# Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin

Save this PDF as:
Size: px
Start display at page:

Download "Math 3435 Homework Set 11 Solutions 10 Points. x= 1,, is in the disk of radius 1 centered at origin"

## Transcription

1 Math 45 Homework et olutions Points. ( pts) The integral is, x + z y d = x + + z da where is = x + z 8 x + z = 4 o, is the disk of radius centered on the origin. onverting to polar coordinates then gives, π x + z y d = 8 6x + + 6z da = 8r + 6r dr dθ π ( 65 ) dθ ( 65 ) π 6 = =. (4 pts) A sketch of is to the right. Here are the parameterizations for each portion of the surface. r x, θ = xi + sinθ j + cosθk θ π, x z+ = cosθ + x= + z, yz, is in the disk of radius centered at origin (in polar of course) ( yz) x=,, is in the disk of radius centered at origin Now, do the integral for each of these surfaces. In this case we ll need to do the cross product stuff so let s get that taken care of first. = i rθ = cosθ j sinθk i j k rθ = = cosθk + sinθ j cosθ sinθ r r = cos θ + sin θ = x θ π + cosθ x d = x da = x dx dθ π + cosθ π π ( x ) dθ cos θ 8dθ = = =

2 Math 45 Homework et olutions Points π π x d = z + + da = r cosθ dr dθ = cos θ dθ = x d = + + da = 4 da = 4π The integral is here is just the area of the disk of radius.. o all together the integral is then, π 9 x d = + 4π = π 4. ( pts) First get the gradient, f( xyz,, ) = y x z + 9 f= 4 x,, 4x Notice that this is oriented in the positive y direction (because the y component is positive) so we ll need to use the negative of this. f = 4 x,, 4z The region comes from = x + z 9 x + z = 4 o, is a circle of radius centered at the origin. Now the dot product. F f = z, y, x 4 x,, 4z = 4xz y 4xy = y = ( x + z 9) Notice that I didn t bother with the f since they were just going to cancel when we go to do the integral. peaking of which, π π 8 64π F d = x + z 9 da = r r 9 dr dθ = dθ =. First, z = 4x 6y. The integral is then, Not Graded ( ) 8z x d = 8 4x 6y x da = x 48y da The region is to the right and the limits are, x y x+ omputing the integral gives, x+ 68 ( ) 8z x d = x 48y da = x 48y dy dx = 5 9 x + x 4 x dx = 9 5

3 Math 45 Homework et olutions Points 5. o, since we re using the surface from # let s get that info copied to here. r( x, θ) = xi + sinθ j + cosθk θ π, x + z = + cosθ x= + z, is the disk of radius centered at origin (in polar of course) x=, is the disk of radius centered at origin Now, go through each of the integrals. In this case we ll need r θ which from # is rθ = sinθ j + cosθk Note, that in this case this will always point outwards so we have the correct orientation. o the integral in this case becomes F d = x,, cosθ,sin θ, cosθ da = cos θda π + cosθ π dx d = cos θ θ = 4 cos θ cos θ dθ = 4π The gradient is f( xyz,, ) = x z f=,, This points in the positive x direction and so is pointing outward. The integral is now. F d = + z,, z,, da = + z da π π = r + r cosθ dr dθ = cosθ + dθ = π The gradient is f( xyz,, ) = x+ f=,, f=,, ince this is the back of the cylinder we need the orientation to be in the negative x direction to be outward. Note that we could just have easily done this directly using n = i. The integral is F d =,, z,, da = da = π As with # note that the integral is the area of a disk of radius o, the overall integral is F d = 4π + π + π = 6. o, in this case we ll use tokes Theorem in the following direction.

4 Math 45 Homework et olutions Points curl F d = F dr where is the boundary of the surface. o, this will be the circle of radius 8 that lies at x + y + z = 8 + z = z =± Note that we only need the positive since we are told that it is the upper half of the sphere. The parameterization of the curve is r t = 8 cos θ, 8 sin θ, r t = 8 sin θ, 8 cos θ, Now, do the dot product is, F r = y, y, x 8z 8 sin θ, 8 cos θ, ( y ) ( y) = 8 sinθ + 8 cosθ = 8 8 sin θ 8cosθsinθ The integral is then π curl F d = F dr = 8 8 sin θ 8cosθ sinθ dθ = 7. This time we ll use tokes Theorem in the following direction F dr = curl F d o, in this case we need the curl of the vector field. i j k curl F = F = = k k = k x y z y x z Now, there are a variety of surfaces we could use here but it seems like one of the easiest to use is y = 5 x + z and we ll need it to be oriented in the positive y direction (remember that the as we walk along the curve the surface must be on the left and our head will then point in the direction of the normal vector). The gradient is then, f xyz,, = y+ x + z 5 f= x,, z This gives the correct orientation and the region is x + y = 4. o, the disk of radius centered at the origin. The integral is then, F dr = curl F d =,, x,, z da = 6z da π π = r θ dr dθ ( θ) dθ = = Note that we used the polar conversions : 6 sin 6sin x= rcosθ, z = rsinθ. 8. We will be using the ivergence Theorem in the following direction.

5 Math 45 Homework et olutions Points F dr = E div FdV o we will need the divergence and E. div F = z + 8x z = 8x E is the portion of a sphere so we ll be doing this integral in spherical coordinates and the limits are, π π ϕ θ ρ The integral is then. π π F dr = 8x dv = 8ρ sin ϕcosθ dρdθ dϕ E π π π 8π 6sin ϕcosθ dθ dϕ 6sin d ϕ ϕ = = =

### MATHS 267 Answers to Stokes Practice Dr. Jones

MATH 267 Answers to tokes Practice Dr. Jones 1. Calculate the flux F d where is the hemisphere x2 + y 2 + z 2 1, z > and F (xz + e y2, yz, z 2 + 1). Note: the surface is open (doesn t include any of the

### Sections minutes. 5 to 10 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed.

MTH 34 Review for Exam 4 ections 16.1-16.8. 5 minutes. 5 to 1 problems, similar to homework problems. No calculators, no notes, no books, no phones. No green book needed. Review for Exam 4 (16.1) Line

### Jim Lambers MAT 280 Summer Semester Practice Final Exam Solution. dy + xz dz = x(t)y(t) dt. t 3 (4t 3 ) + e t2 (2t) + t 7 (3t 2 ) dt

Jim Lambers MAT 28 ummer emester 212-1 Practice Final Exam olution 1. Evaluate the line integral xy dx + e y dy + xz dz, where is given by r(t) t 4, t 2, t, t 1. olution From r (t) 4t, 2t, t 2, we obtain

### Solutions to Sample Questions for Final Exam

olutions to ample Questions for Final Exam Find the points on the surface xy z 3 that are closest to the origin. We use the method of Lagrange Multipliers, with f(x, y, z) x + y + z for the square of the

### Name: Date: 12/06/2018. M20550 Calculus III Tutorial Worksheet 11

1. ompute the surface integral M255 alculus III Tutorial Worksheet 11 x + y + z) d, where is a surface given by ru, v) u + v, u v, 1 + 2u + v and u 2, v 1. olution: First, we know x + y + z) d [ ] u +

### MATH 52 FINAL EXAM SOLUTIONS

MAH 5 FINAL EXAM OLUION. (a) ketch the region R of integration in the following double integral. x xe y5 dy dx R = {(x, y) x, x y }. (b) Express the region R as an x-simple region. R = {(x, y) y, x y }

### One side of each sheet is blank and may be used as scratch paper.

Math 244 Spring 2017 (Practice) Final 5/11/2017 Time Limit: 2 hours Name: No calculators or notes are allowed. One side of each sheet is blank and may be used as scratch paper. heck your answers whenever

### The Divergence Theorem

Math 1a The Divergence Theorem 1. Parameterize the boundary of each of the following with positive orientation. (a) The solid x + 4y + 9z 36. (b) The solid x + y z 9. (c) The solid consisting of all points

### Practice Problems for Exam 3 (Solutions) 1. Let F(x, y) = xyi+(y 3x)j, and let C be the curve r(t) = ti+(3t t 2 )j for 0 t 2. Compute F dr.

1. Let F(x, y) xyi+(y 3x)j, and let be the curve r(t) ti+(3t t 2 )j for t 2. ompute F dr. Solution. F dr b a 2 2 F(r(t)) r (t) dt t(3t t 2 ), 3t t 2 3t 1, 3 2t dt t 3 dt 1 2 4 t4 4. 2. Evaluate the line

### Section 6-5 : Stokes' Theorem

ection 6-5 : tokes' Theorem In this section we are going to take a look at a theorem that is a higher dimensional version of Green s Theorem. In Green s Theorem we related a line integral to a double integral

### Math 263 Final. (b) The cross product is. i j k c. =< c 1, 1, 1 >

Math 63 Final Problem 1: [ points, 5 points to each part] Given the points P : (1, 1, 1), Q : (1,, ), R : (,, c 1), where c is a parameter, find (a) the vector equation of the line through P and Q. (b)

### Ma 1c Practical - Solutions to Homework Set 7

Ma 1c Practical - olutions to omework et 7 All exercises are from the Vector Calculus text, Marsden and Tromba (Fifth Edition) Exercise 7.4.. Find the area of the portion of the unit sphere that is cut

### 1. (a) (5 points) Find the unit tangent and unit normal vectors T and N to the curve. r (t) = 3 cos t, 0, 3 sin t, r ( 3π

1. a) 5 points) Find the unit tangent and unit normal vectors T and N to the curve at the point P 3, 3π, r t) 3 cos t, 4t, 3 sin t 3 ). b) 5 points) Find curvature of the curve at the point P. olution:

### Solutions for the Practice Final - Math 23B, 2016

olutions for the Practice Final - Math B, 6 a. True. The area of a surface is given by the expression d, and since we have a parametrization φ x, y x, y, f x, y with φ, this expands as d T x T y da xy

### S12.1 SOLUTIONS TO PROBLEMS 12 (ODD NUMBERS)

OLUTION TO PROBLEM 2 (ODD NUMBER) 2. The electric field is E = φ = 2xi + 2y j and at (2, ) E = 4i + 2j. Thus E = 2 5 and its direction is 2i + j. At ( 3, 2), φ = 6i + 4 j. Thus the direction of most rapid

### ( ) ( ) ( ) ( ) Calculus III - Problem Drill 24: Stokes and Divergence Theorem

alculus III - Problem Drill 4: tokes and Divergence Theorem Question No. 1 of 1 Instructions: (1) Read the problem and answer choices carefully () Work the problems on paper as needed () Pick the 1. Use

### Calculus III. Math 233 Spring Final exam May 3rd. Suggested solutions

alculus III Math 33 pring 7 Final exam May 3rd. uggested solutions This exam contains twenty problems numbered 1 through. All problems are multiple choice problems, and each counts 5% of your total score.

### Assignment 11 Solutions

. Evaluate Math 9 Assignment olutions F n d, where F bxy,bx y,(x + y z and is the closed surface bounding the region consisting of the solid cylinder x + y a and z b. olution This is a problem for which

### 7a3 2. (c) πa 3 (d) πa 3 (e) πa3

1.(6pts) Find the integral x, y, z d S where H is the part of the upper hemisphere of H x 2 + y 2 + z 2 = a 2 above the plane z = a and the normal points up. ( 2 π ) Useful Facts: cos = 1 and ds = ±a sin

### MAC2313 Final A. (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative.

MAC2313 Final A (5 pts) 1. How many of the following are necessarily true? i. The vector field F = 2x + 3y, 3x 5y is conservative. ii. The vector field F = 5(x 2 + y 2 ) 3/2 x, y is radial. iii. All constant

### Math 350 Solutions for Final Exam Page 1. Problem 1. (10 points) (a) Compute the line integral. F ds C. z dx + y dy + x dz C

Math 35 Solutions for Final Exam Page Problem. ( points) (a) ompute the line integral F ds for the path c(t) = (t 2, t 3, t) with t and the vector field F (x, y, z) = xi + zj + xk. (b) ompute the line

### Math 233. Practice Problems Chapter 15. i j k

Math 233. Practice Problems hapter 15 1. ompute the curl and divergence of the vector field F given by F (4 cos(x 2 ) 2y)i + (4 sin(y 2 ) + 6x)j + (6x 2 y 6x + 4e 3z )k olution: The curl of F is computed

### MATH2000 Flux integrals and Gauss divergence theorem (solutions)

DEPARTMENT O MATHEMATIC MATH lux integrals and Gauss divergence theorem (solutions ( The hemisphere can be represented as We have by direct calculation in terms of spherical coordinates. = {(r, θ, φ r,

### x + ye z2 + ze y2, y + xe z2 + ze x2, z and where T is the

1.(8pts) Find F ds where F = x + ye z + ze y, y + xe z + ze x, z and where T is the T surface in the pictures. (The two pictures are two views of the same surface.) The boundary of T is the unit circle

### 51. General Surface Integrals

51. General urface Integrals The area of a surface in defined parametrically by r(u, v) = x(u, v), y(u, v), z(u, v) over a region of integration in the input-variable plane is given by d = r u r v da.

### MAT 211 Final Exam. Spring Jennings. Show your work!

MAT 211 Final Exam. pring 215. Jennings. how your work! Hessian D = f xx f yy (f xy ) 2 (for optimization). Polar coordinates x = r cos(θ), y = r sin(θ), da = r dr dθ. ylindrical coordinates x = r cos(θ),

### Review problems for the final exam Calculus III Fall 2003

Review problems for the final exam alculus III Fall 2003 1. Perform the operations indicated with F (t) = 2t ı 5 j + t 2 k, G(t) = (1 t) ı + 1 t k, H(t) = sin(t) ı + e t j a) F (t) G(t) b) F (t) [ H(t)

### HOMEWORK 8 SOLUTIONS

HOMEWOK 8 OLUTION. Let and φ = xdy dz + ydz dx + zdx dy. let be the disk at height given by: : x + y, z =, let X be the region in 3 bounded by the cone and the disk. We orient X via dx dy dz, then by definition

### Math 11 Fall 2016 Final Practice Problem Solutions

Math 11 Fall 216 Final Practice Problem olutions Here are some problems on the material we covered since the second midterm. This collection of problems is not intended to mimic the final in length, content,

### MATH 228: Calculus III (FALL 2016) Sample Problems for FINAL EXAM SOLUTIONS

MATH 228: Calculus III (FALL 216) Sample Problems for FINAL EXAM SOLUTIONS MATH 228 Page 2 Problem 1. (2pts) Evaluate the line integral C xy dx + (x + y) dy along the parabola y x2 from ( 1, 1) to (2,

### Note: Each problem is worth 14 points except numbers 5 and 6 which are 15 points. = 3 2

Math Prelim II Solutions Spring Note: Each problem is worth points except numbers 5 and 6 which are 5 points. x. Compute x da where is the region in the second quadrant between the + y circles x + y and

### ES.182A Topic 45 Notes Jeremy Orloff

E.8A Topic 45 Notes Jeremy Orloff 45 More surface integrals; divergence theorem Note: Much of these notes are taken directly from the upplementary Notes V0 by Arthur Mattuck. 45. Closed urfaces A closed

### In general, the formula is S f ds = D f(φ(u, v)) Φ u Φ v da. To compute surface area, we choose f = 1. We compute

alculus III Test 3 ample Problem Answers/olutions 1. Express the area of the surface Φ(u, v) u cosv, u sinv, 2v, with domain u 1, v 2π, as a double integral in u and v. o not evaluate the integral. In

### F ds, where F and S are as given.

Math 21a Integral Theorems Review pring, 29 1 For these problems, find F dr, where F and are as given. a) F x, y, z and is parameterized by rt) t, t, t t 1) b) F x, y, z and is parameterized by rt) t,

### Jim Lambers MAT 280 Fall Semester Practice Final Exam Solution

Jim Lambers MAT 8 Fall emester 6-7 Practice Final Exam olution. Use Lagrange multipliers to find the point on the circle x + 4 closest to the point (, 5). olution We have f(x, ) (x ) + ( 5), the square

### Name (please print) π cos(θ) + sin(θ)dθ

Mathematics 2443-3 Final Eamination Form B December 2, 27 Instructions: Give brief, clear answers. I. Evaluate by changing to polar coordinates: 2 + y 2 3 and above the -ais. + y d 23 3 )/3. π 3 Name please

### Page Problem Score Max Score a 8 12b a b 10 14c 6 6

Fall 14 MTH 34 FINAL EXAM December 8, 14 Name: PID: Section: Instructor: DO NOT WRITE BELOW THIS LINE. Go to the next page. Page Problem Score Max Score 1 5 5 1 3 5 4 5 5 5 6 5 7 5 8 5 9 5 1 5 11 1 3 1a

### Name (please print) π cos(θ) + sin(θ)dθ

Mathematics 2443-3 Final Eamination Form A December 2, 27 Instructions: Give brief, clear answers. I. Evaluate by changing to polar coordinates: 2 + y 2 2 and above the -ais. + y d 2(2 2 )/3. π 2 (r cos(θ)

### Math 23b Practice Final Summer 2011

Math 2b Practice Final Summer 211 1. (1 points) Sketch or describe the region of integration for 1 x y and interchange the order to dy dx dz. f(x, y, z) dz dy dx Solution. 1 1 x z z f(x, y, z) dy dx dz

### Practice Final Solutions

Practice Final Solutions Math 1, Fall 17 Problem 1. Find a parameterization for the given curve, including bounds on the parameter t. Part a) The ellipse in R whose major axis has endpoints, ) and 6, )

### 18.1. Math 1920 November 29, ) Solution: In this function P = x 2 y and Q = 0, therefore Q. Converting to polar coordinates, this gives I =

Homework 1 elected olutions Math 19 November 9, 18 18.1 5) olution: In this function P = x y and Q =, therefore Q x P = x. We obtain the following integral: ( Q I = x ydx = x P ) da = x da. onverting to

### Math Review for Exam 3

1. ompute oln: (8x + 36xy)ds = Math 235 - Review for Exam 3 (8x + 36xy)ds, where c(t) = (t, t 2, t 3 ) on the interval t 1. 1 (8t + 36t 3 ) 1 + 4t 2 + 9t 4 dt = 2 3 (1 + 4t2 + 9t 4 ) 3 2 1 = 2 3 ((14)

### Math 20C Homework 2 Partial Solutions

Math 2C Homework 2 Partial Solutions Problem 1 (12.4.14). Calculate (j k) (j + k). Solution. The basic properties of the cross product are found in Theorem 2 of Section 12.4. From these properties, we

### Dimensions = xyz dv. xyz dv as an iterated integral in rectangular coordinates.

Math Show Your Work! Page of 8. () A rectangular box is to hold 6 cubic meters. The material used for the top and bottom of the box is twice as expensive per square meter than the material used for the

### Green s, Divergence, Stokes: Statements and First Applications

Math 425 Notes 12: Green s, Divergence, tokes: tatements and First Applications The Theorems Theorem 1 (Divergence (planar version)). Let F be a vector field in the plane. Let be a nice region of the plane

### MATH 2400 Final Exam Review Solutions

MATH Final Eam eview olutions. Find an equation for the collection of points that are equidistant to A, 5, ) and B6,, ). AP BP + ) + y 5) + z ) 6) y ) + z + ) + + + y y + 5 + z 6z + 9 + 6 + y y + + z +

### 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is

1. The value of the double integral (a) 15 26 (b) 15 8 (c) 75 (d) 105 26 5 4 0 1 1 + f 2 x + f 2 y dy dx, where f(x, y) = 2 + 3x + 4y, is 2. What is the value of the double integral interchange the order

### Math 11 Fall 2007 Practice Problem Solutions

Math 11 Fall 27 Practice Problem olutions Here are some problems on the material we covered since the second midterm. This collection of problems is not intended to mimic the final in length, content,

### Final Exam Review Sheet : Comments and Selected Solutions

MATH 55 Applied Honors alculus III Winter Final xam Review heet : omments and elected olutions Note: The final exam will cover % among topics in chain rule, linear approximation, maximum and minimum values,

### MAT 211 Final Exam. Fall Jennings.

MAT 211 Final Exam. Fall 218. Jennings. Useful formulas polar coordinates spherical coordinates: SHOW YOUR WORK! x = rcos(θ) y = rsin(θ) da = r dr dθ x = ρcos(θ)cos(φ) y = ρsin(θ)cos(φ) z = ρsin(φ) dv

### Problem Points S C O R E

MATH 34F Final Exam March 19, 13 Name Student I # Your exam should consist of this cover sheet, followed by 7 problems. Check that you have a complete exam. Unless otherwise indicated, show all your work

### ( ) = x( u, v) i + y( u, v) j + z( u, v) k

Math 8 ection 16.6 urface Integrals The relationship between surface integrals and surface area is much the same as the relationship between line integrals and arc length. uppose f is a function of three

### Peter Alfeld Math , Fall 2005

WeBWorK assignment due 9/2/05 at :59 PM..( pt) Consider the parametric equation x = 2(cosθ + θsinθ) y = 2(sinθ θcosθ) What is the length of the curve for θ = 0 to θ = 7 6 π? 2.( pt) Let a = (-2 4 2) and

### MATH 0350 PRACTICE FINAL FALL 2017 SAMUEL S. WATSON. a c. b c.

MATH 35 PRACTICE FINAL FALL 17 SAMUEL S. WATSON Problem 1 Verify that if a and b are nonzero vectors, the vector c = a b + b a bisects the angle between a and b. The cosine of the angle between a and c

### Math 212. Practice Problems for the Midterm 3

Math 1 Practice Problems for the Midterm 3 Ivan Matic 1. Evaluate the surface integral x + y + z)ds, where is the part of the paraboloid z 7 x y that lies above the xy-plane.. Let γ be the curve in the

### Answers and Solutions to Section 13.7 Homework Problems 1 19 (odd) S. F. Ellermeyer April 23, 2004

Answers and olutions to ection 1.7 Homework Problems 1 19 (odd). F. Ellermeyer April 2, 24 1. The hemisphere and the paraboloid both have the same boundary curve, the circle x 2 y 2 4. Therefore, by tokes

### APPM 2350 Final Exam points Monday December 17, 7:30am 10am, 2018

APPM 2 Final Exam 28 points Monday December 7, 7:am am, 28 ON THE FONT OF YOU BLUEBOOK write: () your name, (2) your student ID number, () lecture section/time (4) your instructor s name, and () a grading

### McGill University April 16, Advanced Calculus for Engineers

McGill University April 16, 2014 Faculty of cience Final examination Advanced Calculus for Engineers Math 264 April 16, 2014 Time: 6PM-9PM Examiner: Prof. R. Choksi Associate Examiner: Prof. A. Hundemer

### 18.02 Multivariable Calculus Fall 2007

MIT OpenourseWare http://ocw.mit.edu 18.02 Multivariable alculus Fall 2007 For information about citing these materials or our Terms of Use, visit: http://ocw.mit.edu/terms. 18.02 Lecture 30. Tue, Nov

### SOME PROBLEMS YOU SHOULD BE ABLE TO DO

OME PROBLEM YOU HOULD BE ABLE TO DO I ve attempted to make a list of the main calculations you should be ready for on the exam, and included a handful of the more important formulas. There are no examples

### Tom Robbins WW Prob Lib1 Math , Fall 2001

Tom Robbins WW Prob Lib Math 220-2, Fall 200 WeBWorK assignment due 9/7/0 at 6:00 AM..( pt) A child walks due east on the deck of a ship at 3 miles per hour. The ship is moving north at a speed of 7 miles

### Math 210, Final Exam, Spring 2012 Problem 1 Solution. (a) Find an equation of the plane passing through the tips of u, v, and w.

Math, Final Exam, Spring Problem Solution. Consider three position vectors (tails are the origin): u,, v 4,, w,, (a) Find an equation of the plane passing through the tips of u, v, and w. (b) Find an equation

### No calculators, cell phones or any other electronic devices can be used on this exam. Clear your desk of everything excepts pens, pencils and erasers.

Name: Section: Recitation Instructor: READ THE FOLLOWING INSTRUCTIONS. Do not open your exam until told to do so. No calculators, cell phones or any other electronic devices can be used on this exam. Clear

### SOLUTIONS TO THE FINAL EXAM. December 14, 2010, 9:00am-12:00 (3 hours)

SOLUTIONS TO THE 18.02 FINAL EXAM BJORN POONEN December 14, 2010, 9:00am-12:00 (3 hours) 1) For each of (a)-(e) below: If the statement is true, write TRUE. If the statement is false, write FALSE. (Please

### MLC Practice Final Exam

Name: Section: Recitation/Instructor: INSTRUCTIONS Fill in your name, etc. on this first page. Without fully opening the exam, check that you have pages 1 through 13. Show all your work on the standard

### Section 5-7 : Green's Theorem

Section 5-7 : Green's Theorem In this section we are going to investigate the relationship between certain kinds of line integrals (on closed paths) and double integrals. Let s start off with a simple

### Math 234 Final Exam (with answers) Spring 2017

Math 234 Final Exam (with answers) pring 217 1. onsider the points A = (1, 2, 3), B = (1, 2, 2), and = (2, 1, 4). (a) [6 points] Find the area of the triangle formed by A, B, and. olution: One way to solve

### Problem Solving 1: Line Integrals and Surface Integrals

A. Line Integrals MASSACHUSETTS INSTITUTE OF TECHNOLOY Department of Physics Problem Solving 1: Line Integrals and Surface Integrals The line integral of a scalar function f ( xyz),, along a path C is

### Math 211, Fall 2014, Carleton College

A. Let v (, 2, ) (1,, ) 1, 2, and w (,, 3) (1,, ) 1,, 3. Then n v w 6, 3, 2 is perpendicular to the plane, with length 7. Thus n/ n 6/7, 3/7, 2/7 is a unit vector perpendicular to the plane. [The negation

### APPM 2350 FINAL EXAM FALL 2017

APPM 25 FINAL EXAM FALL 27. ( points) Determine the absolute maximum and minimum values of the function f(x, y) = 2 6x 4y + 4x 2 + y. Be sure to clearly give both the locations and values of the absolute

### Multiple Integrals and Vector Calculus (Oxford Physics) Synopsis and Problem Sets; Hilary 2015

Multiple Integrals and Vector Calculus (Oxford Physics) Ramin Golestanian Synopsis and Problem Sets; Hilary 215 The outline of the material, which will be covered in 14 lectures, is as follows: 1. Introduction

### Name: Instructor: Lecture time: TA: Section time:

Math 222 Final May 11, 29 Name: Instructor: Lecture time: TA: Section time: INSTRUCTIONS READ THIS NOW This test has 1 problems on 16 pages worth a total of 2 points. Look over your test package right

### Math Exam IV - Fall 2011

Math 233 - Exam IV - Fall 2011 December 15, 2011 - Renato Feres NAME: STUDENT ID NUMBER: General instructions: This exam has 16 questions, each worth the same amount. Check that no pages are missing and

### Name: SOLUTIONS Date: 11/9/2017. M20550 Calculus III Tutorial Worksheet 8

Name: SOLUTIONS Date: /9/7 M55 alculus III Tutorial Worksheet 8. ompute R da where R is the region bounded by x + xy + y 8 using the change of variables given by x u + v and y v. Solution: We know R is

### Integral Theorems. September 14, We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative,

Integral Theorems eptember 14, 215 1 Integral of the gradient We begin by recalling the Fundamental Theorem of Calculus, that the integral is the inverse of the derivative, F (b F (a f (x provided f (x

### MATH 332: Vector Analysis Summer 2005 Homework

MATH 332, (Vector Analysis), Summer 2005: Homework 1 Instructor: Ivan Avramidi MATH 332: Vector Analysis Summer 2005 Homework Set 1. (Scalar Product, Equation of a Plane, Vector Product) Sections: 1.9,

### MATHEMATICS 317 April 2017 Final Exam Solutions

MATHEMATI 7 April 7 Final Eam olutions. Let r be the vector field r = îı + ĵj + z ˆk and let r be the function r = r. Let a be the constant vector a = a îı + a ĵj + a ˆk. ompute and simplif the following

### PRACTICE PROBLEMS. Please let me know if you find any mistakes in the text so that i can fix them. 1. Mixed partial derivatives.

PRACTICE PROBLEMS Please let me know if you find any mistakes in the text so that i can fix them. 1.1. Let Show that f is C 1 and yet How is that possible? 1. Mixed partial derivatives f(x, y) = {xy x

### Math 31CH - Spring Final Exam

Math 3H - Spring 24 - Final Exam Problem. The parabolic cylinder y = x 2 (aligned along the z-axis) is cut by the planes y =, z = and z = y. Find the volume of the solid thus obtained. Solution:We calculate

### 53. Flux Integrals. Here, R is the region over which the double integral is evaluated.

53. Flux Integrals Let be an orientable surface within 3. An orientable surface, roughly speaking, is one with two distinct sides. At any point on an orientable surface, there exists two normal vectors,

### MATH 280 Multivariate Calculus Fall Integration over a surface. da. A =

MATH 28 Multivariate Calculus Fall 212 Integration over a surface Given a surface S in space, we can (conceptually) break it into small pieces each of which has area da. In me cases, we will add up these

### Practice problems **********************************************************

Practice problems I will not test spherical and cylindrical coordinates explicitly but these two coordinates can be used in the problems when you evaluate triple integrals. 1. Set up the integral without

### Math 21a Homework 24 Solutions Spring, 2014

Math a Homework olutions pring, Due Friday, April th (MWF) or Tuesday, April 5th (TTh) This assignment is officially on urface Area (ection.6) and calar urface Integrals (ection.6), but it s most useful

### 1. If the line l has symmetric equations. = y 3 = z+2 find a vector equation for the line l that contains the point (2, 1, 3) and is parallel to l.

. If the line l has symmetric equations MA 6 PRACTICE PROBLEMS x = y = z+ 7, find a vector equation for the line l that contains the point (,, ) and is parallel to l. r = ( + t) i t j + ( + 7t) k B. r

### MATH 255 Applied Honors Calculus III Winter Homework 11. Due: Monday, April 18, 2011

MATH 255 Applied Honors Calculus III Winter 211 Homework 11 ue: Monday, April 18, 211 ection 17.7, pg. 1155: 5, 13, 19, 24. ection 17.8, pg. 1161: 3, 7, 13, 17 ection 17.9, pg. 1168: 3, 7, 19, 25. 17.7

### Final Review Worksheet

Score: Name: Final Review Worksheet Math 2110Q Fall 2014 Professor Hohn Answers (in no particular order): f(x, y) = e y + xe xy + C; 2; 3; e y cos z, e z cos x, e x cos y, e x sin y e y sin z e z sin x;

### Chapter 5 Trigonometric Functions of Angles

Chapter 5 Trigonometric Functions of Angles Section 3 Points on Circles Using Sine and Cosine Signs Signs I Signs (+, +) I Signs II (+, +) I Signs II (, +) (+, +) I Signs II (, +) (+, +) I III Signs II

### Math 32B Discussion Session Week 10 Notes March 14 and March 16, 2017

Math 3B iscussion ession Week 1 Notes March 14 and March 16, 17 We ll use this week to review for the final exam. For the most part this will be driven by your questions, and I ve included a practice final

### LINE AND SURFACE INTEGRALS: A SUMMARY OF CALCULUS 3 UNIT 4

LINE AN URFAE INTEGRAL: A UMMARY OF ALULU 3 UNIT 4 The final unit of material in multivariable calculus introduces many unfamiliar and non-intuitive concepts in a short amount of time. This document attempts

### Math 20A lecture 22 Integral theorems in 3D

Math 2A lecture 22 p. 1/12 Math 2A lecture 22 Integral theorems in 3D T.J. Barnet-Lamb tbl@brandeis.edu Brandeis University Math 2A lecture 22 p. 2/12 Announcements Homework eleven due Friday. Homework

### MATH 2203 Final Exam Solutions December 14, 2005 S. F. Ellermeyer Name

MATH 223 Final Exam Solutions ecember 14, 25 S. F. Ellermeyer Name Instructions. Your work on this exam will be graded according to two criteria: mathematical correctness and clarity of presentation. In

### Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.

Exam 3 Math 850-007 Fall 04 Odenthal Name: Instructions: No books. No notes. Non-graphing calculators only. You are encouraged, although not required, to show your work.. Evaluate the iterated integral

### Math 234 Review Problems for the Final Exam

Math 234 eview Problems for the Final Eam Marc Conrad ecember 13, 2007 irections: Answer each of the following questions. Pages 1 and 2 contain the problems. The solutions are on pages 3 through 7. Problem

### 10.9 Stokes's theorem

09 tokes's theorem This theorem transforms surface integrals into line integrals and conversely, line integrals into surface integrals Hence, it generalizes Green's theorem in the plane of ec 04 Equation

### LINE AND SURFACE INTEGRALS: A SUMMARY OF CALCULUS 3 UNIT 4

LINE AN URFAE INTEGRAL: A UMMARY OF ALULU 3 UNIT 4 The final unit of material in multivariable calculus introduces many unfamiliar and non-intuitive concepts in a short amount of time. This document attempts

### (You may need to make a sin / cos-type trigonometric substitution.) Solution.

MTHE 7 Problem Set Solutions. As a reminder, a torus with radii a and b is the surface of revolution of the circle (x b) + z = a in the xz-plane about the z-axis (a and b are positive real numbers, with

### DO NOT BEGIN THIS TEST UNTIL INSTRUCTED TO START

Math 265 Student name: KEY Final Exam Fall 23 Instructor & Section: This test is closed book and closed notes. A (graphing) calculator is allowed for this test but cannot also be a communication device

### Integrals in cylindrical, spherical coordinates (Sect. 15.7)

Integrals in clindrical, spherical coordinates (Sect. 15.7 Integration in spherical coordinates. Review: Clindrical coordinates. Spherical coordinates in space. Triple integral in spherical coordinates.