Student Exploration: Free-Fall Laboratory

Size: px
Start display at page:

Download "Student Exploration: Free-Fall Laboratory"

Transcription

1 Name: Date: Student Exploration: Free-Fall Laboratory Vocabulary: acceleration, air resistance, free fall, instantaneous velocity, terminal velocity, velocity, vacuum Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1. Suppose you dropped a feather and a hammer at the same time. Which object would hit the ground first? 2. Imagine repeating the experiment in an airless tube, or vacuum. Would this change the result? If so, how? Gizmo Warm-up The Free-Fall Laboratory Gizmo allows you to measure the motion of an object in free fall. On the CONTROLS pane check that the Shuttlecock is selected, the Initial height is 3 meters, and the Atmosphere is Air. 1. Click Play ( ) to release the shuttlecock. How long does it take to fall to the bottom? 2. Select the GRAPH tab. The box labeled h (m) should be checked, displaying a graph of height vs. time. What does this graph show? 3. Turn on the v (m/s) box to see a graph of velocity vs. time. Velocity is the speed and direction of the object. Velocity is also referred to as instantaneous velocity. Because the shuttlecock is falling downward, its velocity is negative. Does the velocity stay constant as the object drops? 4. Turn on the a (m/s/s) box to see a graph of acceleration vs. time. Acceleration is the rate at which the velocity changes over time. What does this graph show?

2 Activity A: Falling objects Get the Gizmo ready: Click Reset ( ). Select the CONTROLS tab. Question: What factors affect how quickly an object falls? 1. Observe: Drop each item through Air from a height of 3 meters. Record how long it takes to fall below. For the tennis ball, try to click Pause ( ) when it hits the ground. Shuttlecock Cotton ball Tennis ball Rock Pebble 2. Form a hypothesis: Why do some objects fall faster than others? 3. Predict: A vacuum has no air. How do you think the results will change if the objects fall through a vacuum? 4. Experiment: On the Atmosphere menu, select None. Drop each item again, and record the results below. Shuttlecock Cotton ball Tennis ball Rock Pebble 5. Analyze: What happened when objects fell through a vacuum? 6. Draw conclusions: Objects falling through air are slowed by the force of air resistance. Which objects were slowed the most by air resistance? Why do you think this is so? (Activity A continued on next page)

3 Activity A (continued from previous page) 7. Calculate: Select the Shuttlecock. Check that the Initial height is 3 meters and the Atmosphere is None. Click Play and wait for the Shuttlecock to fall. Select the BAR CHART tab and turn on Show numerical values. A. How long did it take the shuttlecock to fall to the bottom? B. What was the acceleration of the shuttlecock during its fall? C. What was the velocity of the shuttlecock when it hit the bottom? (Note: This is an example of instantaneous velocity.) D. What is the mathematical relationship between these three values? 8. Make a rule: If the acceleration is constant and the starting velocity is zero, what is the relationship between the acceleration of a falling body (a), the time it takes to fall (t), and its instantaneous velocity when it hits the ground (v)? Express your answer as an equation relating v, a, and t: v = 9. Test: Click Reset. On the CONTROLS tab, set the Initial height to 12 meters. Click Play. A. How long did it take for the shuttlecock to fall 12 meters? B. Assuming the acceleration is still m/s 2, what is the instantaneous velocity of the shuttlecock when it hits the ground? Show your work below. v = C. Select the BAR CHART tab. What is the final velocity of the shuttlecock? D. Does this agree with your calculated value?

4 Activity B: Terminal velocity Get the Gizmo ready: Click Reset. Set the Initial height to 12 meters. Set the Atmosphere to Air. Question: How does air resistance affect falling objects? 1. Observe: Select the Shuttlecock. Choose the BAR CHART tab, and click Play. What do you notice about the velocity and acceleration of the shuttlecock? When objects fall through air for a long time, they will eventually stop accelerating. Their velocity at this point is called terminal velocity. 2. Form hypothesis: How will an object s size and mass affect its terminal velocity? 3. Experiment: Click Reset. On the CONTROLS tab, select Manual settings. Set the height to 100 meters and the air density (ρ) to 1.3 kg/m 3, close to actual air density at sea level. For each combination of mass and radius in the charts below, find the terminal velocity (v terminal) of the object. Use the BAR CHART tab to find the terminal velocity. (Hint: Turn on Show numerical values.) Mass Radius v terminal 1.0 g 3.0 cm 10.0 g 3.0 cm 50.0 g 3.0 cm Mass Radius v terminal 10.0 g 2.0 cm 10.0 g 5.0 cm 10.0 g 10.0 cm 4. Analyze: Your data show how mass and radius affect terminal velocity. A. What was the effect of increasing mass? B. What was the effect of increasing radius? 5. Apply: If you wanted to use a device to slow your fall, what properties should it have?

5 Activity C: Acceleration, distance, and time Get the Gizmo ready: Click Reset. Select Common objects. Set the Atmosphere to None. Question: How long does it take an object to fall from a given height? 1. Observe: Select the Rock, and set the Initial height to 3 meters. Choose the GRAPH tab, and click Play to drop the rock through a vacuum. Turn on all three graphs. A. What is the shape of the graph of velocity vs. time? B. What is the shape of the graph of acceleration vs. time? 2. Analyze: Select the TABLE tab and look at the v (m/s) column. A. The starting velocity was 0 m/s, and the final velocity was m/s. Based on this, what was the average velocity of the rock? B. In general, how do you find the average velocity of any object falling in a vacuum? (Assume you know the final velocity.) 3. Calculate: Distance, average velocity, and time are related by the equation, d = v average t A. How much time did it take the rock to fall? B. What is the product of the average velocity and time? C. Does this equal the distance that the rock fell? 4. Calculate: The acceleration of any object due to Earth s gravity is m/s 2. For every second an object falls, its velocity changes by 9.81 meters per second. For several different times on the table, multiply the time by the acceleration. A. What do you notice? B. If you know the acceleration and time, how can you calculate the final velocity? C. Challenge: If you know the acceleration and time, how can you calculate the average velocity? (Activity C continued on next page)

6 Activity C (continued from previous page) 5. Make a rule: So far you have figured out two rules that relate time, acceleration, average velocity, and distance. Review these rules now. A. How do you find average velocity (v average) from acceleration (a) and time (t)? B. How do you find distance (d) from average velocity (v average) and time (t)? C. Now put the two equations together. Substitute your result in equation A for the (v average) term in equation B. Your final equation should only have d, a, and t terms. 6. Apply: Use your rule to solve the following problems. Check your answers with the Gizmo. Assume that each fall takes place in a vacuum with an acceleration of m/s 2. A. A rock falls for 1.43 seconds. How far did it fall? B. How long will it take for a rock to fall 12 meters? C. A rock falls for 4 seconds. How far did it fall? D. A rock falls for 3 seconds. What was its velocity when it hit the ground? E. How long will it take for a rock to fall 50 meters?

Student Exploration: Energy of a Pendulum

Student Exploration: Energy of a Pendulum Name: Date: Student Exploration: Energy of a Pendulum Vocabulary: conservation of energy, gravitational potential energy, kinetic energy, pendulum, potential energy, velocity Prior Knowledge Questions

More information

Student Exploration: Uniform Circular Motion

Student Exploration: Uniform Circular Motion Name: Date: Student Exploration: Uniform Circular Motion Vocabulary: acceleration, centripetal acceleration, centripetal force, Newton s first law, Newton s second law, uniform circular motion, vector,

More information

Student Exploration: Food Chain

Student Exploration: Food Chain Name: Date: Student Exploration: Food Chain Vocabulary: consumer, ecosystem, equilibrium, food chain,, predator, prey, producer Prior Knowledge Questions (Do these BEFORE using the Gizmo.) The Food Chain

More information

Student Exploration: Inclined Plane Sliding Objects

Student Exploration: Inclined Plane Sliding Objects Name: Date: Student Exploration: Inclined Plane Sliding Objects Vocabulary: acceleration, coefficient of friction, conservation of energy, friction, gravitational potential energy, inclined plane, kinetic

More information

Gravitational Energy using Gizmos

Gravitational Energy using Gizmos Name: Date: Gravitational Energy using Gizmos Using your Gizmo app, open the Potential energy on shelves Gizmo Vocabulary: gravitational energy, Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

Student Exploration: Bohr Model of Hydrogen

Student Exploration: Bohr Model of Hydrogen Name: Date: Student Exploration: Bohr Model of Hydrogen Vocabulary: absorption spectrum, Bohr model, electron volt, emission spectrum, energy level, ionization energy, laser, orbital, photon [Note to teachers

More information

Student Exploration: Air Track

Student Exploration: Air Track Name: Date: Student Exploration: Air Track Vocabulary: air track, approach velocity, conservation of energy, conservation of momentum, elasticity, kinetic energy, momentum, separation velocity, velocity

More information

Student Exploration: Diffusion

Student Exploration: Diffusion Name: Date: Student Exploration: Diffusion Vocabulary: absolute zero, controlled experiment, diffusion, dynamic equilibrium, Kelvin scale, kinetic energy Prior Knowledge Question (Do this BEFORE using

More information

Student Exploration: Calorimetry Lab

Student Exploration: Calorimetry Lab Name: Date: Student Exploration: Calorimetry Lab Vocabulary: calorie, calorimeter, joule, specific heat capacity Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1. The Latin word calor means

More information

Student Exploration: Collision Theory

Student Exploration: Collision Theory Name: Date: Student Exploration: Collision Theory Vocabulary: activated complex, catalyst, chemical reaction, concentration, enzyme, half-life, molecule, product, reactant, surface area Prior Knowledge

More information

Key Performance Task

Key Performance Task COURSE UNIT PERIOD PAGE SPH3U Energy Conservation of Mechanical Energy 1 of 2 Overall Expectation D2. investigate energy transformations and the law of conservation of energy, and solve related problems

More information

Equilibrium and Concentration

Equilibrium and Concentration Equilibrium and Concentration Answer Key Vocabulary: chemical equilibrium, concentration, equilibrium, equilibrium constant, reaction quotient, reversible reaction Prior Knowledge Questions (Do these BEFORE

More information

Student Exploration: Period of a Pendulum

Student Exploration: Period of a Pendulum Name: Date: Student Exploration: Period of a Pendulum Vocabulary: controlled experiment, mean, pendulum, period Prior Knowledge Questions (Do these BEFORE using the Gizmo.) A pendulum is a weight that

More information

Student Exploration: Cell Division

Student Exploration: Cell Division Name: Date: Student Exploration: Cell Division Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1. What is the purpose of this activity? 2. Cells reproduce by splitting in half, a process called

More information

Unit: Planetary Science

Unit: Planetary Science Orbital Motion Kepler s Laws GETTING AN ACCOUNT: 1) go to www.explorelearning.com 2) click on Enroll in a class (top right hand area of screen). 3) Where it says Enter class Code enter the number: MLTWD2YAZH

More information

Student Exploration: Sled Wars

Student Exploration: Sled Wars Name: Date: Student Exploration: Sled Wars Vocabulary: acceleration, energy, friction, kinetic energy, momentum, potential energy, speed Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1.

More information

Student Exploration: Roller Coaster Physics

Student Exploration: Roller Coaster Physics Name: Date: Student Exploration: Roller Coaster Physics Vocabulary: friction, gravitational potential energy, kinetic energy, momentum, velocity Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

Student Exploration: Energy Conversion in a System

Student Exploration: Energy Conversion in a System Name: Date: Student Exploration: Energy Conversion in a System Vocabulary: energy, gravitational potential energy, heat energy, kinetic energy, law of conservation of energy, specific heat capacity Prior

More information

Student Exploration: Inclined Plane Rolling Objects

Student Exploration: Inclined Plane Rolling Objects Name: Date: Student Exploration: Inclined Plane Rolling Objects [Note to teachers and students: This Gizmo was designed as a follow-up to the Inclined Plane Sliding Objects Gizmo. We recommend doing that

More information

Student Exploration: 2D Eclipse

Student Exploration: 2D Eclipse Name: Date: Student Exploration: 2D Eclipse Vocabulary: corona, eclipse, lunar eclipse, penumbra, solar eclipse, umbra Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1. The image below shows

More information

F = ma W = mg v = D t

F = ma W = mg v = D t Forces and Gravity Car Lab Name: F = ma W = mg v = D t p = mv Part A) Unit Review at D = f v = t v v Please write the UNITS for each item below For example, write kg next to mass. Name: Abbreviation: Units:

More information

SC.8.E.5.9. Summer and Winter Gizmo

SC.8.E.5.9. Summer and Winter Gizmo 8 th Grade Science Quarter 1 Recovery Packet SC.8.E.5.9 DAYS/YEARS/SEASONS Go to www.explorelearning.com and search for the Summer and Winter Gizmo. Answer the following questions: Gizmo Warm-up Summer

More information

Student Exploration: Bohr Model: Introduction

Student Exploration: Bohr Model: Introduction Name: Date: Student Exploration: Bohr Model: Introduction Vocabulary: absorption spectrum, Bohr model, electron volt, energy level, laser, orbital, photon Prior Knowledge Questions (Do these BEFORE using

More information

Gravity Teacher s Guide

Gravity Teacher s Guide Gravity Teacher s Guide 1.0 Summary Gravity is the 9 th and final Dynamica activity to be done before the Post-Test. This activity has not undergone many changes from the last school year. It should take

More information

Student Exploration: 2D Collisions

Student Exploration: 2D Collisions Name: Date: Student Exploration: 2D Collisions Vocabulary: center of mass, conservation of energy, conservation of momentum, elasticity, kinetic energy, momentum, speed, vector, velocity Prior Knowledge

More information

Do Now 10 Minutes Topic Free Fall

Do Now 10 Minutes Topic Free Fall Do Now 10 Minutes Topic Free Fall I will be passing out a pop quiz right now. You have ten minutes to complete the pop quiz. Homework Complete the Motion Graph Lab Turn in the Kinematic Equations Worksheet

More information

Laboratory Report. Customer s Name. Academic Institution

Laboratory Report. Customer s Name. Academic Institution Running head: LABORATORY REPORT Laboratory Report Customer s Name Academic Institution LABORATORY REPORT 2 Laboratory Report 1. The accepted value for gravity (g) on Earth is 9.8 m/s 2. Is gravity constant?

More information

Student Exploration: Seasons in 3D

Student Exploration: Seasons in 3D Name: Date: Student Exploration: Seasons in 3D Vocabulary: axis, equinox, latitude, Northern Hemisphere, revolve, rotate, solar energy, solar intensity, Southern Hemisphere, summer solstice, winter solstice

More information

Collision Theory Gizmo ExploreLearning.com

Collision Theory Gizmo ExploreLearning.com Names: Period: Date: Collision Theory Gizmo ExploreLearning.com Vocabulary: activated complex, catalyst, chemical reaction, concentration, enzyme, half-life, molecule, product, reactant, surface area Prior

More information

Student Exploration: Cell Energy Cycle

Student Exploration: Cell Energy Cycle Name: Date: Student Exploration: Cell Energy Cycle Vocabulary: aerobic respiration, anaerobic respiration, ATP, cellular respiration, chlorophyll, chloroplast, cytoplasm, glucose, glycolysis, mitochondria,

More information

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion.

Projectile motion. Objectives. Assessment. Assessment. Equations. Physics terms 5/20/14. Identify examples of projectile motion. Projectile motion Objectives Identify examples of projectile motion. Solve projectile motion problems. problems Graph the motion of a projectile. 1. Which of the events described below cannot be an example

More information

Student Exploration: Cell Energy Cycle

Student Exploration: Cell Energy Cycle Name: Date: Student Exploration: Cell Energy Cycle Vocabulary: aerobic respiration, anaerobic respiration, ATP, cellular respiration, chemical energy, chlorophyll, chloroplast, cytoplasm, glucose, glycolysis,

More information

Guiding Questions Activity 6. What are your ideas about gravity?

Guiding Questions Activity 6. What are your ideas about gravity? Guiding Questions Activity 6 What are your ideas about gravity? Round? Flat? Begin this discussion by reminding students of the earlier work they did concerning how people viewed their world. Remind them

More information

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions:

BEFORE YOU READ. Forces and Motion Gravity and Motion STUDY TIP. After you read this section, you should be able to answer these questions: CHAPTER 2 1 SECTION Forces and Motion Gravity and Motion BEFORE YOU READ After you read this section, you should be able to answer these questions: How does gravity affect objects? How does air resistance

More information

Section 2: Friction, Gravity, and Elastic Forces

Section 2: Friction, Gravity, and Elastic Forces Chapter 10, Section 2 Friction, Gravity, & Elastic Forces Section 2: Friction, Gravity, and Elastic Forces What factors determine the strength of the friction force between two surfaces? What factors affect

More information

Student Exploration: Cell Energy Cycle

Student Exploration: Cell Energy Cycle Name: Date: Student Exploration: Cell Energy Cycle Vocabulary: aerobic, anaerobic, ATP, cellular respiration, chemical energy, chlorophyll, chloroplast, cytoplasm, glucose, glycolysis, mitochondria, photosynthesis,

More information

Student Exploration: Temperature and Particle Motion

Student Exploration: Temperature and Particle Motion Name: Date: Student Exploration: Temperature and Particle Motion Vocabulary: absolute zero, Kelvin scale, kinetic energy, molecule, temperature, Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

Student Exploration: 3D Eclipse

Student Exploration: 3D Eclipse Name: Date: Student Exploration: 3D Eclipse Vocabulary: eclipse, lunar eclipse, path of totality, penumbra, solar eclipse, umbra Prior Knowledge Questions (Do these BEFORE using the Gizmo.) 1. Have you

More information

Student Exploration: Weathering

Student Exploration: Weathering Name: Date: Student Exploration: Weathering Vocabulary: abrasion, chemical weathering, clay formation, climate, dissolving, frost wedging, granite, limestone, mechanical weathering, rusting, sandstone,

More information

Gravity: How fast do objects fall? Student Advanced Version

Gravity: How fast do objects fall? Student Advanced Version Gravity: How fast do objects fall? Student Advanced Version Kinematics is the study of how things move their position, velocity, and acceleration. Acceleration is always due to some force acting on an

More information

Student Exploration: Hurricane Motion

Student Exploration: Hurricane Motion Name: Date: Student Exploration: Hurricane Motion Vocabulary: air pressure, Coriolis effect, eye, hurricane, knot, meteorologist, precipitation Prior Knowledge Questions (Do these BEFORE using the Gizmo.)

More information

The key difference between speed and velocity is the. object s motion, while velocity designates an object s speed plus the direction of its motion.

The key difference between speed and velocity is the. object s motion, while velocity designates an object s speed plus the direction of its motion. Article retrieved from Brittanica, Retrieved 6/27/2016 Velocity Velocity has a scientific meaning that is slightly different from that of speed. Speed is the rate of an object s motion, while velocity

More information

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time.

acceleration versus time. LO Determine a particle s change in position by graphical integration on a graph of velocity versus time. Chapter: Chapter 2 Learning Objectives LO 2.1.0 Solve problems related to position, displacement, and average velocity to solve problems. LO 2.1.1 Identify that if all parts of an object move in the same

More information

Chapter: Motion, Acceleration, and Forces

Chapter: Motion, Acceleration, and Forces Chapter 3 Table of Contents Chapter: Motion, Acceleration, and Forces Section 1: Describing Motion Section 2: Acceleration Section 3: Motion and Forces 1 Motion Describing Motion Distance and time are

More information

Kinematics Multiple-Choice Questions

Kinematics Multiple-Choice Questions Kinematics Multiple-Choice Questions 1. An object moves around a circular path of radius R. The object starts from point A, goes to point B and describes an arc of half of the circle. Which of the following

More information

9/27/12. Chapter: Motion, Acceleration, and Forces. Motion and Position. Motion. Distance. Relative Motion

9/27/12. Chapter: Motion, Acceleration, and Forces. Motion and Position. Motion. Distance. Relative Motion 9/7/ Table of Contents Chapter: Motion,, and Forces Section : Chapter Section : Section : Motion Distance and time are important. In order to win a race, you must cover the distance in the shortest amount

More information

Student Exploration: Electromagnetic Induction

Student Exploration: Electromagnetic Induction Name: Date: Student Exploration: Electromagnetic Induction Vocabulary: current, electric field, electromagnetic induction, magnetic field, magnetic flux, right-hand rule, vector, voltage, wind generator

More information

Motion Section 3 Acceleration

Motion Section 3 Acceleration Section 3 Acceleration Review velocity Scan Use the checklist below to preview Section 3 of your book. Read all section titles. Read all boldfaced words. Read all graphs and equations. Look at all the

More information

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65

QuickCheck. A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart slows down while moving away from the origin. What do the position and velocity graphs look like? Slide 2-65 QuickCheck A cart speeds up toward the origin. What do the position and velocity

More information

CHAPTER 3 ACCELERATED MOTION

CHAPTER 3 ACCELERATED MOTION Physics Approximate Timeline Students are expected to keep up with class work when absent. CHAPTER 3 ACCELERATED MOTION Day Plans for the day Assignments for the day 1 3.1 Acceleration o Changing Velocity

More information

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A.

(a) On the diagram above, draw an arrow showing the direction of velocity of the projectile at point A. QUESTION 1 The path of a projectile in a uniform gravitational field is shown in the diagram below. When the projectile reaches its maximum height, at point A, its speed v is 8.0 m s -1. Assume g = 10

More information

Boyle s Law and Charles Law Activity

Boyle s Law and Charles Law Activity Boyle s Law and Charles Law Activity Introduction: This simulation helps you to help you fully understand 2 Gas Laws: Boyle s Law and Charles Law. These laws are very simple to understand, but are also

More information

DP Physics Torque Simulation

DP Physics Torque Simulation DP Physics Torque Simulation Name Go to Phet Simulation: ( http://phet.colorado.edu/simulations/sims.php?sim=torque ) Part I: Torque 1. Click the tab at the top that says torque 2. Set the force equal

More information

Galileo. t = 0 t = 1 second t = 2 seconds t = 3 seconds

Galileo. t = 0 t = 1 second t = 2 seconds t = 3 seconds Physics 5.2 Galilei Galileo 1600 s Studied how things fell Didn t have a good clock Rolled balls down an inclined plane Found that the speed increased as it rolled down the ramp 1st person to explain acceleration

More information

Newton s 2 nd Law of Motion. Physics 3 rd /4th 6wks Updated as of 12/17/15

Newton s 2 nd Law of Motion. Physics 3 rd /4th 6wks Updated as of 12/17/15 Newton s 2 nd Law of Motion Physics 3 rd /4th 6wks Updated as of 12/17/15 Newton s 2 nd Law: Football Correlation Newton s 2 nd Law of Motion What is the difference between tossing a ball and throwing

More information

FTF Day 1. Feb 2, 2012 HW: Ch 3 Review Q s and Key Terms (Friday) Topic: Newton s 2 nd and 3 rd Laws Questions

FTF Day 1. Feb 2, 2012 HW: Ch 3 Review Q s and Key Terms (Friday) Topic: Newton s 2 nd and 3 rd Laws Questions Motion pt 2 Table of Contents 1. FTF s 2. Forces and Motion Phet Lab 3. Bill Nye: Gravity 4. Brainpop (Forces) 5. Lab: What Law Is It? 6. HW: Ch 3 7. Cartoon or Poem (2 nd Law) 8. Explorations Ch 2 & 3

More information

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t).

Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Particle Motion Notes Position When an object moves, its position is a function of time. For its position function, we will denote the variable s(t). Example 1: For s( t) t t 3, show its position on the

More information

Student Exploration: Vectors

Student Exploration: Vectors Name: Date: Student Exploration: Vectors Vocabulary: component, dot product, magnitude, resultant, scalar, unit vector notation, vector Prior Knowledge Question (Do this BEFORE using the Gizmo.) An airplane

More information

Not So Free Fall Measuring the Terminal Velocity of Coffee Filters

Not So Free Fall Measuring the Terminal Velocity of Coffee Filters Not So Free Fall Measuring the Terminal Velocity of Coffee Filters When solving physics problems or performing physics experiments, you are often told to ignore air resistance or assume the acceleration

More information

Student Exploration: Seasons: Earth, Moon, and Sun

Student Exploration: Seasons: Earth, Moon, and Sun Name: Date: Student Exploration: Seasons: Earth, Moon, and Sun Vocabulary: altitude, axis, azimuth, equinox, horizon, latitude, revolution, rotation, solstice Prior Knowledge Questions (Do these BEFORE

More information

Exploring Potential Energy, Kinetic energy and Conservation of Energy: Part 1:

Exploring Potential Energy, Kinetic energy and Conservation of Energy: Part 1: WARM UP 3-4 mins: exploring energy with Phet Skate Park. Directions: 1) QUIETLY get a computer, and, with your partner,-search (Google) for: Phet Skate Park: Phet Skate Park 2) Click on the first link

More information

Gravity: How fast do objects fall? Teacher Advanced Version (Grade Level: 8 12)

Gravity: How fast do objects fall? Teacher Advanced Version (Grade Level: 8 12) Gravity: How fast do objects fall? Teacher Advanced Version (Grade Level: 8 12) *** Experiment with Audacity and Excel to be sure you know how to do what s needed for the lab*** Kinematics is the study

More information

1.5 Look Out Below! A Solidify Understanding Task

1.5 Look Out Below! A Solidify Understanding Task 22 1.5 Look Out Below A Solidify Understanding Task What happens when you drop a ball? It falls to the ground. That question sounds as silly as Why did the chicken cross the road? (To get to the other

More information

What two factors affect the force of Gravity? Gravity It s Universal it s everywhere!

What two factors affect the force of Gravity? Gravity It s Universal it s everywhere! What two factors affect the force of Gravity? Gravity It s Universal it s everywhere! Force The Standard Theory Boson (composite particle) Function Gravity Graviton Gravity curves space. And it always

More information

Student Exploration: Nuclear Decay

Student Exploration: Nuclear Decay Name: Date: Student Exploration: Nuclear Decay Vocabulary: alpha particle, atomic number, beta particle, daughter product, gamma ray, isotope, mass number, nuclear decay, positron, radioactive, subatomic

More information

Momentum. TAKE A LOOK 2. Predict How could the momentum of the car be increased?

Momentum. TAKE A LOOK 2. Predict How could the momentum of the car be increased? Name Class Date CHAPTER 2 Forces and Motion 3 Momentum SECTION BEFORE YOU READ After you read this section, you should be able to answer these questions: What is momentum? How is momentum calculated? What

More information

Physics 201 Lab 2 Air Drag Simulation

Physics 201 Lab 2 Air Drag Simulation Physics 201 Lab 2 Air Drag Simulation Jan 28, 2013 Equipment Initial Set Up Type the data from Table 1 into the appropriate cells. By preceding the content of the cell with an equal sign (as in cell A6)

More information

PH 1110 Summary Homework 1

PH 1110 Summary Homework 1 PH 111 Summary Homework 1 Name Section Number These exercises assess your readiness for Exam 1. Solutions will be available on line. 1a. During orientation a new student is given instructions for a treasure

More information

Name Class Date. Complete each of the following sentences by choosing the correct term from the word bank.

Name Class Date. Complete each of the following sentences by choosing the correct term from the word bank. Skills Worksheet Chapter Review USING KEY TERMS Complete each of the following sentences by choosing the correct term from the word bank. free fall projectile motion inertia terminal velocity momentum

More information

Forces. Video Demos. Graphing HW: October 03, 2016

Forces. Video Demos. Graphing HW: October 03, 2016 Distance (m or km) : Create a story using the graph. Describe what will be happening at each point during the day (A-D). Example: Trump has a busy day. He is currently at Trump Tower in NY. A- Trump jumps

More information

Modeling the Motion of a Projectile in Air

Modeling the Motion of a Projectile in Air In this lab, you will do the following: Modeling the Motion of a Projectile in Air analyze the motion of an object fired from a cannon using two different fundamental physics principles: the momentum principle

More information

Physics Review. Do: Page # Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h

Physics Review. Do: Page # Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h Physics Review Do: Page 413 417 #1 51 1. Which of the following is an appropriate unit for velocity? A. s B. m C. m/s 2 D. km/h Use the following information to answer Question 2. The following distance

More information

Unit 8B: Forces Newton s Laws of Motion

Unit 8B: Forces Newton s Laws of Motion Unit 8B: Forces Newton s Laws of Motion Indicator PS-5.7: Explain the motion of objects on the basis of Newton s three laws of motion. Objectives 1. State the meaning of Newton s laws of motion in your

More information

Calculating Acceleration

Calculating Acceleration Calculating Acceleration Textbook pages 392 405 Before You Read Section 9. 2 Summary How do you think a velocity-time graph might differ from the position-time graph you learned about in the previous chapter?

More information

Vocabulary: covalent bond, diatomic molecule, Lewis diagram, molecule, noble gases, nonmetal, octet rule, shell, valence, valence electron

Vocabulary: covalent bond, diatomic molecule, Lewis diagram, molecule, noble gases, nonmetal, octet rule, shell, valence, valence electron Covalent Bonds Answer Key Vocabulary: covalent bond, diatomic molecule, Lewis diagram, molecule, noble gases, nonmetal, octet rule, shell, valence, valence electron Prior Knowledge Questions (Do these

More information

STUDENT PACKET # 9 Student Exploration: Roller Coaster Physics

STUDENT PACKET # 9 Student Exploration: Roller Coaster Physics STUDENT PACKET # 9 Student Exploration: Roller Coaster Physics Name: Date: Reporting Category: Physical Science Benchmark SC.7.P.11.2 Investigate and describe the transformation of energy from one form

More information

Free Fall. v gt (Eq. 4) Goals and Introduction

Free Fall. v gt (Eq. 4) Goals and Introduction Free Fall Goals and Introduction When an object is subjected to only a gravitational force, the object is said to be in free fall. This is a special case of a constant-acceleration motion, and one that

More information

Physics 20 Homework 2 SIMS 2016

Physics 20 Homework 2 SIMS 2016 Physics 20 Homework 2 SIMS 2016 Due: Saturday, August 20 th 1. In class, we ignored air resistance in our discussion of projectile motion. Now, let s derive the relevant equation of motion in the case

More information

Acceleration is the rate of change of velocity in a specific direction. It is a VECTOR quantity has magnitude & direction. Any change in the velocity

Acceleration is the rate of change of velocity in a specific direction. It is a VECTOR quantity has magnitude & direction. Any change in the velocity Physics Ch. 4 Acceleration is the rate of change of velocity in a specific direction. It is a VECTOR quantity has magnitude & direction. Any change in the velocity (either in magnitude or direction) is

More information

PHYS 1405 Conceptual Physics I Laboratory # 3 Velocity and Acceleration

PHYS 1405 Conceptual Physics I Laboratory # 3 Velocity and Acceleration PHYS 1405 Conceptual Physics I Laboratory # 3 Velocity and Acceleration Investigation #1: How does changing the tilt of a surface affect the speed and acceleration of an object sliding down the surface?

More information

1-D Motion: Free Falling Objects

1-D Motion: Free Falling Objects v (m/s) a (m/s^2) 1-D Motion: Free Falling Objects So far, we have only looked at objects moving in a horizontal dimension. Today, we ll look at objects moving in the vertical. Then, we ll look at both

More information

Experiment 1 Look Out Below!!

Experiment 1 Look Out Below!! Velocity Velocity Velocity is how fast something is going and in what direction it is going. Direction is what separates the term velocity from speed. If we were talking about a car, we could say that

More information

First Semester Review for Physics

First Semester Review for Physics First Semester Review for Physics Learning goals are written in italics, practice exercises are numbered. You will find the equations on the last page. Show work for all calculations by writing Given,

More information

Physics 303 Motion of Falling Objects

Physics 303 Motion of Falling Objects Physics 303 Motion of Falling Objects Before we start today s lesson, we need to clear up some items from our last program. First of all, did you find out if Justin Time was speeding or not? It turns out

More information

CHAPTER 2: Describing Motion: Kinematics in One Dimension

CHAPTER 2: Describing Motion: Kinematics in One Dimension CHAPTER : Describing Motion: Kinematics in One Dimension Answers to Questions 1. A car speedometer measures only speed. It does not give any information about the direction, and so does not measure velocity..

More information

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its

4.1 Motion Is Relative. An object is moving if its position relative to a fixed point is changing. You can describe the motion of an object by its 4.1 Motion Is Relative You can describe the motion of an object by its position, speed, direction, and acceleration. An object is moving if its position relative to a fixed point is changing. 4.1 Motion

More information

Linear Motion. Dane, Ben, Julian, and Lilliana P. 6

Linear Motion. Dane, Ben, Julian, and Lilliana P. 6 Linear Motion Dane, Ben, Julian, and Lilliana P. 6 Concepts: Kinematics vs. Dynamics Reference Frames Distance vs. Displacement Scalars vs. Vectors Speed vs. Velocity Acceleration Objects in motion Freefall

More information

Common Writing Assignment: Science

Common Writing Assignment: Science Common Writing Assignment: Science Acceleration of Falling Objects CWA The Acceleration of Falling Objects CWA is an open argument. The overarching question is: Which of the two objects do you predict

More information

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question.

AP Physics C: Mechanics Ch. 2 Motion. SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. Name: Period: Date: AP Physics C: Mechanics Ch. Motion SHORT ANSWER. Write the word or phrase that best completes each statement or answers the question. ) Car A is traveling at twice the speed of car

More information

ACTIVITY 5: Changing Force-Strength and Mass

ACTIVITY 5: Changing Force-Strength and Mass UNIT FM Developing Ideas ACTIVITY 5: Changing Force-Strength and Mass Purpose In the previous activities of this unit you have seen that during a contact push/pull interaction, when a single force acts

More information

From rest, a rock is dropped and falls for 3.0 seconds before hitting the ground. What is its velocity right before it hits the ground?

From rest, a rock is dropped and falls for 3.0 seconds before hitting the ground. What is its velocity right before it hits the ground? Physics Lecture #6: Falling Objects A falling object accelerates as it falls. A bowling ball dropped on your foot will hurt more if it is dropped from a greater height since it has more time to increase

More information

Chapter 2: 1-D Kinematics

Chapter 2: 1-D Kinematics Chapter : 1-D Kinematics Types of Motion Translational Motion Circular Motion Projectile Motion Rotational Motion Natural Motion Objects have a proper place Objects seek their natural place External forces

More information

Learning Goals The particle model for a complex object: use the center of mass! located at the center of mass

Learning Goals The particle model for a complex object: use the center of mass! located at the center of mass PS 12A Lab 3: Forces Names: Learning Goals After you finish this lab, you will be able to: 1. Use Logger Pro to analyze video and calculate position, velocity, and acceleration. 2. Measure the normal force

More information

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move).

Comment: Unlike distance, displacement takes into consideration the direction of motion from the point of origin (where the object starts to move). Chapter 3 Kinematics (A) Distance Vs Displacement 1. Compare distance and displacement in terms of: (a) definition Distance is the total length of travel, irrespective of direction. Displacement is the

More information

Bellringer Day In your opinion, what are the five most important lab safety rules?

Bellringer Day In your opinion, what are the five most important lab safety rules? Bellringer Day 01 1. In your opinion, what are the five most important lab safety rules? Lab Safety Video Lab Safety Map See if you can identify the lab safety equipment around the room. You can discuss

More information

Chapter 2. Kinematic Equations. Problem 1. Kinematic Equations, specific. Motion in One Dimension

Chapter 2. Kinematic Equations. Problem 1. Kinematic Equations, specific. Motion in One Dimension Kinematic Equations Chapter Motion in One Dimension The kinematic equations may be used to solve any problem involving one-dimensional motion with a constant You may need to use two of the equations to

More information

Worksheet for Exploration 6.1: An Operational Definition of Work

Worksheet for Exploration 6.1: An Operational Definition of Work Worksheet for Exploration 6.1: An Operational Definition of Work This Exploration allows you to discover how work causes changes in kinetic energy. Restart. Drag "handy" to the front and/or the back of

More information

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion.

Lecture 2. 1D motion with Constant Acceleration. Vertical Motion. Lecture 2 1D motion with Constant Acceleration. Vertical Motion. Types of motion Trajectory is the line drawn to track the position of an abject in coordinates space (no time axis). y 1D motion: Trajectory

More information

Extra Credit Final Practice

Extra Credit Final Practice Velocity (m/s) Elements of Physics I Spring 218 Extra Credit Final Practice 1. Use the figure to answer the following questions. Which of the lines indicate a) Constant velocity b) Constant acceleration

More information