Extra Homework Problems/Practice Problems. Note: The solutions to these problems will not be posted. Come see me during office hours to discuss them.

Size: px
Start display at page:

Download "Extra Homework Problems/Practice Problems. Note: The solutions to these problems will not be posted. Come see me during office hours to discuss them."

Transcription

1 Note: The solutions to these problems will not be posted. Come see me during office hours to discuss them. Chapter 1 1. True or False: a. A measurement with high precision (i.e., low precision error) has high accuracy. b. Uncertainty is merely an estimate of the Error in a measurement. c. In determining the weight of an object, Newton s law, F = ma, is invoked, where a = g. d. Precision Error is also called random or statistical error. e. One pound-mass is equal to one pound-force on Earth. 2. Weighing yourself with clothes on (vs. weighing yourself without clothes on) introduces an error to your measurement. This error is called: a. reading error d. instrument error b. bias error e. absolute error c. precision error 3. We discussed in class that there are two general categories of error (bias and precision) but three practical sources of error encountered in a measurement. Name them. 4. What are the definitions of (a) the newton in the SI system, (b) the pound-force in the slug system, and (c) the pound-force in the pound-mass system? Problem 1-A. The Reynolds number Re is a dimensionless number used in fluid mechanics and is defined as ρvd Re =, µ where ρ is the fluid density, V is the fluid velocity, D is some characteristic length of the body immersed in the fluid, and µ is the fluid absolute viscosity. a. Calculate the Reynolds number for the following properties: ρ = 1.16 kg/m 3, V = 0.30 km/hr, D = m, and µ = N s/m 2. SHOW ALL CONVERSIONS (CONVERSION FACTORS), and use only the most basic conversions (e.g., do not convert kg/hr to m/s directly). b. Convert the properties listed in part (a) to English Units (pound-mass system): lbm/ft 3, ft/s, ft, lbf s/ft 2. Show all work. c. Calculate the Reynolds number based on the English-unit properties calculated in part (b). d. What can you conclude about the (dimensionless) Reynolds number s dependence on unit system?

2 Chapter 2 1. True or False: a. The sum of all frequencies in a frequency distribution equals 1. b. Relative frequency is the same as probability. 2. Which statement about the 3 rd quartile is true? a. The 3 rd quartile is the range of values below the 75 th percentile. b. The 3 rd quartile is the range of values above the 75 th percentile. c. The 3 rd quartile is the range of values between the 50 th and 75 th percentile. d. The 3 rd quartile is the value such that 75 percent of the observations are smaller and 25 percent are larger. 3. Sixteen measurements of temperature range from 66.5 to 81.8 ºF. Select the most appropriate bin assignment for this data from those below: a. 65.0, 67.5, 70.0, 72.5, 75.0, 77.5, 80.0, 82.5 b , , , , , , , c. 66.5, 70.5, 74.5, 78.5, 82.5 d. 66, 70, 74, 78, 82 e. None of the above Problem 2-A. Consider the measurement of the temperature of hot gas flowing in a duct. The relative frequency distribution (or at least part of it) is depicted below. Answer the following questions: a. What is the probability of obtaining a measurement between 1090< T 1105 C? b. Three measurements fell within the range 1110 <T 1115 ºC. Are any measurements missing from this graph, and if so, how many? Relative Frequency Temperature (C)

3 Chapter 3 1. True or False: a. All random measurements are normally distributed. b. Using the z value in confidence intervals presumes that the population standard deviation is known. c. Approximately 92% of all data in a normal distribution lie within ±1.75 standard deviations from the population mean. 2. When predicting the mean of a population based on the mean of a sample (the population standard deviation is known), what happens to the confidence interval when the sample size approaches infinity? Circle all that apply: a. the confidence interval approaches a finite value b. the confidence interval approaches zero c. the z value approaches 1.96 d. the confidence interval approaches infinity x a+ b a b 3. Evaluate the integral: f ( x) = e dx. Hint: e = e e. Do so without any integration functions on your calculator Problem 3-A. A voltmeter is used to measure a known voltage of 100 V. Forty percent of the readings are within 0.5 V of the mean value. a. Assuming a normal distribution for the error, estimate the standard deviation for the meter. b. What is the probability that the mean of 10 readings will have an error greater than 0.75 V?

4 Chapter 4 1. True or False: a. Using the t distribution presumes that the population is normally distributed. b. At the same level of confidence, the Student-t value is always less than or equal to the z value. c. The t table is used in place of the z table when the population standard deviation is unknown. d. The shape of the t distribution depends on the number of measurements in the sample. 2. Fill in the missing values. SKETCH the z or t distribution, AND graphically demonstrate the probabilities and ranges. a. P( - z + ) = 0.75 (both unknowns have same magnitude) b. P(-2.35 z ) = c. P( t ) = 0.75 (50 degrees of freedom) d. P( t ) = (12 degrees of freedom) Problem 4-A next page

5 Problem 4-A. You are designing an automatic coin counter that stacks 50 pennies at a time to be placed in coin wrappers. You plan on measuring the height of the stack to determine the number of coins, but are concerned as to how accurate the method will be. You measure the thickness of 30 pennies, with the data listed below. Thickness, x (mm) 2 ( x x) No Sums a. Based on this data, estimate the height of a stack of 50 pennies. How accurate is your estimate, at 95% confidence? b. What percentage of pennies from the population have thicknesses of at least 1.34 mm?

6 Chapter 5 1. Using the t distribution in confidence intervals requires the population to be normally distributed; however, it is approximately valid for non-normal populations as long as what conditions are met? 2. Comment on the following statement: You can (and should) reject outliers from a set of data as long as the statistical models identify them as outliers.

7 Chapter 6 1/ 3 ld 1. Consider the equation H =. If the uncertainty of each variable is the same fraction of 1/ 5 10k their respective nominal value, what variable s uncertainty has the largest effect on the uncertainty in H? a. l b. d c. k d. H Consider the function F = AB C 2/ / D 4 /, where A, B, C, and D are measured variables. If all these variables have the same uncertainty (as a percentage of the nominal value), which variable affects the uncertainty in the function F the most? a. A b. B c. C d. D Problem 6-A. Earth s gravity varies along its surface, and a large portion of this variation is from centripetal acceleration due to the rotation of the earth. The centripetal acceleration at the surface of the Earth can be calculated by a 2 2π 2 = cos φ, T R R E where T = period of rotation of the Earth = 8.64x10 4 s (negligible uncertainty) R E = radius of Earth = 6.37x10 6 m ± 1500 m φ = Latitude on Earth (radians) a. If our latitude on Earth is 35 degrees, 17 minutes ± 1 degree (35.3 ± 1.0 ), determine our local centripetal acceleration and its uncertainty. Use dimensional uncertainty propagation. (Hint: and recall that 180 = π radians) b. If the local gravity (without rotation) is m/s 2, what is the local effective gravity, and its uncertainty? (In doing so, make an assumption about the uncertainty in the value of gravity without rotation, g = m/s 2.)

8 Chapter 7 1. True or false: a. When choosing an appropriate model (equation) for a curve-fit, you should pick the equation that yields an R 2 value closest to 1. b. The correlation coefficient, r, is a measure of the degree of linear correlation, but the R 2 value applies to any curve-fit function. c. When choosing an appropriate model (equation) for a curve-fit, you should pick the equation that minimizes the residuals. 2. In performing statistical analysis of curve fits, we assume that the data are scattered normally about the curve-fit line. Why? 3. The following are plots of data and their predicted curve fits. Which values of the correlation coefficient are most likely to be incorrect? (Choose all that apply) a. r = 0.8 b. r = 0.9 c. r = d. r = 0.9

9 Chapter 8 1. True or false: a. A set of n x-y data pairs can be fit with a polynomial curve up to an order of n-1. b. If a 6 th order polynomial curve is fit to 5 data points, the resulting R 2 value will be equal to exactly Initially, what factor determines the choice of an appropriate curve fit model (sinusoidal, linear, polynomial, etc.) to a set of experimental data? 3. What role does statistics play in refining a curve-fit model (for example, when choosing between a 3 rd -order and a 4 th -order polynomial fit)? 4. Name two strategies for dealing with outliers in a curve-fitted set of data (aside from discarding them).

Extra Homework Problems/Practice Problems. Note: The solutions to these problems will not be posted. Come see me during office hours to discuss them.

Extra Homework Problems/Practice Problems. Note: The solutions to these problems will not be posted. Come see me during office hours to discuss them. Note: The solutions to these problems will not be posted. Come see me during office hours to discuss them. Chapter 1 1. True or False: a. A measurement with high precision (i.e., low precision error) has

More information

Module 1: Introduction to Experimental Techniques Lecture 6: Uncertainty analysis. The Lecture Contains: Uncertainity Analysis

Module 1: Introduction to Experimental Techniques Lecture 6: Uncertainty analysis. The Lecture Contains: Uncertainity Analysis The Lecture Contains: Uncertainity Analysis Error Propagation Analysis of Scatter Table A1: Normal Distribution Table A2: Student's-t Distribution file:///g /optical_measurement/lecture6/6_1.htm[5/7/2012

More information

Units and Dimensions. Lecture 1. Introduction to Chemical Engineering Calculations

Units and Dimensions. Lecture 1. Introduction to Chemical Engineering Calculations Introduction to Chemical Engineering Calculations Lecture 1. Mathematics and Engineering In mathematics, If x = 500 and y = 100, then (x + y) = 600 In engineering, If x = 500m and y = 100m, then (x + y)

More information

Statistics 100 Exam 2 March 8, 2017

Statistics 100 Exam 2 March 8, 2017 STAT 100 EXAM 2 Spring 2017 (This page is worth 1 point. Graded on writing your name and net id clearly and circling section.) PRINT NAME (Last name) (First name) net ID CIRCLE SECTION please! L1 (MWF

More information

Chapter 1 Dimensions, Units, and Their Conversion

Chapter 1 Dimensions, Units, and Their Conversion 1.1 Units and Dimensions Chemical Engineering principles First Year/ Chapter One Chapter 1 Dimensions, Units, and Their Conversion Dimensions are our basic concepts of measurement such as length, time,

More information

Applications of Integration to Physics and Engineering

Applications of Integration to Physics and Engineering Applications of Integration to Physics and Engineering MATH 211, Calculus II J Robert Buchanan Department of Mathematics Spring 2018 Mass and Weight mass: quantity of matter (units: kg or g (metric) or

More information

Physics for Scientists and Engineers. Chapter 1 Concepts of Motion

Physics for Scientists and Engineers. Chapter 1 Concepts of Motion Physics for Scientists and Engineers Chapter 1 Concepts of Motion Spring, 2008 Ho Jung Paik Physics Fundamental science concerned with the basic principles of the Universe foundation of other physical

More information

Unit A-1: List of Subjects

Unit A-1: List of Subjects ES312 Energy Transfer Fundamentals Unit A: Fundamental Concepts ROAD MAP... A-1: Introduction to Thermodynamics A-2: Engineering Properties Unit A-1: List of Subjects What is Thermodynamics? First and

More information

Drag Force. Drag is a mechanical force generated when a solid moves through a fluid. Is Air fluid?

Drag Force. Drag is a mechanical force generated when a solid moves through a fluid. Is Air fluid? Feline Pesematology Drag Force Drag is a mechanical force generated when a solid moves through a fluid. Is Air fluid? Drag factors Does drag increase/decrease with 1. Density of fluid? 2. Velocity of the

More information

MTH_256: Differential Equations Examination II Part 1 of 2 Technology Allowed Examination. Student Name:

MTH_256: Differential Equations Examination II Part 1 of 2 Technology Allowed Examination. Student Name: 01 March 2018 Technology Allowed Examination Kidoguchi\m256_x2.1soln.docx MTH_256: Differential Equations Examination II Part 1 of 2 Technology Allowed Examination Student Name: STUDNAME Instructions:

More information

AP Physics Laboratory #6.1: Analyzing Terminal Velocity Using an Interesting Version of Atwood s Machine

AP Physics Laboratory #6.1: Analyzing Terminal Velocity Using an Interesting Version of Atwood s Machine AP Physics Laboratory #6.1: Analyzing Terminal Velocity Using an Interesting Version of Atwood s Machine Name: Date: Lab Partners: PURPOSE The purpose of this Laboratory is to study a system as it approaches

More information

Unit 6 - Simple linear regression

Unit 6 - Simple linear regression Sta 101: Data Analysis and Statistical Inference Dr. Çetinkaya-Rundel Unit 6 - Simple linear regression LO 1. Define the explanatory variable as the independent variable (predictor), and the response variable

More information

Problem Out of Score Problem Out of Score Total 45

Problem Out of Score Problem Out of Score Total 45 Midterm Exam #1 Math 11, Section 5 January 3, 15 Duration: 5 minutes Name: Student Number: Do not open this test until instructed to do so! This exam should have 8 pages, including this cover sheet. No

More information

Characterization and Uncertainty Analysis of a Reference Pressure Measurement System for Wind Tunnels

Characterization and Uncertainty Analysis of a Reference Pressure Measurement System for Wind Tunnels Characterization and Uncertainty Analysis of a Reference Pressure Measurement System for Wind Tunnels Tahani Amer, John Tripp, Ping Tcheng, Cecil Burkett, and Bradley Sealey NASA Langley Research Center

More information

WELCOME TO 1103 PERIOD 6

WELCOME TO 1103 PERIOD 6 WELCOE TO 1103 PERIOD 6 Homework Exercise #5 is due today. Please watch video 2, America Revealed: Electric Nation, for class discussion one week from today. PHYSICS 1103 PERIOD 6 Where is the center of

More information

Physical Science Density and Measurements

Physical Science Density and Measurements Physical Science Density and Measurements Name Date Density All matter has a mass that can be measured and a volume of space that it occupies. However, the relationship between mass and volume varies greatly

More information

Experimental Uncertainty (Error) and Data Analysis

Experimental Uncertainty (Error) and Data Analysis Experimental Uncertainty (Error) and Data Analysis Advance Study Assignment Please contact Dr. Reuven at yreuven@mhrd.org if you have any questions Read the Theory part of the experiment (pages 2-14) and

More information

Learning Objectives. Lesson 6: Mathematical Models of Fluid Flow Components. ET 438a Automatic Control Systems Technology 8/27/2015

Learning Objectives. Lesson 6: Mathematical Models of Fluid Flow Components. ET 438a Automatic Control Systems Technology 8/27/2015 Lesson 6: Mathematical Models of Fluid Flow Components ET 438a Automatic Control Systems Technology lesson6et438a.pptx 1 Learning Objectives After this presentation you will be able to: Define the characteristics

More information

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum

Updated 2013 (Mathematica Version) M1.1. Lab M1: The Simple Pendulum Updated 2013 (Mathematica Version) M1.1 Introduction. Lab M1: The Simple Pendulum The simple pendulum is a favorite introductory exercise because Galileo's experiments on pendulums in the early 1600s are

More information

Chapter Units and Measurement

Chapter Units and Measurement 2 Chapter Units and Measurement 1. Identify the pair whose dimensions are equal [2002] torque and work stress and energy force and stress force and work 2. [2003] [L -1 T] ] [L -2 T 2 ] [L 2 T -2 ] [LT

More information

Review for Second Semester Final Exam DO NOT USE A CALCULATOR FOR THESE PROBLEMS

Review for Second Semester Final Exam DO NOT USE A CALCULATOR FOR THESE PROBLEMS Advanced Algebra nd SEMESTER FINAL Review for Second Semester Final Exam DO NOT USE A CALCULATOR FOR THESE PROBLEMS Name Period Date 1. For each quadratic function shown below: Find the equation of its

More information

Chapter 7. Practice Exam Questions and Solutions for Final Exam, Spring 2009 Statistics 301, Professor Wardrop

Chapter 7. Practice Exam Questions and Solutions for Final Exam, Spring 2009 Statistics 301, Professor Wardrop Practice Exam Questions and Solutions for Final Exam, Spring 2009 Statistics 301, Professor Wardrop Chapter 6 1. A random sample of size n = 452 yields 113 successes. Calculate the 95% confidence interval

More information

Introduction to Mechanical Engineering Measurements Two Main Purposes of Measurements Engineering experimentation Operational systems

Introduction to Mechanical Engineering Measurements Two Main Purposes of Measurements Engineering experimentation Operational systems Introduction, Page 1 Introduction to Mechanical Engineering Measurements Author: John M. Cimbala, Penn State University Latest revision, 19 August 011 Two Main Purposes of Measurements Engineering experimentation

More information

Spring 2017 Midterm 1 04/26/2017

Spring 2017 Midterm 1 04/26/2017 Math 2B Spring 2017 Midterm 1 04/26/2017 Time Limit: 50 Minutes Name (Print): Student ID This exam contains 10 pages (including this cover page) and 5 problems. Check to see if any pages are missing. Enter

More information

Precision Correcting for Random Error

Precision Correcting for Random Error Precision Correcting for Random Error The following material should be read thoroughly before your 1 st Lab. The Statistical Handling of Data Our experimental inquiries into the workings of physical reality

More information

TALLINN UNIVERSITY OF TECHNOLOGY, DIVISION OF PHYSICS 13. STOKES METHOD

TALLINN UNIVERSITY OF TECHNOLOGY, DIVISION OF PHYSICS 13. STOKES METHOD 13. STOKES METHOD 1. Objective To determine the coefficient of viscosity of a known fluid using Stokes method.. Equipment needed A glass vessel with glycerine, micrometer calliper, stopwatch, ruler. 3.

More information

Fluid Dynamics Midterm Exam #2 November 10, 2008, 7:00-8:40 pm in CE 110

Fluid Dynamics Midterm Exam #2 November 10, 2008, 7:00-8:40 pm in CE 110 CVEN 311-501 Fluid Dynamics Midterm Exam #2 November 10, 2008, 7:00-8:40 pm in CE 110 Name: UIN: Instructions: Fill in your name and UIN in the space above. There should be 11 pages including this one.

More information

Work. 98N We must exert a force of 98N to raise the object. 98N 15m 1470Nm. One Newton- meter is called a Joule and the

Work. 98N We must exert a force of 98N to raise the object. 98N 15m 1470Nm. One Newton- meter is called a Joule and the ork Suppose an object is moving in one dimension either horizontally or vertically. Suppose a Force which is constant in magnitude and in the same direction as the object's motion acts on that object.

More information

ME3250 Fluid Dynamics I

ME3250 Fluid Dynamics I ME3250 Fluid Dynamics I Section I, Fall 2012 Instructor: Prof. Zhuyin Ren Department of Mechanical Engineering University of Connecticut Course Information Website: http://www.engr.uconn.edu/~rzr11001/me3250_f12/

More information

Unit 6 - Introduction to linear regression

Unit 6 - Introduction to linear regression Unit 6 - Introduction to linear regression Suggested reading: OpenIntro Statistics, Chapter 7 Suggested exercises: Part 1 - Relationship between two numerical variables: 7.7, 7.9, 7.11, 7.13, 7.15, 7.25,

More information

Prentice Hall Mathematics, Geometry 2009 Correlated to: Maine Learning Results 2007 Mathematics Grades 9-Diploma

Prentice Hall Mathematics, Geometry 2009 Correlated to: Maine Learning Results 2007 Mathematics Grades 9-Diploma A. NUMBER: Students use numbers in everyday and mathematical contexts to quantify or describe phenomena, develop concepts of operations with different types of numbers, use the structure and properties

More information

Department of Civil Engineering Hydraulics and Water Resources Division Application and Solution I

Department of Civil Engineering Hydraulics and Water Resources Division Application and Solution I Question 1: The Specific weight of water is 1000 /. Using this given value, find the specific mass of water in SI units (g= m/s ). Solution 1: The specific mass of water in SI units: 1 N 1000 m 9810 Nm

More information

Statics and Mechanics of Materials

Statics and Mechanics of Materials Second E 1 Introduction CHAPTER Ferdinand P. Beer E. Russell Johnston, Jr. John T. DeWolf David F. Mazurek Contents What is Mechanics? Systems of Units Method of Solving Problems Numerical Accuracy 1-2

More information

Student Exploration: Free-Fall Laboratory

Student Exploration: Free-Fall Laboratory Name: Date: Student Exploration: Free-Fall Laboratory Vocabulary: acceleration, air resistance, free fall, instantaneous velocity, terminal velocity, velocity, vacuum Prior Knowledge Questions (Do these

More information

Statistical Analysis of Engineering Data The Bare Bones Edition. Precision, Bias, Accuracy, Measures of Precision, Propagation of Error

Statistical Analysis of Engineering Data The Bare Bones Edition. Precision, Bias, Accuracy, Measures of Precision, Propagation of Error Statistical Analysis of Engineering Data The Bare Bones Edition (I) Precision, Bias, Accuracy, Measures of Precision, Propagation of Error PRIOR TO DATA ACQUISITION ONE SHOULD CONSIDER: 1. The accuracy

More information

211 Real Analysis. f (x) = x2 1. x 1. x 2 1

211 Real Analysis. f (x) = x2 1. x 1. x 2 1 Part. Limits of functions. Introduction 2 Real Analysis Eample. What happens to f : R \ {} R, given by f () = 2,, as gets close to? If we substitute = we get f () = 0 which is undefined. Instead we 0 might

More information

An Introduction to Error Analysis

An Introduction to Error Analysis An Introduction to Error Analysis Introduction The following notes (courtesy of Prof. Ditchfield) provide an introduction to quantitative error analysis: the study and evaluation of uncertainty in measurement.

More information

Math 175 Common Exam 2A Spring 2018

Math 175 Common Exam 2A Spring 2018 Math 175 Common Exam 2A Spring 2018 Part I: Short Form The first seven (7) pages are short answer. You don t need to show work. Partial credit will be rare and small. 1. (8 points) Suppose f(x) is a function

More information

Estimating a Population Mean

Estimating a Population Mean Estimating a Population Mean MATH 130, Elements of Statistics I J. Robert Buchanan Department of Mathematics Fall 2017 Objectives At the end of this lesson we will be able to: obtain a point estimate for

More information

Gravitation & Kepler s Laws

Gravitation & Kepler s Laws Gravitation & Kepler s Laws What causes YOU to be pulled down to the surface of the earth? THE EARTH.or more specifically the EARTH S MASS. Anything that has MASS has a gravitational pull towards it. F

More information

Preliminary Statistics course. Lecture 1: Descriptive Statistics

Preliminary Statistics course. Lecture 1: Descriptive Statistics Preliminary Statistics course Lecture 1: Descriptive Statistics Rory Macqueen (rm43@soas.ac.uk), September 2015 Organisational Sessions: 16-21 Sep. 10.00-13.00, V111 22-23 Sep. 15.00-18.00, V111 24 Sep.

More information

ME 201 Engineering Mechanics: Statics. Unit 1.1 Mechanics Fundamentals Newton s Laws of Motion Units

ME 201 Engineering Mechanics: Statics. Unit 1.1 Mechanics Fundamentals Newton s Laws of Motion Units ME 201 Engineering Mechanics: Statics Unit 1.1 Mechanics Fundamentals Newton s Laws of Motion Units Additional Assistance Tutoring Center Mck 272 Engineering Walk-In Help Lab Aus??? Schedule to

More information

PART II. Fluid Mechanics Pressure. Fluid Mechanics Pressure. Fluid Mechanics Specific Gravity. Some applications of fluid mechanics

PART II. Fluid Mechanics Pressure. Fluid Mechanics Pressure. Fluid Mechanics Specific Gravity. Some applications of fluid mechanics ART II Some applications of fluid mechanics Fluid Mechanics ressure ressure = F/A Units: Newton's per square meter, Nm -, kgm - s - The same unit is also known as a ascal, a, i.e. a = Nm - ) English units:

More information

Chapter 2 SOLUTION 100 = km = h. = h. ft s

Chapter 2 SOLUTION 100 = km = h. = h. ft s Chapter.1. Convert the information given in the accompanying table from SI units to U.S. Customary units. Show all steps of your solutions. See Example.. km 1000 m.8 ft 1 mile 10 = 74.5 miles/h h 1 km

More information

Lesson 6 Review of fundamentals: Fluid flow

Lesson 6 Review of fundamentals: Fluid flow Lesson 6 Review of fundamentals: Fluid flow The specific objective of this lesson is to conduct a brief review of the fundamentals of fluid flow and present: A general equation for conservation of mass

More information

The Gravity of the Situation. PTYS Mar 2008

The Gravity of the Situation. PTYS Mar 2008 The Gravity of the Situation PTYS206-2 4 Mar 2008 Upcoming Events Exam 1 next Tuesday, March 11. Essays due next Thursday, March 13. Review session, Thursday, March 6. New Homework will be posted today,

More information

Algebra I EOC Review (Part 2)

Algebra I EOC Review (Part 2) 1. Let x = total miles the car can travel Answer: x 22 = 18 or x 18 = 22 2. A = 1 2 ah 1 2 bh A = 1 h(a b) 2 2A = h(a b) 2A = h a b Note that when solving for a variable that appears more than once, consider

More information

Identify the scale of measurement most appropriate for each of the following variables. (Use A = nominal, B = ordinal, C = interval, D = ratio.

Identify the scale of measurement most appropriate for each of the following variables. (Use A = nominal, B = ordinal, C = interval, D = ratio. Answers to Items from Problem Set 1 Item 1 Identify the scale of measurement most appropriate for each of the following variables. (Use A = nominal, B = ordinal, C = interval, D = ratio.) a. response latency

More information

Fluid Mechanics Testbank By David Admiraal

Fluid Mechanics Testbank By David Admiraal Fluid Mechanics Testbank By David Admiraal This testbank was created for an introductory fluid mechanics class. The primary intentions of the testbank are to help students improve their performance on

More information

Slide 1. Slide 2. Slide 3. Pick a Brick. Daphne. 400 pts 200 pts 300 pts 500 pts 100 pts. 300 pts. 300 pts 400 pts 100 pts 400 pts.

Slide 1. Slide 2. Slide 3. Pick a Brick. Daphne. 400 pts 200 pts 300 pts 500 pts 100 pts. 300 pts. 300 pts 400 pts 100 pts 400 pts. Slide 1 Slide 2 Daphne Phillip Kathy Slide 3 Pick a Brick 100 pts 200 pts 500 pts 300 pts 400 pts 200 pts 300 pts 500 pts 100 pts 300 pts 400 pts 100 pts 400 pts 100 pts 200 pts 500 pts 100 pts 400 pts

More information

Exercises from Chapter 3, Section 1

Exercises from Chapter 3, Section 1 Exercises from Chapter 3, Section 1 1. Consider the following sample consisting of 20 numbers. (a) Find the mode of the data 21 23 24 24 25 26 29 30 32 34 39 41 41 41 42 43 48 51 53 53 (b) Find the median

More information

Dimensional Analysis (Partial Analysis)

Dimensional Analysis (Partial Analysis) Dimensional Analysis (Partial Analysis) DA is a mathematical method of considerable value to problems in science and engineering especially physics and fluid mechanics. All physical quantities can usually

More information

The online of midterm-tests of Fluid Mechanics 1

The online of midterm-tests of Fluid Mechanics 1 The online of midterm-tests of Fluid Mechanics 1 1) The information on a can of pop indicates that the can contains 460 ml. The mass of a full can of pop is 3.75 lbm while an empty can weights 80.5 lbf.

More information

Section Mass Spring Systems

Section Mass Spring Systems Asst. Prof. Hottovy SM212-Section 3.1. Section 5.1-2 Mass Spring Systems Name: Purpose: To investigate the mass spring systems in Chapter 5. Procedure: Work on the following activity with 2-3 other students

More information

Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes.

Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. 13.012 Marine Hydrodynamics for Ocean Engineers Fall 2004 Quiz #2 Student name: This is a closed book examination. You are allowed 1 sheet of 8.5 x 11 paper with notes. For the problems in Section A, fill

More information

Chapter 01 Introduction

Chapter 01 Introduction Chapter 01 Introduction Multiple Choice Questions 1. A student of physics watching the Star Wars films knows that according to the laws of physics A. the Rebel heroes can see the flash of an explosion

More information

PHYSICS! Unit 1 Study Plan and Review Packet

PHYSICS! Unit 1 Study Plan and Review Packet Name Do this! PHYSICS! Unit 1 Study Plan and Review Packet Not this! Test Review Checklist Review the unit objectives. - On the next page, read the unit objectives and check off your current standing on

More information

Experiment 2 Random Error and Basic Statistics

Experiment 2 Random Error and Basic Statistics PHY191 Experiment 2: Random Error and Basic Statistics 7/12/2011 Page 1 Experiment 2 Random Error and Basic Statistics Homework 2: turn in the second week of the experiment. This is a difficult homework

More information

Physics Revision Guide Volume 1

Physics Revision Guide Volume 1 Physics Revision Guide Volume 1 "Many people do not plan to fail, they just fail to plan!" Develop a customized success plan Create necessity in you to take action now Boost your confidence in your revision

More information

Math 232: Final Exam Version A Spring 2015 Instructor: Linda Green

Math 232: Final Exam Version A Spring 2015 Instructor: Linda Green Math 232: Final Exam Version A Spring 2015 Instructor: Linda Green Name: 1. Calculators are allowed. 2. You must show work for full and partial credit unless otherwise noted. In particular, you must evaluate

More information

Evaluate the following limit without using l Hopital s Rule. x x. = lim = (1)(1) = lim. = lim. = lim = (3 1) =

Evaluate the following limit without using l Hopital s Rule. x x. = lim = (1)(1) = lim. = lim. = lim = (3 1) = 5.4 1 Looking ahead. Example 1. Indeterminate Limits Evaluate the following limit without using l Hopital s Rule. Now try this one. lim x 0 sin3x tan4x lim x 3x x 2 +1 sin3x 4x = lim x 0 3x tan4x ( ) 3

More information

Name: Lab Partner: Section: In this experiment error analysis and propagation will be explored.

Name: Lab Partner: Section: In this experiment error analysis and propagation will be explored. Chapter 2 Error Analysis Name: Lab Partner: Section: 2.1 Purpose In this experiment error analysis and propagation will be explored. 2.2 Introduction Experimental physics is the foundation upon which the

More information

Section 4: Math Test Calculator

Section 4: Math Test Calculator QUESTION 0. The correct answer is 3 _ or.6. Triangle ABC is a right triangle with its right 5 angle at B. Thus, _ AC is the hypotenuse of right triangle ABC, and _ AB and _ BC are the legs of right triangle

More information

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis. OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric

More information

Physics 191 Free Fall

Physics 191 Free Fall Physics 191 Free Fall 2016-09-21 1 Introduction 2 2 Experimental Procedure 2 3 Homework Questions - Hand in before class! 3 4 Data Analysis 3 4.1 Prepare the data in Excel..................................

More information

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3)

EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) TA name Lab section Date TA Initials (on completion) Name UW Student ID # Lab Partner(s) EXPERIMENT 7: ANGULAR KINEMATICS AND TORQUE (V_3) 121 Textbook Reference: Knight, Chapter 13.1-3, 6. SYNOPSIS In

More information

1. Find the domain of the following functions. Write your answer using interval notation. (9 pts.)

1. Find the domain of the following functions. Write your answer using interval notation. (9 pts.) MATH- Sample Eam Spring 7. Find the domain of the following functions. Write your answer using interval notation. (9 pts.) a. 9 f ( ) b. g ( ) 9 8 8. Write the equation of the circle in standard form given

More information

Transient Response of a Second-Order System

Transient Response of a Second-Order System Transient Response of a Second-Order System ECEN 830 Spring 01 1. Introduction In connection with this experiment, you are selecting the gains in your feedback loop to obtain a well-behaved closed-loop

More information

MECHANICS 1, M1 (4761) AS

MECHANICS 1, M1 (4761) AS (4761) AS Objectives To introduce students to mathematical modelling and to the basic concepts in kinematics, statics and dynamics which underlie the study of mechanics. Students will be expected to formulate

More information

Exam 1 Solutions. PHY 2048 Spring 2014 Acosta, Rinzler. Note that there are several variations of some problems, indicated by choices in parentheses.

Exam 1 Solutions. PHY 2048 Spring 2014 Acosta, Rinzler. Note that there are several variations of some problems, indicated by choices in parentheses. Exam 1 Solutions Note that there are several variations of some problems, indicated by choices in parentheses. Problem 1 Let vector a! = 4î + 3 ĵ and vector b! = î + 2 ĵ (or b! = î + 4 ĵ ). What is the

More information

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis.

Closed duct flows are full of fluid, have no free surface within, and are driven by a pressure gradient along the duct axis. OPEN CHANNEL FLOW Open channel flow is a flow of liquid, basically water in a conduit with a free surface. The open channel flows are driven by gravity alone, and the pressure gradient at the atmospheric

More information

Fluid Mechanics Introduction

Fluid Mechanics Introduction Fluid Mechanics Introduction Fluid mechanics study the fluid under all conditions of rest and motion. Its approach is analytical, mathematical, and empirical (experimental and observation). Fluid can be

More information

PHY 111L Activity 2 Introduction to Kinematics

PHY 111L Activity 2 Introduction to Kinematics PHY 111L Activity 2 Introduction to Kinematics Name: Section: ID #: Date: Lab Partners: TA initials: Objectives 1. Introduce the relationship between position, velocity, and acceleration 2. Investigate

More information

Free Fall. v gt (Eq. 4) Goals and Introduction

Free Fall. v gt (Eq. 4) Goals and Introduction Free Fall Goals and Introduction When an object is subjected to only a gravitational force, the object is said to be in free fall. This is a special case of a constant-acceleration motion, and one that

More information

Algebra II A Guided Notes

Algebra II A Guided Notes Algebra II A Guided Notes Name Chapter 1 Period Notes 1-5 Learning Matrix Goal #9: I can solve inequalities. Learning Matrix Goal #10: I can solve real-world problems involving inequalities. Learning Matrix

More information

APPLICATIONS OF INTEGRATION

APPLICATIONS OF INTEGRATION 6 APPLICATIONS OF INTEGRATION APPLICATIONS OF INTEGRATION 6.4 Work In this section, we will learn about: Applying integration to calculate the amount of work done in performing a certain physical task.

More information

The Quadratic Formula. ax 2 bx c 0 where a 0. Deriving the Quadratic Formula. Isolate the constant on the right side of the equation.

The Quadratic Formula. ax 2 bx c 0 where a 0. Deriving the Quadratic Formula. Isolate the constant on the right side of the equation. SECTION 11.2 11.2 The Quadratic Formula 11.2 OBJECTIVES 1. Solve quadratic equations by using the quadratic formula 2. Determine the nature of the solutions of a quadratic equation by using the discriminant

More information

Measurements UNITS FOR MEASUREMENTS

Measurements UNITS FOR MEASUREMENTS Measurements UNITS FOR MEASUREMENTS Chemistry is an experimental science that requires the use of a standardized system of measurements. By international agreement in 1960, scientists around the world

More information

Quest Chapter 12. What things did Newton bring together and what did he toss? Read the text or check your notes. How does the moon move?

Quest Chapter 12. What things did Newton bring together and what did he toss? Read the text or check your notes. How does the moon move? 1 What is the Newtonian synthesis? 1. All objects near the Earth free-fall with the same acceleration. 2. The combination of forces on each planet directed towards the Sun 3. The combination of all forces

More information

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum

PHY 123 Lab 1 - Error and Uncertainty and the Simple Pendulum To print higher-resolution math symbols, click the Hi-Res Fonts for Printing button on the jsmath control panel. PHY 13 Lab 1 - Error and Uncertainty and the Simple Pendulum Important: You need to print

More information

Standard Guide for Determination of the Thermal Resistance of Low-Density Blanket-Type Mineral Fiber Insulation 1

Standard Guide for Determination of the Thermal Resistance of Low-Density Blanket-Type Mineral Fiber Insulation 1 Designation: C 653 97 Standard Guide for Determination of the Thermal Resistance of Low-Density Blanket-Type Mineral Fiber Insulation 1 This standard is issued under the fixed designation C 653; the number

More information

The Normal Distribution. Chapter 6

The Normal Distribution. Chapter 6 + The Normal Distribution Chapter 6 + Applications of the Normal Distribution Section 6-2 + The Standard Normal Distribution and Practical Applications! We can convert any variable that in normally distributed

More information

ENGR 292 Fluids and Thermodynamics

ENGR 292 Fluids and Thermodynamics ENGR 292 Fluids and Thermodynamics Scott Li, Ph.D., P.Eng. Mechanical Engineering Technology Camosun College Jan.13, 2017 Review of Last Class Course Outline Class Information Contact Information, Website

More information

CHARGE TO MASS RATIO FOR THE ELECTRON

CHARGE TO MASS RATIO FOR THE ELECTRON CHARGE TO MASS RATIO FOR THE ELECTRON OBJECTIVE: To measure the ratio of the charge of an electron to its mass. METHOD: A stream of electrons is accelerated by having them "fall" through a measured potential

More information

MATH 152 Spring 2018 COMMON EXAM I - VERSION A

MATH 152 Spring 2018 COMMON EXAM I - VERSION A MATH 52 Spring 28 COMMON EXAM I - VERSION A LAST NAME: FIRST NAME: INSTRUCTOR: SECTION NUMBER: UIN: DIRECTIONS:. The use of a calculator, laptop or cell phone is prohibited. 2. TURN OFF cell phones and

More information

Go back to the main index page

Go back to the main index page 1 of 10 8/24/2006 11:22 AM Go back to the main index page 1. In engineering the application of fluid mechanics in designs make much of the use of empirical results from a lot of experiments. This data

More information

Graphical Analysis and Errors MBL

Graphical Analysis and Errors MBL Graphical Analysis and Errors MBL I Graphical Analysis Graphs are vital tools for analyzing and displaying data Graphs allow us to explore the relationship between two quantities -- an independent variable

More information

Physics A - PHY 2048C

Physics A - PHY 2048C Physics A - PHY 2048C Newton s Laws & Equations of 09/27/2017 My Office Hours: Thursday 2:00-3:00 PM 212 Keen Building Warm-up Questions 1 In uniform circular motion (constant speed), what is the direction

More information

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.)

MULTIPLE-CHOICE PROBLEMS:(Two marks per answer) (Circle the Letter Beside the Most Correct Answer in the Questions Below.) MULTIPLE-CHOICE PROLEMS:(Two marks per answer) (Circle the Letter eside the Most Correct Answer in the Questions elow.) 1. The absolute viscosity µ of a fluid is primarily a function of: a. Density. b.

More information

You should be able to demonstrate and show your understanding of:

You should be able to demonstrate and show your understanding of: OCR B Physics H557 Module 6: Field and Particle Physics You should be able to demonstrate and show your understanding of: 6.1: Fields (Charge and Field) Field: A potential gradient Field Strength: Indicates

More information

Practical Statistics for the Analytical Scientist Table of Contents

Practical Statistics for the Analytical Scientist Table of Contents Practical Statistics for the Analytical Scientist Table of Contents Chapter 1 Introduction - Choosing the Correct Statistics 1.1 Introduction 1.2 Choosing the Right Statistical Procedures 1.2.1 Planning

More information

Advanced Algebra (Questions)

Advanced Algebra (Questions) A-Level Maths Question and Answers 2015 Table of Contents Advanced Algebra (Questions)... 3 Advanced Algebra (Answers)... 4 Basic Algebra (Questions)... 7 Basic Algebra (Answers)... 8 Bivariate Data (Questions)...

More information

Report for Experiment #1 Measurement

Report for Experiment #1 Measurement ! Report for Experiment #1 Measurement Abstract The goal of this experiment was to get familiar with the method of measuring with essential tools. For the experiment, rulers, a scale, metal cylinders,

More information

- 5π 2. a. a. b. b. In 5 7, convert to a radian measure without using a calculator

- 5π 2. a. a. b. b. In 5 7, convert to a radian measure without using a calculator 4-1 Skills Objective A In 1 and, the measure of a rotation is given. a. Convert the measure to revolutions. b. On the circle draw a central angle showing the given rotation. 1. 5. radians - a. a. b. b.

More information

ES201 - Examination 2 Fall Instructor: NAME BOX NUMBER

ES201 - Examination 2 Fall Instructor: NAME BOX NUMBER ES201 - Examination 2 Fall 2003-2004 Instructor: Class Period NAME BOX NUMBER Problem 1 ( 22 ) Problem 2 ( 26 ) Problem 3 ( 26 ) Problem 4 ( 26 ) Total (100) INSTRUCTIONS Closed book/notes exam. (Unit

More information

Correlation of Moving with Algebra Grade 7 To Ohio Academic Content Standards

Correlation of Moving with Algebra Grade 7 To Ohio Academic Content Standards CP 3/06 Correlation of Moving with Algebra Grade 7 To Ohio Academic Content Standards NUMBER, NUMBER SENSE AND OPERATION STANDARDS Students demonstrate number sense including an understanding of number

More information

Standing Waves on a String

Standing Waves on a String Standing Waves on a String Introduction Consider a string, with its two ends fixed, vibrating transversely in one of its harmonic modes. See Figures 1 and. Figure 1: Equipment Used in Performing the Experiment.

More information

Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118

Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118 CVEN 311-501 (Socolofsky) Fluid Dynamics Exam #1: Introduction, fluid statics, and the Bernoulli equation March 2, 2016, 7:00 p.m. 8:40 p.m. in CE 118 Name: : UIN: : Instructions: Fill in your name and

More information

Fluid Mechanics 3502 Day 1, Spring 2018

Fluid Mechanics 3502 Day 1, Spring 2018 Instructor Fluid Mechanics 3502 Day 1, Spring 2018 Dr. Michele Guala, Civil Eng. Department UMN Office hours: (Tue -?) CEGE 162 9:30-10:30? Tue Thu CEGE phone (612) 626-7843 (Mon,Wed,Fr) SAFL, 2 third

More information

Collecting and Reporting Data

Collecting and Reporting Data Types of Data Data can be classified as qualitative or quantitative: Qualitative data Are observed rather than measured Include written descriptions, videos, photographs, or live observations Examples

More information