The Minimum Number of Hidden Neurons Does Not Necessarily Provide the Best Generalization

Size: px
Start display at page:

Download "The Minimum Number of Hidden Neurons Does Not Necessarily Provide the Best Generalization"

Transcription

1 The Minimum Number of Hidden Neurons Does Not Necessarily Provide the Best Generalization Jason M. Kinser The Institute for Biosciences, Bioinformatics, and Biotechnology George Mason University, MSN 4E University Blvd Manassas, VA USA Voice: Fax: Abstract The quality of a feedforward neural network that allows it to associate data not used in training is called generalization. A common method of creating the desired network is for the user to select the network architecture (largely based on the selecting the number of hidden neurons) and allowing a training algorithm to evolve the synaptic weights between the neurons. A popular belief is that the network with the fewest number of hidden neurons that correctly learns a sufficient training set is a network with better generalization. This paper will contradict this belief. The optimization of generalization requires that the network not assume information that does not exist in the training data. Unfortunately, a network with the minimum number of hidden neurons may require assumptions of information that does not exist. The network then skews the surface that maps the input space to the output space in order to accommodate the minimum architecture which then sacrifices generalization. I. INTRODUCTION It has been previously proposed that the feedforward neural network solution with the fewest possible number of hidden neurons is that network that best generalizes to the problem encompassed by the training data set. [Reed,93] [Murata,94] It will be proposed here that this is not the case. A contradictory case with discussion will be presented that demonstrates that too few hidden neurons deteriorates generalization even though the training data is correctly mapped by the network. The cause of this deterioration is that the network, by having too few hidden neurons, is forced to have improper hidden neuron activation. This requires the network to infer information that does not exist in the training data and thus generalization is compromised. II. CONTRADICTORY EXAMPLE 1

2 The networks considered here are feedforward networks with simple neurons. The network is shown in Fig. 1 and the operation of the network is described by, z i = Γ u ij y j + v ik x k (1) j k where x k is the state of the k th input neuron, y j is the state of the j th hidden neuron, u ij are the weights from the input layer to the output neuron, and v ik describes the connections between the hidden neurons and the output neuron. Γ{u} is a hard threshold function which is 1 if u is greater than a constant γ and 0 otherwise. The hidden neurons are similarly computed by, y j = Γ l w jl x l. (2) To demonstrate the assertion of this paper a single example problem shown in Table 1 is considered. There are eleven training pairs each with four input neurons and a single output neuron. Following the logic in [Kinser,96] conflicts exist in the data set and it cannot be solved by a single layer system. At least one hidden neuron is required to fully map this data set, or in other words, this data set is higher order. TABLE 1. T Input Output A solution of the network correctly learns all of the training data. The two solutions that will be used for discussion are: Solution 1: One hidden neuron. u = ( 0.8) v = ( 0.68, 0.61, 0.64, 0.64) w = ( 0.3, 0.21, 0.27, 0.24) 2

3 Solution 2: Two hidden neurons u = 1, 1 ( ) ( ) v = 0.6, 0.6, 0.6, w = Both solutions completely associate the training data. However, solution 1 infers information that does not exist in the training data. To explore this, consider the symmetry in the training data. In this set the reverse of each input vector produces the same output. This data set is complete in that every training input vector has its reverse in the training set. The data is wholly symmetric. The concern with solution 1 is that it is not symmetric. In fact, it is not possible to create a single hidden neuron solution to this data set that is symmetric. For this explanation each training pair is denoted by T k, and T 1 implies that the output neuron is not receiving a steady state bias. Following the logic in [Kinser,96] the hidden neuron is not added to the system until it is necessary. This provides a starting point for the algorithm, and deviations from this do not alter the necessity or role of a hidden neuron, but just alter connection weights. T 1, T 2, T 3 and T 4 each require that each element in v is greater than γ. The starting position of not activating the hidden neuron until necessary requires that all elements of w be less than γ. In order to produce a symmetric network w 1 = w 4, w 2 = w 3, v 1 = v 4, and v 2 = v 3. T 10 without a hidden neuron requires that v 1 + v 2 < γ which can not simultaneously be true with v 1 > γ and v 2 > γ. Therefore, T 10 (and similarly T 11 ) requires the creation and activation of the hidden neuron. Thus, v 1 + v 2 + u < γ and w 1 + w 2 > γ (and similarly v 3 + v 4 + u < γ and w 3 + w 4 > γ ). Since w 1 + w 2 > γ then either w 1 or w 2 must be greater than γ/2, and similarly w 3 or w 4 must be greater than γ/2. The fact that there are four possibilities from which to chose (w 1, w 3 > γ; w 2, w 3 > γ; w 1, w 4 > γ; or w 2, w 4 > γ) will be discussed later. So, for the sake of argument, w 1 and w 3 are chosen as the weights that must be greater than γ/2. With this selection T 9 must activate the hidden neuron which produces v 1 + v 3 + u > γ. Due to symmetry (v 2 = v 3 ) this becomes v 1 + v 2 + u > γ, which cannot be simultaneously true with inequalities and the end of the previous paragraph. The selection of which of the w weights is greater than γ/2 does not alter the existence of the contradictory inequalities. This means that a symmetric single-hidden neuron solution does not exist. The data set is symmetric, but the single hidden neuron solution is necessarily not symmetric. For symmetric data a non-symmetric solution imposes information that does not exist in the training data. The mapping surface created by the network is skewed by this unwarranted infusion of improper information. A network with optimal 3

4 generalization will not have such skews in the mapping surface. In the example, generalization is compromised by the single neuron solution. In the two hidden neuron solution the weights and therefore the mapping surface are symmetric and the generalization is not compromised. The conclusion drawn from this is that Solution 2 is a better generalizing network than Solution 1. Thus, a network solution for this problem with the minimum number of hidden neurons can not construct the network that is optimal in the sense of generalization. III. Symmetry Discussions The question then becomes, if the data has symmetry in it then where did the symmetry go in the case of the single hidden neuron? In the example problem there are four single hidden neuron solutions. The particular solution selected used w 1 and w 3 as the weights chosen to be greater than γ/2. The other three solutions would have selected different weights to be greater than γ/2. Each of these solutions is unique from each other in that they have different training vectors activating the hidden neuron. In each of these cases, T 10 and T 11 activate the hidden neuron as well as two from the set {T 6, T 7, T 8, T 9 } depending on which solution was chosen. The symmetry does still exist in that there are four solutions symmetrically located in a solution space. However, each particular solution does not have symmetry within itself. Activation of the hidden neuron by T 6, T 7, T 8, or T 9 is improper since none of these are required to activate the hidden neuron. This is easily seen by removing T 10 and T 11 from the data set and finding a easy solution for the rest of the data with a network that has no hidden neuron (v i = 0.3 for all i). T 10 and T 11, however, are required to activate the hidden neuron as determined in the previous section, but their presence should not require the unnecessary activation of the hidden neuron by other training vectors. Incorrect activation again is a sign that damage is being done to the generalization ability of the network. The use of hidden neurons is required for a mapping problem that requires a higher-order mapping. In the case of T 10 and T 11 being removed from the training data a first-order mapping (no hidden neurons) is sufficient, and therefore all of these trainers are considered first-order or less. In the case of Solution 1, two first order trainers are forced to activate the hidden neuron even though they are not the higher-order trainers in the data set. Again, information not existent in the data set is being imposed by improper activation of the hidden neuron. In Solution 2 only T 10 and T 11 activate the hidden neurons and thus no damage is imposed on the generalization of the network. There is no indication that non-existent information is being imposed on the network. 4

5 III. SUMMARY The best generalizing neural network is not necessarily the network with the fewest number of hidden neurons. This was demonstrated by presenting a case in which the fewest number of hidden neurons was deleterious to the generalization ability of the system. This destruction of the generalization occurs when the mapping surface of the network is skewed (or is forced to assume information that does not exist in the training data). Skewing is product of the improper activation of the hidden neuron. IV. REFERENCES R. Reed, "Pruning Algorithms - A Survey", IEEE Neural Nets NN-4(5) (1993). N. Murata, S. Yoshizawa, S. Aman, "Network Information Criterion - Determining the Number of Hidden Units for an Artificial Neural Network Model", IEEE Trans on Neural Nets, NN-5(6), (1994). J. M. Kinser, The Determination of Hidden Neurons, Optical Memories and Neural Networks, 5(4), (1996). u w v u x y z 5

Artificial Neural Network

Artificial Neural Network Artificial Neural Network Contents 2 What is ANN? Biological Neuron Structure of Neuron Types of Neuron Models of Neuron Analogy with human NN Perceptron OCR Multilayer Neural Network Back propagation

More information

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD

ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD ARTIFICIAL NEURAL NETWORK PART I HANIEH BORHANAZAD WHAT IS A NEURAL NETWORK? The simplest definition of a neural network, more properly referred to as an 'artificial' neural network (ANN), is provided

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) Human Brain Neurons Input-Output Transformation Input Spikes Output Spike Spike (= a brief pulse) (Excitatory Post-Synaptic Potential)

More information

CSE 352 (AI) LECTURE NOTES Professor Anita Wasilewska. NEURAL NETWORKS Learning

CSE 352 (AI) LECTURE NOTES Professor Anita Wasilewska. NEURAL NETWORKS Learning CSE 352 (AI) LECTURE NOTES Professor Anita Wasilewska NEURAL NETWORKS Learning Neural Networks Classifier Short Presentation INPUT: classification data, i.e. it contains an classification (class) attribute.

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

Lecture 7 Artificial neural networks: Supervised learning

Lecture 7 Artificial neural networks: Supervised learning Lecture 7 Artificial neural networks: Supervised learning Introduction, or how the brain works The neuron as a simple computing element The perceptron Multilayer neural networks Accelerated learning in

More information

Neural Networks: Basics. Darrell Whitley Colorado State University

Neural Networks: Basics. Darrell Whitley Colorado State University Neural Networks: Basics Darrell Whitley Colorado State University In the Beginning: The Perceptron X1 W W 1,1 1,2 X2 W W 2,1 2,2 W source, destination In the Beginning: The Perceptron The Perceptron Learning

More information

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others)

Machine Learning. Neural Networks. (slides from Domingos, Pardo, others) Machine Learning Neural Networks (slides from Domingos, Pardo, others) For this week, Reading Chapter 4: Neural Networks (Mitchell, 1997) See Canvas For subsequent weeks: Scaling Learning Algorithms toward

More information

epochs epochs

epochs epochs Neural Network Experiments To illustrate practical techniques, I chose to use the glass dataset. This dataset has 214 examples and 6 classes. Here are 4 examples from the original dataset. The last values

More information

Learning and Memory in Neural Networks

Learning and Memory in Neural Networks Learning and Memory in Neural Networks Guy Billings, Neuroinformatics Doctoral Training Centre, The School of Informatics, The University of Edinburgh, UK. Neural networks consist of computational units

More information

Chapter 2 Single Layer Feedforward Networks

Chapter 2 Single Layer Feedforward Networks Chapter 2 Single Layer Feedforward Networks By Rosenblatt (1962) Perceptrons For modeling visual perception (retina) A feedforward network of three layers of units: Sensory, Association, and Response Learning

More information

Unit III. A Survey of Neural Network Model

Unit III. A Survey of Neural Network Model Unit III A Survey of Neural Network Model 1 Single Layer Perceptron Perceptron the first adaptive network architecture was invented by Frank Rosenblatt in 1957. It can be used for the classification of

More information

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November.

COGS Q250 Fall Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. COGS Q250 Fall 2012 Homework 7: Learning in Neural Networks Due: 9:00am, Friday 2nd November. For the first two questions of the homework you will need to understand the learning algorithm using the delta

More information

Simulating Neural Networks. Lawrence Ward P465A

Simulating Neural Networks. Lawrence Ward P465A Simulating Neural Networks Lawrence Ward P465A 1. Neural network (or Parallel Distributed Processing, PDP) models are used for a wide variety of roles, including recognizing patterns, implementing logic,

More information

COMP9444 Neural Networks and Deep Learning 2. Perceptrons. COMP9444 c Alan Blair, 2017

COMP9444 Neural Networks and Deep Learning 2. Perceptrons. COMP9444 c Alan Blair, 2017 COMP9444 Neural Networks and Deep Learning 2. Perceptrons COMP9444 17s2 Perceptrons 1 Outline Neurons Biological and Artificial Perceptron Learning Linear Separability Multi-Layer Networks COMP9444 17s2

More information

Simple neuron model Components of simple neuron

Simple neuron model Components of simple neuron Outline 1. Simple neuron model 2. Components of artificial neural networks 3. Common activation functions 4. MATLAB representation of neural network. Single neuron model Simple neuron model Components

More information

Hopfield Neural Network and Associative Memory. Typical Myelinated Vertebrate Motoneuron (Wikipedia) Topic 3 Polymers and Neurons Lecture 5

Hopfield Neural Network and Associative Memory. Typical Myelinated Vertebrate Motoneuron (Wikipedia) Topic 3 Polymers and Neurons Lecture 5 Hopfield Neural Network and Associative Memory Typical Myelinated Vertebrate Motoneuron (Wikipedia) PHY 411-506 Computational Physics 2 1 Wednesday, March 5 1906 Nobel Prize in Physiology or Medicine.

More information

Data Mining Part 5. Prediction

Data Mining Part 5. Prediction Data Mining Part 5. Prediction 5.5. Spring 2010 Instructor: Dr. Masoud Yaghini Outline How the Brain Works Artificial Neural Networks Simple Computing Elements Feed-Forward Networks Perceptrons (Single-layer,

More information

Reification of Boolean Logic

Reification of Boolean Logic 526 U1180 neural networks 1 Chapter 1 Reification of Boolean Logic The modern era of neural networks began with the pioneer work of McCulloch and Pitts (1943). McCulloch was a psychiatrist and neuroanatomist;

More information

2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net.

2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net. 2- AUTOASSOCIATIVE NET - The feedforward autoassociative net considered in this section is a special case of the heteroassociative net. - For an autoassociative net, the training input and target output

More information

Mapping Boolean Functions with Neural Networks having Binary Weights and Zero Thresholds

Mapping Boolean Functions with Neural Networks having Binary Weights and Zero Thresholds Mapping Boolean Functions with Neural Networks having Binary Weights and Zero Thresholds Vinay Deolalikar Information Theory Research Group HP Laboratories Palo Alto HPL-2001-64 (R.1) July 30 th, 2001*

More information

Application of Artificial Neural Networks in Evaluation and Identification of Electrical Loss in Transformers According to the Energy Consumption

Application of Artificial Neural Networks in Evaluation and Identification of Electrical Loss in Transformers According to the Energy Consumption Application of Artificial Neural Networks in Evaluation and Identification of Electrical Loss in Transformers According to the Energy Consumption ANDRÉ NUNES DE SOUZA, JOSÉ ALFREDO C. ULSON, IVAN NUNES

More information

Keywords- Source coding, Huffman encoding, Artificial neural network, Multilayer perceptron, Backpropagation algorithm

Keywords- Source coding, Huffman encoding, Artificial neural network, Multilayer perceptron, Backpropagation algorithm Volume 4, Issue 5, May 2014 ISSN: 2277 128X International Journal of Advanced Research in Computer Science and Software Engineering Research Paper Available online at: www.ijarcsse.com Huffman Encoding

More information

Knowledge Extraction from DBNs for Images

Knowledge Extraction from DBNs for Images Knowledge Extraction from DBNs for Images Son N. Tran and Artur d Avila Garcez Department of Computer Science City University London Contents 1 Introduction 2 Knowledge Extraction from DBNs 3 Experimental

More information

Deep Belief Networks are compact universal approximators

Deep Belief Networks are compact universal approximators 1 Deep Belief Networks are compact universal approximators Nicolas Le Roux 1, Yoshua Bengio 2 1 Microsoft Research Cambridge 2 University of Montreal Keywords: Deep Belief Networks, Universal Approximation

More information

Extending the Associative Rule Chaining Architecture for Multiple Arity Rules

Extending the Associative Rule Chaining Architecture for Multiple Arity Rules Extending the Associative Rule Chaining Architecture for Multiple Arity Rules Nathan Burles, James Austin, and Simon O Keefe Advanced Computer Architectures Group Department of Computer Science University

More information

Feedforward Neural Nets and Backpropagation

Feedforward Neural Nets and Backpropagation Feedforward Neural Nets and Backpropagation Julie Nutini University of British Columbia MLRG September 28 th, 2016 1 / 23 Supervised Learning Roadmap Supervised Learning: Assume that we are given the features

More information

ECE521 Lectures 9 Fully Connected Neural Networks

ECE521 Lectures 9 Fully Connected Neural Networks ECE521 Lectures 9 Fully Connected Neural Networks Outline Multi-class classification Learning multi-layer neural networks 2 Measuring distance in probability space We learnt that the squared L2 distance

More information

CMSC 421: Neural Computation. Applications of Neural Networks

CMSC 421: Neural Computation. Applications of Neural Networks CMSC 42: Neural Computation definition synonyms neural networks artificial neural networks neural modeling connectionist models parallel distributed processing AI perspective Applications of Neural Networks

More information

Convolution and Pooling as an Infinitely Strong Prior

Convolution and Pooling as an Infinitely Strong Prior Convolution and Pooling as an Infinitely Strong Prior Sargur Srihari srihari@buffalo.edu This is part of lecture slides on Deep Learning: http://www.cedar.buffalo.edu/~srihari/cse676 1 Topics in Convolutional

More information

Analysis of Fast Input Selection: Application in Time Series Prediction

Analysis of Fast Input Selection: Application in Time Series Prediction Analysis of Fast Input Selection: Application in Time Series Prediction Jarkko Tikka, Amaury Lendasse, and Jaakko Hollmén Helsinki University of Technology, Laboratory of Computer and Information Science,

More information

Neural Networks. Hopfield Nets and Auto Associators Fall 2017

Neural Networks. Hopfield Nets and Auto Associators Fall 2017 Neural Networks Hopfield Nets and Auto Associators Fall 2017 1 Story so far Neural networks for computation All feedforward structures But what about.. 2 Loopy network Θ z = ቊ +1 if z > 0 1 if z 0 y i

More information

Hopfield Neural Network

Hopfield Neural Network Lecture 4 Hopfield Neural Network Hopfield Neural Network A Hopfield net is a form of recurrent artificial neural network invented by John Hopfield. Hopfield nets serve as content-addressable memory systems

More information

Artificial Neural Networks. Historical description

Artificial Neural Networks. Historical description Artificial Neural Networks Historical description Victor G. Lopez 1 / 23 Artificial Neural Networks (ANN) An artificial neural network is a computational model that attempts to emulate the functions of

More information

Complexity Bounds of Radial Basis Functions and Multi-Objective Learning

Complexity Bounds of Radial Basis Functions and Multi-Objective Learning Complexity Bounds of Radial Basis Functions and Multi-Objective Learning Illya Kokshenev and Antônio P. Braga Universidade Federal de Minas Gerais - Depto. Engenharia Eletrônica Av. Antônio Carlos, 6.67

More information

4. Multilayer Perceptrons

4. Multilayer Perceptrons 4. Multilayer Perceptrons This is a supervised error-correction learning algorithm. 1 4.1 Introduction A multilayer feedforward network consists of an input layer, one or more hidden layers, and an output

More information

EEE 241: Linear Systems

EEE 241: Linear Systems EEE 4: Linear Systems Summary # 3: Introduction to artificial neural networks DISTRIBUTED REPRESENTATION An ANN consists of simple processing units communicating with each other. The basic elements of

More information

Backpropagation Neural Net

Backpropagation Neural Net Backpropagation Neural Net As is the case with most neural networks, the aim of Backpropagation is to train the net to achieve a balance between the ability to respond correctly to the input patterns that

More information

Optimism in the Face of Uncertainty Should be Refutable

Optimism in the Face of Uncertainty Should be Refutable Optimism in the Face of Uncertainty Should be Refutable Ronald ORTNER Montanuniversität Leoben Department Mathematik und Informationstechnolgie Franz-Josef-Strasse 18, 8700 Leoben, Austria, Phone number:

More information

CSC Neural Networks. Perceptron Learning Rule

CSC Neural Networks. Perceptron Learning Rule CSC 302 1.5 Neural Networks Perceptron Learning Rule 1 Objectives Determining the weight matrix and bias for perceptron networks with many inputs. Explaining what a learning rule is. Developing the perceptron

More information

Artifical Neural Networks

Artifical Neural Networks Neural Networks Artifical Neural Networks Neural Networks Biological Neural Networks.................................. Artificial Neural Networks................................... 3 ANN Structure...........................................

More information

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer

CSE446: Neural Networks Spring Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer CSE446: Neural Networks Spring 2017 Many slides are adapted from Carlos Guestrin and Luke Zettlemoyer Human Neurons Switching time ~ 0.001 second Number of neurons 10 10 Connections per neuron 10 4-5 Scene

More information

Neural Networks DWML, /25

Neural Networks DWML, /25 DWML, 2007 /25 Neural networks: Biological and artificial Consider humans: Neuron switching time 0.00 second Number of neurons 0 0 Connections per neuron 0 4-0 5 Scene recognition time 0. sec 00 inference

More information

ADALINE for Pattern Classification

ADALINE for Pattern Classification POLYTECHNIC UNIVERSITY Department of Computer and Information Science ADALINE for Pattern Classification K. Ming Leung Abstract: A supervised learning algorithm known as the Widrow-Hoff rule, or the Delta

More information

How can ideas from quantum computing improve or speed up neuromorphic models of computation?

How can ideas from quantum computing improve or speed up neuromorphic models of computation? Neuromorphic Computation: Architectures, Models, Applications Associative Memory Models with Adiabatic Quantum Optimization Kathleen Hamilton, Alexander McCaskey, Jonathan Schrock, Neena Imam and Travis

More information

Chapter 9: The Perceptron

Chapter 9: The Perceptron Chapter 9: The Perceptron 9.1 INTRODUCTION At this point in the book, we have completed all of the exercises that we are going to do with the James program. These exercises have shown that distributed

More information

Artificial Neural Networks Examination, June 2005

Artificial Neural Networks Examination, June 2005 Artificial Neural Networks Examination, June 2005 Instructions There are SIXTY questions. (The pass mark is 30 out of 60). For each question, please select a maximum of ONE of the given answers (either

More information

Master Recherche IAC TC2: Apprentissage Statistique & Optimisation

Master Recherche IAC TC2: Apprentissage Statistique & Optimisation Master Recherche IAC TC2: Apprentissage Statistique & Optimisation Alexandre Allauzen Anne Auger Michèle Sebag LIMSI LRI Oct. 4th, 2012 This course Bio-inspired algorithms Classical Neural Nets History

More information

PMR5406 Redes Neurais e Lógica Fuzzy Aula 3 Single Layer Percetron

PMR5406 Redes Neurais e Lógica Fuzzy Aula 3 Single Layer Percetron PMR5406 Redes Neurais e Aula 3 Single Layer Percetron Baseado em: Neural Networks, Simon Haykin, Prentice-Hall, 2 nd edition Slides do curso por Elena Marchiori, Vrije Unviersity Architecture We consider

More information

The Application of Extreme Learning Machine based on Gaussian Kernel in Image Classification

The Application of Extreme Learning Machine based on Gaussian Kernel in Image Classification he Application of Extreme Learning Machine based on Gaussian Kernel in Image Classification Weijie LI, Yi LIN Postgraduate student in College of Survey and Geo-Informatics, tongji university Email: 1633289@tongji.edu.cn

More information

The error-backpropagation algorithm is one of the most important and widely used (and some would say wildly used) learning techniques for neural

The error-backpropagation algorithm is one of the most important and widely used (and some would say wildly used) learning techniques for neural 1 2 The error-backpropagation algorithm is one of the most important and widely used (and some would say wildly used) learning techniques for neural networks. First we will look at the algorithm itself

More information

Strength-based and time-based supervised networks: Theory and comparisons. Denis Cousineau Vision, Integration, Cognition lab. Université de Montréal

Strength-based and time-based supervised networks: Theory and comparisons. Denis Cousineau Vision, Integration, Cognition lab. Université de Montréal Strength-based and time-based supervised networks: Theory and comparisons Denis Cousineau Vision, Integration, Cognition lab. Université de Montréal available at: http://mapageweb.umontreal.ca/cousined

More information

CS:4420 Artificial Intelligence

CS:4420 Artificial Intelligence CS:4420 Artificial Intelligence Spring 2018 Neural Networks Cesare Tinelli The University of Iowa Copyright 2004 18, Cesare Tinelli and Stuart Russell a a These notes were originally developed by Stuart

More information

Νεςπο-Ασαυήρ Υπολογιστική Neuro-Fuzzy Computing

Νεςπο-Ασαυήρ Υπολογιστική Neuro-Fuzzy Computing Νεςπο-Ασαυήρ Υπολογιστική Neuro-Fuzzy Computing ΗΥ418 Διδάσκων Δημήτριος Κατσαρός @ Τμ. ΗΜΜΥ Πανεπιστήμιο Θεσσαλίαρ Διάλεξη 4η 1 Perceptron s convergence 2 Proof of convergence Suppose that we have n training

More information

Networks of McCulloch-Pitts Neurons

Networks of McCulloch-Pitts Neurons s Lecture 4 Netorks of McCulloch-Pitts Neurons The McCulloch and Pitts (M_P) Neuron x x sgn x n Netorks of M-P Neurons One neuron can t do much on its on, but a net of these neurons x i x i i sgn i ij

More information

Multilayer Neural Networks

Multilayer Neural Networks Multilayer Neural Networks Introduction Goal: Classify objects by learning nonlinearity There are many problems for which linear discriminants are insufficient for minimum error In previous methods, the

More information

Pattern Classification using Simplified Neural Networks with Pruning Algorithm

Pattern Classification using Simplified Neural Networks with Pruning Algorithm Pattern Classification using Siplified Neural Networks with Pruning Algorith S. M. Karuzzaan 1 Ahed Ryadh Hasan 2 Abstract: In recent years, any neural network odels have been proposed for pattern classification,

More information

ENTROPIC ANALYSIS AND INCREMENTAL SYNTHESIS OF MULTILAYERED FEEDFORWARD NEURAL NETWORKS

ENTROPIC ANALYSIS AND INCREMENTAL SYNTHESIS OF MULTILAYERED FEEDFORWARD NEURAL NETWORKS International Journal of Neural Systems, Vol. 8, Nos. & 6 (October/December, 997) 67 69 c World Scientific Publishing Company ENTROPIC ANALYSIS AND INCREMENTAL SYNTHESIS OF MULTILAYERED FEEDFORWARD NEURAL

More information

Multilayer Neural Networks

Multilayer Neural Networks Multilayer Neural Networks Multilayer Neural Networks Discriminant function flexibility NON-Linear But with sets of linear parameters at each layer Provably general function approximators for sufficient

More information

Artificial Neural Networks Examination, June 2004

Artificial Neural Networks Examination, June 2004 Artificial Neural Networks Examination, June 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Artificial Neural Networks

Artificial Neural Networks Introduction ANN in Action Final Observations Application: Poverty Detection Artificial Neural Networks Alvaro J. Riascos Villegas University of los Andes and Quantil July 6 2018 Artificial Neural Networks

More information

Computational statistics

Computational statistics Computational statistics Lecture 3: Neural networks Thierry Denœux 5 March, 2016 Neural networks A class of learning methods that was developed separately in different fields statistics and artificial

More information

Lab 5: 16 th April Exercises on Neural Networks

Lab 5: 16 th April Exercises on Neural Networks Lab 5: 16 th April 01 Exercises on Neural Networks 1. What are the values of weights w 0, w 1, and w for the perceptron whose decision surface is illustrated in the figure? Assume the surface crosses the

More information

In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required.

In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required. In biological terms, memory refers to the ability of neural systems to store activity patterns and later recall them when required. In humans, association is known to be a prominent feature of memory.

More information

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

The exam is closed book, closed calculator, and closed notes except your one-page crib sheet. CS 188 Fall 2015 Introduction to Artificial Intelligence Final You have approximately 2 hours and 50 minutes. The exam is closed book, closed calculator, and closed notes except your one-page crib sheet.

More information

Neural Networks and the Back-propagation Algorithm

Neural Networks and the Back-propagation Algorithm Neural Networks and the Back-propagation Algorithm Francisco S. Melo In these notes, we provide a brief overview of the main concepts concerning neural networks and the back-propagation algorithm. We closely

More information

Artificial Neural Network and Fuzzy Logic

Artificial Neural Network and Fuzzy Logic Artificial Neural Network and Fuzzy Logic 1 Syllabus 2 Syllabus 3 Books 1. Artificial Neural Networks by B. Yagnanarayan, PHI - (Cover Topologies part of unit 1 and All part of Unit 2) 2. Neural Networks

More information

Artificial Neural Networks. Edward Gatt

Artificial Neural Networks. Edward Gatt Artificial Neural Networks Edward Gatt What are Neural Networks? Models of the brain and nervous system Highly parallel Process information much more like the brain than a serial computer Learning Very

More information

Lecture 5: Logistic Regression. Neural Networks

Lecture 5: Logistic Regression. Neural Networks Lecture 5: Logistic Regression. Neural Networks Logistic regression Comparison with generative models Feed-forward neural networks Backpropagation Tricks for training neural networks COMP-652, Lecture

More information

22c145-Fall 01: Neural Networks. Neural Networks. Readings: Chapter 19 of Russell & Norvig. Cesare Tinelli 1

22c145-Fall 01: Neural Networks. Neural Networks. Readings: Chapter 19 of Russell & Norvig. Cesare Tinelli 1 Neural Networks Readings: Chapter 19 of Russell & Norvig. Cesare Tinelli 1 Brains as Computational Devices Brains advantages with respect to digital computers: Massively parallel Fault-tolerant Reliable

More information

LIMITATIONS OF RECEPTRON. XOR Problem The failure of the perceptron to successfully simple problem such as XOR (Minsky and Papert).

LIMITATIONS OF RECEPTRON. XOR Problem The failure of the perceptron to successfully simple problem such as XOR (Minsky and Papert). LIMITATIONS OF RECEPTRON XOR Problem The failure of the ercetron to successfully simle roblem such as XOR (Minsky and Paert). x y z x y z 0 0 0 0 0 0 Fig. 4. The exclusive-or logic symbol and function

More information

Artificial Intelligence Hopfield Networks

Artificial Intelligence Hopfield Networks Artificial Intelligence Hopfield Networks Andrea Torsello Network Topologies Single Layer Recurrent Network Bidirectional Symmetric Connection Binary / Continuous Units Associative Memory Optimization

More information

Artificial Neural Networks Examination, March 2004

Artificial Neural Networks Examination, March 2004 Artificial Neural Networks Examination, March 2004 Instructions There are SIXTY questions (worth up to 60 marks). The exam mark (maximum 60) will be added to the mark obtained in the laborations (maximum

More information

Optimal transfer function neural networks

Optimal transfer function neural networks Optimal transfer function neural networks Norbert Jankowski and Włodzisław Duch Department of Computer ethods Nicholas Copernicus University ul. Grudziądzka, 87 Toru ń, Poland, e-mail:{norbert,duch}@phys.uni.torun.pl

More information

SPSS, University of Texas at Arlington. Topics in Machine Learning-EE 5359 Neural Networks

SPSS, University of Texas at Arlington. Topics in Machine Learning-EE 5359 Neural Networks Topics in Machine Learning-EE 5359 Neural Networks 1 The Perceptron Output: A perceptron is a function that maps D-dimensional vectors to real numbers. For notational convenience, we add a zero-th dimension

More information

Course 395: Machine Learning - Lectures

Course 395: Machine Learning - Lectures Course 395: Machine Learning - Lectures Lecture 1-2: Concept Learning (M. Pantic) Lecture 3-4: Decision Trees & CBC Intro (M. Pantic & S. Petridis) Lecture 5-6: Evaluating Hypotheses (S. Petridis) Lecture

More information

Artificial Neural Networks. Part 2

Artificial Neural Networks. Part 2 Artificial Neural Netorks Part Artificial Neuron Model Folloing simplified model of real neurons is also knon as a Threshold Logic Unit x McCullouch-Pitts neuron (943) x x n n Body of neuron f out Biological

More information

AI Programming CS F-20 Neural Networks

AI Programming CS F-20 Neural Networks AI Programming CS662-2008F-20 Neural Networks David Galles Department of Computer Science University of San Francisco 20-0: Symbolic AI Most of this class has been focused on Symbolic AI Focus or symbols

More information

Online Identification And Control of A PV-Supplied DC Motor Using Universal Learning Networks

Online Identification And Control of A PV-Supplied DC Motor Using Universal Learning Networks Online Identification And Control of A PV-Supplied DC Motor Using Universal Learning Networks Ahmed Hussein * Kotaro Hirasawa ** Jinglu Hu ** * Graduate School of Information Science & Electrical Eng.,

More information

Artificial Neural Network : Training

Artificial Neural Network : Training Artificial Neural Networ : Training Debasis Samanta IIT Kharagpur debasis.samanta.iitgp@gmail.com 06.04.2018 Debasis Samanta (IIT Kharagpur) Soft Computing Applications 06.04.2018 1 / 49 Learning of neural

More information

arxiv: v3 [cs.lg] 18 Mar 2013

arxiv: v3 [cs.lg] 18 Mar 2013 Hierarchical Data Representation Model - Multi-layer NMF arxiv:1301.6316v3 [cs.lg] 18 Mar 2013 Hyun Ah Song Department of Electrical Engineering KAIST Daejeon, 305-701 hyunahsong@kaist.ac.kr Abstract Soo-Young

More information

Instituto Tecnológico y de Estudios Superiores de Occidente Departamento de Electrónica, Sistemas e Informática. Introductory Notes on Neural Networks

Instituto Tecnológico y de Estudios Superiores de Occidente Departamento de Electrónica, Sistemas e Informática. Introductory Notes on Neural Networks Introductory Notes on Neural Networs Dr. José Ernesto Rayas Sánche April Introductory Notes on Neural Networs Dr. José Ernesto Rayas Sánche BIOLOGICAL NEURAL NETWORKS The brain can be seen as a highly

More information

Neural networks. Chapter 19, Sections 1 5 1

Neural networks. Chapter 19, Sections 1 5 1 Neural networks Chapter 19, Sections 1 5 Chapter 19, Sections 1 5 1 Outline Brains Neural networks Perceptrons Multilayer perceptrons Applications of neural networks Chapter 19, Sections 1 5 2 Brains 10

More information

Pattern Classification

Pattern Classification Pattern Classification All materials in these slides were taen from Pattern Classification (2nd ed) by R. O. Duda,, P. E. Hart and D. G. Stor, John Wiley & Sons, 2000 with the permission of the authors

More information

An Adaptively Constructing Multilayer Feedforward Neural Networks Using Hermite Polynomials

An Adaptively Constructing Multilayer Feedforward Neural Networks Using Hermite Polynomials An Adaptively Constructing Multilayer Feedforward Neural Networks Using Hermite Polynomials L. Ma 1 and K. Khorasani 2 1 Department of Applied Computer Science, Tokyo Polytechnic University, 1583 Iiyama,

More information

THE information capacity is one of the most important

THE information capacity is one of the most important 256 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 44, NO. 1, JANUARY 1998 Capacity of Two-Layer Feedforward Neural Networks with Binary Weights Chuanyi Ji, Member, IEEE, Demetri Psaltis, Senior Member,

More information

Neural Networks Introduction

Neural Networks Introduction Neural Networks Introduction H.A Talebi Farzaneh Abdollahi Department of Electrical Engineering Amirkabir University of Technology Winter 2011 H. A. Talebi, Farzaneh Abdollahi Neural Networks 1/22 Biological

More information

Gianluca Pollastri, Head of Lab School of Computer Science and Informatics and. University College Dublin

Gianluca Pollastri, Head of Lab School of Computer Science and Informatics and. University College Dublin Introduction ti to Neural Networks Gianluca Pollastri, Head of Lab School of Computer Science and Informatics and Complex and Adaptive Systems Labs University College Dublin gianluca.pollastri@ucd.ie Credits

More information

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks

ARTIFICIAL INTELLIGENCE. Artificial Neural Networks INFOB2KI 2017-2018 Utrecht University The Netherlands ARTIFICIAL INTELLIGENCE Artificial Neural Networks Lecturer: Silja Renooij These slides are part of the INFOB2KI Course Notes available from www.cs.uu.nl/docs/vakken/b2ki/schema.html

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks Oliver Schulte - CMPT 310 Neural Networks Neural networks arise from attempts to model human/animal brains Many models, many claims of biological plausibility We will focus on

More information

Neural networks. Chapter 20. Chapter 20 1

Neural networks. Chapter 20. Chapter 20 1 Neural networks Chapter 20 Chapter 20 1 Outline Brains Neural networks Perceptrons Multilayer networks Applications of neural networks Chapter 20 2 Brains 10 11 neurons of > 20 types, 10 14 synapses, 1ms

More information

Blind Equalization Formulated as a Self-organized Learning Process

Blind Equalization Formulated as a Self-organized Learning Process Blind Equalization Formulated as a Self-organized Learning Process Simon Haykin Communications Research Laboratory McMaster University 1280 Main Street West Hamilton, Ontario, Canada L8S 4K1 Abstract In

More information

Simple Neural Nets For Pattern Classification

Simple Neural Nets For Pattern Classification CHAPTER 2 Simple Neural Nets For Pattern Classification Neural Networks General Discussion One of the simplest tasks that neural nets can be trained to perform is pattern classification. In pattern classification

More information

Artificial Intelligence

Artificial Intelligence Artificial Intelligence Jeff Clune Assistant Professor Evolving Artificial Intelligence Laboratory Announcements Be making progress on your projects! Three Types of Learning Unsupervised Supervised Reinforcement

More information

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore

Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Pattern Recognition Prof. P. S. Sastry Department of Electronics and Communication Engineering Indian Institute of Science, Bangalore Lecture - 27 Multilayer Feedforward Neural networks with Sigmoidal

More information

Introduction to Artificial Neural Networks

Introduction to Artificial Neural Networks Facultés Universitaires Notre-Dame de la Paix 27 March 2007 Outline 1 Introduction 2 Fundamentals Biological neuron Artificial neuron Artificial Neural Network Outline 3 Single-layer ANN Perceptron Adaline

More information

Artificial Neural Networks

Artificial Neural Networks Artificial Neural Networks Threshold units Gradient descent Multilayer networks Backpropagation Hidden layer representations Example: Face Recognition Advanced topics 1 Connectionist Models Consider humans:

More information

A Modified Incremental Principal Component Analysis for On-line Learning of Feature Space and Classifier

A Modified Incremental Principal Component Analysis for On-line Learning of Feature Space and Classifier A Modified Incremental Principal Component Analysis for On-line Learning of Feature Space and Classifier Seiichi Ozawa, Shaoning Pang, and Nikola Kasabov Graduate School of Science and Technology, Kobe

More information

Artificial Intelligence (AI) Common AI Methods. Training. Signals to Perceptrons. Artificial Neural Networks (ANN) Artificial Intelligence

Artificial Intelligence (AI) Common AI Methods. Training. Signals to Perceptrons. Artificial Neural Networks (ANN) Artificial Intelligence Artificial Intelligence (AI) Artificial Intelligence AI is an attempt to reproduce intelligent reasoning using machines * * H. M. Cartwright, Applications of Artificial Intelligence in Chemistry, 1993,

More information

CS 4700: Foundations of Artificial Intelligence

CS 4700: Foundations of Artificial Intelligence CS 4700: Foundations of Artificial Intelligence Prof. Bart Selman selman@cs.cornell.edu Machine Learning: Neural Networks R&N 18.7 Intro & perceptron learning 1 2 Neuron: How the brain works # neurons

More information