 13-2 Gravitation and Principle of Superposition 13-3 Gravitation Near Earth's Surface 13-4 Gravitation Inside Earth 13-5 Gravitational

More information

Particles in Motion; Kepler s Laws

Particles in Motion; Kepler s Laws CHAPTER 4 Particles in Motion; Kepler s Laws 4.. Vector Functions Vector notation is well suited to the representation of the motion of a particle. Fix a coordinate system with center O, and let the position

More information

Physics 111. Tuesday, November 9, Universal Law Potential Energy Kepler s Laws. density hydrostatic equilibrium Pascal s Principle

Physics 111. Tuesday, November 9, Universal Law Potential Energy Kepler s Laws. density hydrostatic equilibrium Pascal s Principle ics Tuesday, ember 9, 2004 Ch 12: Ch 15: Gravity Universal Law Potential Energy Kepler s Laws Fluids density hydrostatic equilibrium Pascal s Principle Announcements Wednesday, 8-9 pm in NSC 118/119 Sunday,

More information

16. Elastic Scattering Michael Fowler

16. Elastic Scattering Michael Fowler 6 Elastic Scattering Michael Fowler Billiard Balls Elastic means no internal energy modes of the scatterer or of the scatteree are excited so total kinetic energy is conserved As a simple first exercise,

More information

Lecture 41: Highlights

Lecture 41: Highlights Lecture 41: Highlights The goal of this lecture is to remind you of some of the key points that we ve covered this semester Note that this is not the complete set of topics that may appear on the final

More information