Model Structures and Behavior Patterns

Size: px
Start display at page:

Download "Model Structures and Behavior Patterns"

Transcription

1 Model Structures and Behavior Patterns The systems modeler believes that the behavior of the system is a function of the system itself Translating that idea to the model realm, this means that certain structures of elements should produce certain types of behavior patterns We are going to look at five common behavior patterns and their associated structures: Linear Growth or Decay Exponential Growth or Decay Logistic Growth Overshoot and Collapse Oscillation

2 Logistic Growth - Review When does logistic growth occur? In an exponential system that is constrained so that the reservoir achieves a maximum level that is sustainable by the system (e.g. limited by a Carrying Capacity) What is the rate equation for logistic growth? dr(t) = = k(t) * R(t), where k = G{ 1 R(t) C } What is the solution for the rate equation for logistic growth? R(t) = C 1 + Ae -Gt where A = C R 0 R 0 Does a logistic growth system contain any feedback? Logistic growth systems have closed loops that provide reinforcing and counteracting feedback in varying amounts at different times in the simulation

3 Overshoot and Collapse - Review When does overshoot and collapse behavior occur? Overshoot and collapse behavior occurs whenever one reservoir depends on another non-renewable reservoir for survival What are the rate equations for this type of system? dp(t) R(t) = {B [1 - ]} * P(t) R 0 dr(t) = -C * P(t) Does a system that produces overshoot and collapse behavior contain any feedback? Systems that produce overshoot and collapse behavior have closed loops that provide reinforcing and counteracting feedback in varying amounts at different times in the simulation, the key feedback being a counteracting feedback that connects the reservoir that depends upon the nonrenewable reservoir for survival

4 Oscillation - Example Consider the following example of a system: Our free range moose farmer realizes that as the moose population grows in his tract of the land, the abundance of foliage will decrease As such, the farmer decides to put together a more realistic model of the situation, tracking both the number of moose present, and the foliage present that is required to sustain the moose Let s begin by identifying the model elements needed: Step 1: Identify the reservoir(s) Now we need to track moose and foliage :

5 Oscillation - Example Step 2: Identify the process(es) that will change the contents of the reservoir(s) over time: We obviously need to have Moose being born, and Moose dying: But we also need to have a way for Foliage to grow and to be consumed by the Moose:

6 Oscillation - Example Step 3: Identify the converter(s) that determine the rates of inflow and outflow : In this system, we re going to assume that the Birth process proceeds at a rate which is a function of the amount of Foliage available, and the Consumption of Foliage is a function of the Moose population size: In effect, in this model, Death and Growth processes are operating in a constant fashion

7 Oscillation - Example Step 4: Define relationships between system elements with connectors: Draw in the linkages between elements: B M D G F C You can now see how each reservoir has a process that depends on the other reservoir to determine its function, as reflected in the difference equations for this system: M(t+ t) = M(t) + ({[B * F(t)] - D} * t) F(t+ t) = F(t) + ({G -[C * M(t)]} * t)

8 Oscillation - Example Once we run the model, we ll see something like:

9 Oscillation - Example This is a classic example of a system, where consumer and resource populations are present: As the available amount of resource increases, so too do the number of consumers that live off that resource Then, as the number of consumers increase, the available resource is consumed, thereby leading to reduction of the available amount of the resource As the resource decreases, the number of consumers also decrease This in turn leads to a rebound in the quantity of the resource The main feature of an oscillating system is the presence of a strong counteracting feedback loop that forces the system to oscillate around a set of equilibrium conditions

10 Oscillation System Features, Diagrams, and Equations An oscillating system has the following features: 1. The systems has at least two interdependent reservoirs, where one reservoir consumes the other (e.g. Consumer and Resource) 2. The Consumer and Resource reservoirs each oscillate around an equilibrium:

11 Oscillation System Features, Diagrams, and Equations 3. The further one reservoir is from its equilibrium value, the more influence the other reservoir exerts on it to move it back towards equilibrium Here is the generic diagram for a simplified oscillating system: The key connections are between the two reservoirs and rates associated with processes that affect the other reservoir

12 Oscillation System Features, Diagrams, and Equations Starting with the generic difference equation: R(t+ t) = R(t) + [Inflows Outflows] * t we can substitute in the expressions for the processes in our oscillating system for each of the two reservoirs: C(t+ t) = C(t) + ({[G * R(t)] - D} * t) R(t+ t) = R(t) + ({W -[Q * C(t)]} * t) Performing the usual reshuffling of R(t) and t, and taking the derivative of the resulting rate equations: dc(t) = {G * R(t)} - D dr(t) = W {Q * C(t)}

13 Oscillation System Features, Diagrams, and Equations We can see how the counteracting feedback will behave by examining the rate equations: dc(t) = {G * R(t)} - D dr(t) = W {Q * C(t)} When R(t) is large, then dc(t) will be positive (C grows) When C(t) gets large enough, dr(t) will become negative (thus R will begin to shrink in size) As R(t) shrinks, then dc(t) will get smaller, and then will eventually become negative (thus C shrink in size) This counteracting feedback will produce the cyclic behavior (oscillation)

14 Oscillation System Features, Diagrams, and Equations To find the equilibrium condition for each of the reservoirs, we can set the individual rate equations equal to zero, and solve: dc(t) = {G * R(t)} - D dr(t) = W {Q * C(t)} {G * R(t)} D = 0 W {Q * C(t)} = 0 {G * R(t)} = D {Q * C(t)} = W R(t) = D G C(t) = -W -Q Thus, provided you can determine the values of D and G or W and Q, you can find the values at which each of the reservoirs will equilibrate in an oscillating system = W Q

15 Oscillation System Features, Diagrams, and Equations To find when an oscillating system reaches a steady state, determine the conditions under which the rate of change of both reservoirs equal zero, i.e.: dc(t) = 0 dr(t) = 0 This occurs when both reservoirs simultaneously are at their equilibrium condition, thus: R = D G C = W Q If only one of the two reservoirs reaches its equilibrium state, it will quickly leave it as the other will force it away from equilibrium according to the counteracting feedback previously described

16 Oscillation - Review When does oscillation behavior occur? Oscillation behavior occurs whenever a pair of interdependent reservoirs are connected in such a way that strong counteracting feedback loop that forces the system to oscillate around a set of equilibrium conditions What are the rate equations for this type of system? dc(t) = {G * R(t)} - D dr(t) = W {Q * C(t)} Does a system that produces oscillation behavior contain any feedback? Oscillation behavior occurs because of the presence of a counteracting feedback loop that keeps the system cycling back and forth, with each reservoir gaining and losing its contents at different points in the cycle

17 System Behavior General Thoughts We ve now examined five common behaviors, and we have used a similar approach to characterize each: Each has a generic model structure (arrangement of model elements) that needs to be present for that behavior to occur Each has mathematical expression(s) for the difference equation(s) for its reservoir(s) that is a function of model structure By deriving the rate equation(s) from the difference equations(s) we can see fundamentally why the system behaves the way it does, by interpreting how the rates of change will change through time, and thus how the reservoir(s) contents will change We can look at plots versus time to see that same behavior We can interpret the cause and effect connections between elements to see when feedbacks produce the behavior

18 System Behavior General Thoughts For the most part, the models we will build can be interpreted to be made up of one or more of these building blocks, and thus exhibit one or more of these behaviors The five behaviors we have examined so far lets us see how each functions in isolation, but the building blocks can be combined, and thus the behaviors can be combined i.e. imagine a system that follows a logistic growth curve in the long run, but oscillates as it progresses along the logistic curve, or any number of other possible combinations Resulting behavior should still be a function of system structure, but its often more complicated than picking out one of these five behaviors on its own

Where do differential equations come from?

Where do differential equations come from? Where do differential equations come from? Example: Keeping track of cell growth (a balance equation for cell mass) Rate of change = rate in rate out Old example: Cell size The cell is spherical. Nutrient

More information

Background Information on Simulation Created for Lesson 4: Wa ves of Cha n ge: Preda tor a n d Prey Dyn a mics

Background Information on Simulation Created for Lesson 4: Wa ves of Cha n ge: Preda tor a n d Prey Dyn a mics Background Information on Simulation Created for Lesson 4: Wa ves of Cha n ge: Preda tor a n d Prey Dyn a mics by Jennifer And ersen and Anne L avig ne in col l aborat ion w it h t h e C reat iv e L earning

More information

A population is modeled by the differential equation

A population is modeled by the differential equation Math 2, Winter 2016 Weekly Homework #8 Solutions 9.1.9. A population is modeled by the differential equation dt = 1.2 P 1 P ). 4200 a) For what values of P is the population increasing? P is increasing

More information

Qualitative analysis of differential equations: Part I

Qualitative analysis of differential equations: Part I Qualitative analysis of differential equations: Part I Math 12 Section 16 November 7, 216 Hi, I m Kelly. Cole is away. Office hours are cancelled. Cole is available by email: zmurchok@math.ubc.ca. Today...

More information

Assume closed population (no I or E). NB: why? Because it makes it easier.

Assume closed population (no I or E). NB: why? Because it makes it easier. What makes populations get larger? Birth and Immigration. What makes populations get smaller? Death and Emigration. B: The answer to the above?s are never things like "lots of resources" or "detrimental

More information

A System Dynamics Glossary

A System Dynamics Glossary A System Dynamics Glossary Compiled by David N. Ford, Ph.D., P.E. Last Update: July 3, 2018 accumulation (integration): the collection of some quantity over time. Examples of accumulation include water

More information

Math 3B: Lecture 14. Noah White. February 13, 2016

Math 3B: Lecture 14. Noah White. February 13, 2016 Math 3B: Lecture 14 Noah White February 13, 2016 Last time Accumulated change problems Last time Accumulated change problems Adding up a value if it is changing over time Last time Accumulated change problems

More information

sections June 11, 2009

sections June 11, 2009 sections 3.2-3.5 June 11, 2009 Population growth/decay When we model population growth, the simplest model is the exponential (or Malthusian) model. Basic ideas: P = P(t) = population size as a function

More information

Homework Solutions:

Homework Solutions: Homework Solutions: 1.1-1.3 Section 1.1: 1. Problems 1, 3, 5 In these problems, we want to compare and contrast the direction fields for the given (autonomous) differential equations of the form y = ay

More information

Calculus for the Life Sciences

Calculus for the Life Sciences Calculus for the Life Sciences Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center San Diego State University

More information

Chemistry 112 Midterm January 30, 2006

Chemistry 112 Midterm January 30, 2006 1. (35 points) The reaction of A and B to form products is thought to go according to the following mechanism: A + 2B 2C + D k -1 2C 2C 2C + M k 2 k 3 k 4 G H J + M (a) (5) Identify the products in this

More information

INTERPRETING POPULATION DYNAMICS GRAPH

INTERPRETING POPULATION DYNAMICS GRAPH INTERPRETING POPULATION DYNAMIS GRAPH OJETIVES TASKS Name: To learn about three types of population dynamics graphs To determine which type of graph you constructed from the Pike and Perch Game To interpret

More information

Solutions to the Review Questions

Solutions to the Review Questions Solutions to the Review Questions Short Answer/True or False. True or False, and explain: (a) If y = y + 2t, then 0 = y + 2t is an equilibrium solution. False: This is an isocline associated with a slope

More information

GEOL/ESS 2000, Geochemical Cycles and the Earth System, Exam I 9/20/2013

GEOL/ESS 2000, Geochemical Cycles and the Earth System, Exam I 9/20/2013 GEOL/ESS 2000, Geochemical Cycles and the Earth System, Exam I 9/20/2013 Closed book, closed notes. Be sure to write your name on the upper right of the exam. In any question recalling a numerical answer,

More information

Student Background Readings for Bug Dynamics: The Logistic Map

Student Background Readings for Bug Dynamics: The Logistic Map Student Background Readings for Bug Dynamics: The Logistic Map Figure 1 The population as a function of a growth rate parameter observed in the experiment of [Bugs]. Graphs such as this are called bifurcation

More information

APES Chapter 9 Study Guide. 1. Which of the following statements about sea otters is false?

APES Chapter 9 Study Guide. 1. Which of the following statements about sea otters is false? APES Chapter 9 Study Guide 1. Which of the following statements about sea otters is false? They use tools, They have the thickest fur of any mammal. They can eat 25% of their weight per day in sea urchins

More information

Road Maps Glossary 1

Road Maps Glossary 1 D-4498 Page 1 3 Road Maps Glossary 1 accumulation: The collection of some quantity over time. Examples of accumulation include water in a bathtub, savings in a bank account, inventory. In the STELLA modeling

More information

of 8 28/11/ :25

of 8 28/11/ :25 Paul's Online Math Notes Home Content Chapter/Section Downloads Misc Links Site Help Contact Me Differential Equations (Notes) / First Order DE`s / Modeling with First Order DE's [Notes] Differential Equations

More information

Unexpected Behaviors in Higher- Order Positive Feedback Loops

Unexpected Behaviors in Higher- Order Positive Feedback Loops D-4455- Unexpected Behaviors in Higher- Order Positive Feedback Loops Prepared for the MIT System Dynamics in Education Project Under the Supervision of Dr. Jay W. Forrester by Aaron C. Ashford May 8,

More information

Goals: To develop skills needed to find the appropriate differential equations to use as mathematical models.

Goals: To develop skills needed to find the appropriate differential equations to use as mathematical models. Unit #16 : Differential Equations Goals: To develop skills needed to find the appropriate differential equations to use as mathematical models. Differential Equation Modelling - 1 Differential Equation

More information

Outline. Calculus for the Life Sciences. What is a Differential Equation? Introduction. Lecture Notes Introduction to Differential Equa

Outline. Calculus for the Life Sciences. What is a Differential Equation? Introduction. Lecture Notes Introduction to Differential Equa Outline Calculus for the Life Sciences Lecture Notes to Differential Equations Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu 1 Department of Mathematics and Statistics Dynamical Systems Group Computational

More information

Polymerization and force generation

Polymerization and force generation Polymerization and force generation by Eric Cytrynbaum April 8, 2008 Equilibrium polymer in a box An equilibrium polymer is a polymer has no source of extraneous energy available to it. This does not mean

More information

Ecology Regulation, Fluctuations and Metapopulations

Ecology Regulation, Fluctuations and Metapopulations Ecology Regulation, Fluctuations and Metapopulations The Influence of Density on Population Growth and Consideration of Geographic Structure in Populations Predictions of Logistic Growth The reality of

More information

Chapter 2: Growth & Decay

Chapter 2: Growth & Decay Chapter 2: Growth & Decay 107/226 Introduction In this chapter, model biological systems whose population is so large or where growth is so fine-grained that continuity can be assumed. These continuous

More information

Today. Introduction to Differential Equations. Linear DE ( y = ky ) Nonlinear DE (e.g. y = y (1-y) ) Qualitative analysis (phase line)

Today. Introduction to Differential Equations. Linear DE ( y = ky ) Nonlinear DE (e.g. y = y (1-y) ) Qualitative analysis (phase line) Today Introduction to Differential Equations Linear DE ( y = ky ) Nonlinear DE (e.g. y = y (1-y) ) Qualitative analysis (phase line) Differential equations (DE) Carbon dating: The amount of Carbon-14 in

More information

Dynamical Systems. August 13, 2013

Dynamical Systems. August 13, 2013 Dynamical Systems Joshua Wilde, revised by Isabel Tecu, Takeshi Suzuki and María José Boccardi August 13, 2013 Dynamical Systems are systems, described by one or more equations, that evolve over time.

More information

Chapter 6 Population and Community Ecology. Thursday, October 19, 17

Chapter 6 Population and Community Ecology. Thursday, October 19, 17 Chapter 6 Population and Community Ecology Module 18 The Abundance and Distribution of After reading this module you should be able to explain how nature exists at several levels of complexity. discuss

More information

Euler s Method and Logistic Growth (BC Only)

Euler s Method and Logistic Growth (BC Only) Euler s Method Students should be able to: Approximate numerical solutions of differential equations using Euler s method without a calculator. Recognize the method as a recursion formula extension of

More information

Math 3313: Differential Equations First-order ordinary differential equations

Math 3313: Differential Equations First-order ordinary differential equations Math 3313: Differential Equations First-order ordinary differential equations Thomas W. Carr Department of Mathematics Southern Methodist University Dallas, TX Outline Math 2343: Introduction Separable

More information

Use separation of variables to solve the following differential equations with given initial conditions. y 1 1 y ). y(y 1) = 1

Use separation of variables to solve the following differential equations with given initial conditions. y 1 1 y ). y(y 1) = 1 Chapter 11 Differential Equations 11.1 Use separation of variables to solve the following differential equations with given initial conditions. (a) = 2ty, y(0) = 10 (b) = y(1 y), y(0) = 0.5, (Hint: 1 y(y

More information

Contents. Contents. Contents

Contents. Contents. Contents Physics 121 for Majors Class 18 Linear Harmonic Last Class We saw how motion in a circle is mathematically similar to motion in a straight line. We learned that there is a centripetal acceleration (and

More information

Control System (ECE411) Lectures 13 & 14

Control System (ECE411) Lectures 13 & 14 Control System (ECE411) Lectures 13 & 14, Professor Department of Electrical and Computer Engineering Colorado State University Fall 2016 Steady-State Error Analysis Remark: For a unity feedback system

More information

Goals: To develop skills needed to find the appropriate differential equations to use as mathematical models.

Goals: To develop skills needed to find the appropriate differential equations to use as mathematical models. Unit #17 : Differential Equations Goals: To develop skills needed to find the appropriate differential equations to use as mathematical models. Reading: Sections 11.5-11.7. In workingwiththemodels insections11.5

More information

Guided Study Program in System Dynamics System Dynamics in Education Project System Dynamics Group MIT Sloan School of Management 1

Guided Study Program in System Dynamics System Dynamics in Education Project System Dynamics Group MIT Sloan School of Management 1 Guided Study Program in System Dynamics System Dynamics in Education Project System Dynamics Group MIT Sloan School of Management 1 Assignment #23 Reading Assignment: Please read the following: Industrial

More information

Control Systems I Lecture 10: System Specifications

Control Systems I Lecture 10: System Specifications Control Systems I Lecture 10: System Specifications Readings: Guzzella, Chapter 10 Emilio Frazzoli Institute for Dynamic Systems and Control D-MAVT ETH Zürich November 24, 2017 E. Frazzoli (ETH) Lecture

More information

8 Ecosystem stability

8 Ecosystem stability 8 Ecosystem stability References: May [47], Strogatz [48]. In these lectures we consider models of populations, with an emphasis on the conditions for stability and instability. 8.1 Dynamics of a single

More information

Euler s Method (BC Only)

Euler s Method (BC Only) Euler s Method (BC Only) Euler s Method is used to generate numerical approximations for solutions to differential equations that are not separable by methods tested on the AP Exam. It is necessary to

More information

Introduction to bifurcations

Introduction to bifurcations Introduction to bifurcations Marc R. Roussel September 6, Introduction Most dynamical systems contain parameters in addition to variables. A general system of ordinary differential equations (ODEs) could

More information

Chapter 6 Population and Community Ecology

Chapter 6 Population and Community Ecology Chapter 6 Population and Community Ecology Friedland and Relyea Environmental Science for AP, second edition 2015 W.H. Freeman and Company/BFW AP is a trademark registered and/or owned by the College Board,

More information

The Moose on Isle. An island in Lake Superior. Original migration. Another case study of the environment and environmentalists

The Moose on Isle. An island in Lake Superior. Original migration. Another case study of the environment and environmentalists The Moose on Isle Royale Another case study of the environment and environmentalists 1 An island in Lake Superior Isle Royale is a large forested island, in Lake Superior, named by French explorers 200

More information

1.2. Direction Fields: Graphical Representation of the ODE and its Solution Let us consider a first order differential equation of the form dy

1.2. Direction Fields: Graphical Representation of the ODE and its Solution Let us consider a first order differential equation of the form dy .. Direction Fields: Graphical Representation of the ODE and its Solution Let us consider a first order differential equation of the form dy = f(x, y). In this section we aim to understand the solution

More information

Science Biology: Honors Unit 7: Interdependence of Organisms

Science Biology: Honors Unit 7: Interdependence of Organisms Understandings Questions Knowledge Vocabulary Skills Atoms and molecules compose living and nonliving things and recycle through the biosphere. Energy flows through ecosystems in one direction from photosynthetic

More information

Name Student ID. Good luck and impress us with your toolkit of ecological knowledge and concepts!

Name Student ID. Good luck and impress us with your toolkit of ecological knowledge and concepts! Page 1 BIOLOGY 150 Final Exam Winter Quarter 2000 Before starting be sure to put your name and student number on the top of each page. MINUS 3 POINTS IF YOU DO NOT WRITE YOUR NAME ON EACH PAGE! You have

More information

Population Dynamics Graphs

Population Dynamics Graphs Dynamics Graphs OJETIVES: - to learn about three types of population dynamics graphs - to determine which type of graph you constructed from the Pike and Perch Game - to interpret (describe, analyze) graphs

More information

EEE 184: Introduction to feedback systems

EEE 184: Introduction to feedback systems EEE 84: Introduction to feedback systems Summary 6 8 8 x 7 7 6 Level() 6 5 4 4 5 5 time(s) 4 6 8 Time (seconds) Fig.. Illustration of BIBO stability: stable system (the input is a unit step) Fig.. step)

More information

Basic Definitions: Indexed Collections and Random Functions

Basic Definitions: Indexed Collections and Random Functions Chapter 1 Basic Definitions: Indexed Collections and Random Functions Section 1.1 introduces stochastic processes as indexed collections of random variables. Section 1.2 builds the necessary machinery

More information

"While intelligent people can often simplify the complex, a fool is more likely to

While intelligent people can often simplify the complex, a fool is more likely to . WHAT IS A SYSTEM? An organized collection of interrelated physical components characterized by a boundary and functional unity A collection of communicating materials and processes that together perform

More information

Predicting the future with Newton s Second Law

Predicting the future with Newton s Second Law Predicting the future with Newton s Second Law To represent the motion of an object (ignoring rotations for now), we need three functions x(t), y(t), and z(t), which describe the spatial coordinates of

More information

Calculus for the Life Sciences

Calculus for the Life Sciences Improved Calculus for the Life Sciences ntial Equations Joseph M. Mahaffy, jmahaffy@mail.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences Research Center

More information

Precalculus Exponential, Logistic, and Logarithmic Functions Chapter 3 Section 1 Exponential and Logistic Functions

Precalculus Exponential, Logistic, and Logarithmic Functions Chapter 3 Section 1 Exponential and Logistic Functions Precalculus Exponential, Logistic, and Logarithmic Functions Chapter 3 Section 1 Exponential and Logistic Functions Essential Question: How and why are exponential and logistic functions used to model

More information

Worksheet #2. Use trigonometry and logarithms to model natural phenomena from a periodic behavior perspective.

Worksheet #2. Use trigonometry and logarithms to model natural phenomena from a periodic behavior perspective. math 112 Worksheet #2 Name Due Date: Objective: Use trigonometry and logarithms to model natural phenomena from a periodic behavior perspective. We revisit the varying of tree ring widths over time. We

More information

Eigenvalues in Applications

Eigenvalues in Applications Eigenvalues in Applications Abstract We look at the role of eigenvalues and eigenvectors in various applications. Specifically, we consider differential equations, Markov chains, population growth, and

More information

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang

CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION. Professor Dae Ryook Yang CHBE320 LECTURE V LAPLACE TRANSFORM AND TRANSFER FUNCTION Professor Dae Ryook Yang Spring 2018 Dept. of Chemical and Biological Engineering 5-1 Road Map of the Lecture V Laplace Transform and Transfer

More information

A Producer-Consumer Model With Stoichiometry

A Producer-Consumer Model With Stoichiometry A Producer-Consumer Model With Stoichiometry Plan B project toward the completion of the Master of Science degree in Mathematics at University of Minnesota Duluth Respectfully submitted by Laura Joan Zimmermann

More information

Chaos and Liapunov exponents

Chaos and Liapunov exponents PHYS347 INTRODUCTION TO NONLINEAR PHYSICS - 2/22 Chaos and Liapunov exponents Definition of chaos In the lectures we followed Strogatz and defined chaos as aperiodic long-term behaviour in a deterministic

More information

CHAPTER. Population Ecology

CHAPTER. Population Ecology CHAPTER 4 Population Ecology Lesson 4.1 Studying Ecology Ernst Haeckel defined ecology in 1866 as the body of knowledge concerning the economy of nature the total relations of the animal to both its inorganic

More information

PHYSICS 220 LAB #3: STATIC EQUILIBRIUM FORCES

PHYSICS 220 LAB #3: STATIC EQUILIBRIUM FORCES Lab Section M / T / W / Th /24 pts Name: Partners: PHYSICS 220 LAB #3: STATIC EQUILIBRIUM FORCES OBJECTIVES 1. To verify the conditions for static equilibrium. 2. To get practice at finding components

More information

4.2 Homogeneous Linear Equations

4.2 Homogeneous Linear Equations 4.2 Homogeneous Linear Equations Homogeneous Linear Equations with Constant Coefficients Consider the first-order linear differential equation with constant coefficients a 0 and b. If f(t) = 0 then this

More information

Chapter 14: Finding the Equilibrium Solution and Exploring the Nature of the Equilibration Process

Chapter 14: Finding the Equilibrium Solution and Exploring the Nature of the Equilibration Process Chapter 14: Finding the Equilibrium Solution and Exploring the Nature of the Equilibration Process Taking Stock: In the last chapter, we learned that equilibrium problems have an interesting dimension

More information

Two-sample Categorical data: Testing

Two-sample Categorical data: Testing Two-sample Categorical data: Testing Patrick Breheny October 29 Patrick Breheny Biostatistical Methods I (BIOS 5710) 1/22 Lister s experiment Introduction In the 1860s, Joseph Lister conducted a landmark

More information

Characteristics of Fish Populations. Unexploited Populations. Exploited Populations. Recruitment - Birth Mortality (natural) Growth

Characteristics of Fish Populations. Unexploited Populations. Exploited Populations. Recruitment - Birth Mortality (natural) Growth Characteristics of Fish Populations Unexploited Populations Recruitment - Birth Mortality (natural) Growth Exploited Populations Recruitment and Yield Fishing and Natural Mortality Compensatory Growth

More information

NONLINEAR FUNCTIONS A. Absolute Value Exercises: 2. We need to scale the graph of Qx ( )

NONLINEAR FUNCTIONS A. Absolute Value Exercises: 2. We need to scale the graph of Qx ( ) NONLINEAR FUNCTIONS A. Absolute Value Eercises:. We need to scale the graph of Q ( ) f ( ) =. The graph is given below. = by the factor of to get the graph of 9 - - - - -. We need to scale the graph of

More information

Week #1 The Exponential and Logarithm Functions Section 1.2

Week #1 The Exponential and Logarithm Functions Section 1.2 Week #1 The Exponential and Logarithm Functions Section 1.2 From Calculus, Single Variable by Hughes-Hallett, Gleason, McCallum et. al. Copyright 2005 by John Wiley & Sons, Inc. This material is used by

More information

(Refer Slide Time: 1:42)

(Refer Slide Time: 1:42) Control Engineering Prof. Madan Gopal Department of Electrical Engineering Indian Institute of Technology, Delhi Lecture - 21 Basic Principles of Feedback Control (Contd..) Friends, let me get started

More information

POPULATION GROWTH MODELING

POPULATION GROWTH MODELING POPULATION GROWTH MODELING INTRODUCTION All organisms tend to show the capability of unlimited exponential growth. Consequently, mathematical models have been developed to try to simulate this phenomenon.

More information

Calculus I 2nd Partial Project Applications of Motion: Position, Velocity, and Acceleration

Calculus I 2nd Partial Project Applications of Motion: Position, Velocity, and Acceleration Calculus I 2nd Partial Project Applications of Motion: Position, Velocity, and Acceleration Fernando Jair Balcázar A01570174 René Alejandro Ponce A01570252 Alberto Frese A01570191 María Renée Gamboa A01570128

More information

7. The Evolution of Stars a schematic picture (Heavily inspired on Chapter 7 of Prialnik)

7. The Evolution of Stars a schematic picture (Heavily inspired on Chapter 7 of Prialnik) 7. The Evolution of Stars a schematic picture (Heavily inspired on Chapter 7 of Prialnik) In the previous chapters we have seen that the timescale of stellar evolution is set by the (slow) rate of consumption

More information

Levels of Ecological Organization. Biotic and Abiotic Factors. Studying Ecology. Chapter 4 Population Ecology

Levels of Ecological Organization. Biotic and Abiotic Factors. Studying Ecology. Chapter 4 Population Ecology Chapter 4 Population Ecology Lesson 4.1 Studying Ecology Levels of Ecological Organization Biotic and Abiotic Factors The study of how organisms interact with each other and with their environments Scientists

More information

Chapter 4 Population Ecology

Chapter 4 Population Ecology Chapter 4 Population Ecology Lesson 4.1 Studying Ecology Levels of Ecological Organization The study of how organisms interact with each other and with their environments Scientists study ecology at various

More information

Figure 1: Doing work on a block by pushing it across the floor.

Figure 1: Doing work on a block by pushing it across the floor. Work Let s imagine I have a block which I m pushing across the floor, shown in Figure 1. If I m moving the block at constant velocity, then I know that I have to apply a force to compensate the effects

More information

Indefinite survival through backup copies

Indefinite survival through backup copies Indefinite survival through backup copies Anders Sandberg and Stuart Armstrong June 06 202 Abstract If an individual entity endures a fixed probability µ < of disappearing ( dying ) in a given fixed time

More information

These are my slides and notes introducing the Red Queen Game to the National Association of Biology Teachers meeting in Denver in 2016.

These are my slides and notes introducing the Red Queen Game to the National Association of Biology Teachers meeting in Denver in 2016. These are my slides and notes introducing the Red Queen Game to the National Association of Biology Teachers meeting in Denver in 2016. Thank you SSE and the Huxley Award for sending me to NABT 2016! I

More information

Chapter 7: Trigonometric Equations and Identities

Chapter 7: Trigonometric Equations and Identities Chapter 7: Trigonometric Equations and Identities In the last two chapters we have used basic definitions and relationships to simplify trigonometric expressions and equations. In this chapter we will

More information

Exponential Decay. Enter the two points in the spreadsheet and make a list. b. Find an exponential regression model.

Exponential Decay. Enter the two points in the spreadsheet and make a list. b. Find an exponential regression model. Exponential Decay Example 5: At the beginning of a study, there are 50 grams of a substance present. After 17 days, there are 38.7 grams remaining. Assume the substance decays exponentially. a. State the

More information

Modeling with Differential Equations

Modeling with Differential Equations Modeling with Differential Equations 1. Exponential Growth and Decay models. Definition. A quantity y(t) is said to have an exponential growth model if it increases at a rate proportional to the amount

More information

MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P. Perhaps the most important of all the applications of calculus is to differential equations.

MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P. Perhaps the most important of all the applications of calculus is to differential equations. MATH 1014 N 3.0 W2015 APPLIED CALCULUS II - SECTION P Stewart Chapter 9 Differential Equations Perhaps the most important of all the applications of calculus is to differential equations. 9.1 Modeling

More information

2.3 Homework: The Product and Quotient Rules

2.3 Homework: The Product and Quotient Rules 2.3 Homework: The Product and Quotient Rules 1. Find the derivatives of each of the following functions. Label the derivative you find with its name using proper notation. a) f(x) = (x 2 x)3 x b) h(y)

More information

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics

How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics How fast reactants turn into products. Usually measured in Molarity per second units. Kinetics Reaction rated are fractions of a second for fireworks to explode. Reaction Rates takes years for a metal

More information

Autonomous Equations and Stability Sections

Autonomous Equations and Stability Sections A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Autonomous Equations and Stability Sections 2.4-2.5 Dr. John Ehrke Department of Mathematics Fall 2012 Autonomous Differential

More information

Grand-daughters, Great Granddaughters, Daughters. : Σ lx m x e r (Tmax - x )

Grand-daughters, Great Granddaughters, Daughters. : Σ lx m x e r (Tmax - x ) Basic reproductive rate, R o = Σ l x m x umber of offspring produced by an individual female in her lifetime, can be used as multiplier to compute population growth rate if generations don t overlap. If

More information

Math 132 Lesson R: Population models and the spread of rumors Application

Math 132 Lesson R: Population models and the spread of rumors Application Math 132 Lesson R: Population models and the spread of rumors Application Population models are not limited to births and deaths. All kinds of quantifiable things pass through populations, from income

More information

Damped Oscillations *

Damped Oscillations * OpenStax-CNX module: m58365 1 Damped Oscillations * OpenStax This wor is produced by OpenStax-CNX and licensed under the Creative Commons Attribution License 4.0 By the end of this section, you will be

More information

Maps and differential equations

Maps and differential equations Maps and differential equations Marc R. Roussel November 8, 2005 Maps are algebraic rules for computing the next state of dynamical systems in discrete time. Differential equations and maps have a number

More information

KIRCHHOFF S LAWS. Learn how to analyze more complicated circuits with more than one voltage source and numerous resistors.

KIRCHHOFF S LAWS. Learn how to analyze more complicated circuits with more than one voltage source and numerous resistors. KIRCHHOFF S LAWS Lab Goals: Learn how to analyze more complicated circuits with more than one voltage source and numerous resistors. Lab Notebooks: Write descriptions of all of your experiments in your

More information

Section 6.8 Exponential Models; Newton's Law of Cooling; Logistic Models

Section 6.8 Exponential Models; Newton's Law of Cooling; Logistic Models Section 6.8 Exponential Models; Newton's Law of Cooling; Logistic Models 197 Objective #1: Find Equations of Populations that Obey the Law of Uninhibited Growth. In the last section, we saw that when interest

More information

1.2. Introduction to Modeling

1.2. Introduction to Modeling G. NAGY ODE August 30, 2018 1 Section Objective(s): Population Models Unlimited Resources Limited Resources Interacting Species 1.2. Introduction to Modeling 1.2.1. Population Model with Unlimited Resources.

More information

1 Differential Equations

1 Differential Equations Reading [Simon], Chapter 24, p. 633-657. 1 Differential Equations 1.1 Definition and Examples A differential equation is an equation involving an unknown function (say y = y(t)) and one or more of its

More information

Numerical method for approximating the solution of an IVP. Euler Algorithm (the simplest approximation method)

Numerical method for approximating the solution of an IVP. Euler Algorithm (the simplest approximation method) Section 2.7 Euler s Method (Computer Approximation) Key Terms/ Ideas: Numerical method for approximating the solution of an IVP Linear Approximation; Tangent Line Euler Algorithm (the simplest approximation

More information

1 (t + 4)(t 1) dt. Solution: The denominator of the integrand is already factored with the factors being distinct, so 1 (t + 4)(t 1) = A

1 (t + 4)(t 1) dt. Solution: The denominator of the integrand is already factored with the factors being distinct, so 1 (t + 4)(t 1) = A Calculus Topic: Integration of Rational Functions Section 8. # 0: Evaluate the integral (t + )(t ) Solution: The denominator of the integrand is already factored with the factors being distinct, so (t

More information

A t = B A F (φ A t K t, N A t X t ) S t = B S F (φ S t K t, N S t X t ) M t + δk + K = B M F (φ M t K t, N M t X t )

A t = B A F (φ A t K t, N A t X t ) S t = B S F (φ S t K t, N S t X t ) M t + δk + K = B M F (φ M t K t, N M t X t ) Notes on Kongsamut et al. (2001) The goal of this model is to be consistent with the Kaldor facts (constancy of growth rates, capital shares, capital-output ratios) and the Kuznets facts (employment in

More information

Numerical method for approximating the solution of an IVP. Euler Algorithm (the simplest approximation method)

Numerical method for approximating the solution of an IVP. Euler Algorithm (the simplest approximation method) Section 2.7 Euler s Method (Computer Approximation) Key Terms/ Ideas: Numerical method for approximating the solution of an IVP Linear Approximation; Tangent Line Euler Algorithm (the simplest approximation

More information

Competition for resources: complicated dynamics in the simple Tilman model

Competition for resources: complicated dynamics in the simple Tilman model DOI 86/s464-5-246-6 ESEACH Open Access Competition for resources: complicated dynamics in the simple Tilman model Joost H J van Opheusden *, Lia Hemerik, Mieke van Opheusden 2 and Wopke van der Werf 2

More information

Homework 2 Solutions Math 307 Summer 17

Homework 2 Solutions Math 307 Summer 17 Homework 2 Solutions Math 307 Summer 17 July 8, 2017 Section 2.3 Problem 4. A tank with capacity of 500 gallons originally contains 200 gallons of water with 100 pounds of salt in solution. Water containing

More information

Introduction to Process Control

Introduction to Process Control Introduction to Process Control For more visit :- www.mpgirnari.in By: M. P. Girnari (SSEC, Bhavnagar) For more visit:- www.mpgirnari.in 1 Contents: Introduction Process control Dynamics Stability The

More information

NONLINEAR FEEDBACK LOOPS. Posted on February 5, 2016 by Joss Colchester

NONLINEAR FEEDBACK LOOPS. Posted on February 5, 2016 by Joss Colchester NONLINEAR FEEDBACK LOOPS Posted on February 5, 2016 by Joss Colchester NONLINEAR FEEDBACK LOOPS A feedback loop could be defined as a channel or pathway formed by an 'effect' returning to its 'cause,'

More information

Lecture 10: Heat Engines and Reversible Processes

Lecture 10: Heat Engines and Reversible Processes Lecture 10: Heat Engines and Reversible Processes Last time we started discussing cyclic heat engines these are devices that convert heat energy into mechanical work We found that in general, heat engines

More information

Notes for exponential functions The week of March 6. Math 140

Notes for exponential functions The week of March 6. Math 140 Notes for exponential functions The week of March 6 Math 140 Exponential functions: formulas An exponential function has the formula f (t) = ab t, where b is a positive constant; a is the initial value

More information

Outline Calculus for the Life Sciences II. Pollution in a Lake 1. Introduction. Lecture Notes Numerical Methods for Differential Equations

Outline Calculus for the Life Sciences II. Pollution in a Lake 1. Introduction. Lecture Notes Numerical Methods for Differential Equations Improved Improved Outline Calculus for the Life Sciences II tial Equations Joseph M. Mahaffy, mahaffy@math.sdsu.edu Department of Mathematics and Statistics Dynamical Systems Group Computational Sciences

More information

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland

FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland FIRST-ORDER SYSTEMS OF ORDINARY DIFFERENTIAL EQUATIONS III: Autonomous Planar Systems David Levermore Department of Mathematics University of Maryland 4 May 2012 Because the presentation of this material

More information

Equilibrium of a Rigid Body. Chapter 5

Equilibrium of a Rigid Body. Chapter 5 Equilibrium of a Rigid Body Chapter 5 Overview Rigid Body Equilibrium Free Body Diagrams Equations of Equilibrium 2 and 3-Force Members Statical Determinacy CONDITIONS FOR RIGID-BODY EQUILIBRIUM Recall

More information