Qualitative analysis of differential equations: Part I

Size: px
Start display at page:

Download "Qualitative analysis of differential equations: Part I"

Transcription

1 Qualitative analysis of differential equations: Part I Math 12 Section 16 November 7, 216

2 Hi, I m Kelly. Cole is away. Office hours are cancelled. Cole is available by zmurchok@math.ubc.ca.

3 Today Steady-states 2. Phase-line analysis 3. Sketching solutions 4. Slope fields

4 From last time... Q1. The fuel load carried by a hummingbird is F (t). Suppose that the intake takes place at a constant rate a and fuel consumption is proportional to the amount of fuel being carried with constant b. Which differential equation describes how F (t) changes? A. df = a bt B. df = (a b)t C. df = (a b)f D. df = a bf

5 Hummingbird Example (Steady-states = new concept)3 Q2. What are the steady-states of the differential equation df = a bf A. F = a B. F = b C. F = b a D. F = a b Set df = a bf = F = a b Steady-states are constant solutions!

6 Phase line What do the solutions to df = a bf look like? When F a b, df. This means that F is increasing or decreasing! df a b F

7 Phase line What do the solutions to df = a bf look like? When F > b a, df <, so F is decreasing When F < b a, df >, so F is increasing df a b F

8 Phase line to solutions df F(t) a b a b F t The steady-state a solution! It is stable. Arrows show the flow magnitude & direction

9 Phase line to solutions Some comments: Pay attention to the axes! The steady-state is a constant solution to the differential equation. A steady-state is stable if states that are initially close enough will get closer with time. A steady-state is unstable if states that are initially very close will eventually move away from that steady-state.

10 The Logistic Equation ( dn = rn 1 N ) K What effect does changing the parameters r and K on the population size?

11 The Logistic Equation dn = rn ( 1 N K The steady-states are N = and N = K. N = is unstable (open dot) and N = K is stable (filled in dot) dn N K ) K N t

12 The Logistic Equation dn = rn ( 1 N K The steady-states are N = and N = K. N = is unstable and N = K is stable dn N K ) K N t

13 The Logistic Equation dn N K K N t N = is unstable and N = K is stable. As t, N(t) K (provided N() > ). The population size grows or shrinks to the carrying capacity, K.

14 How can we more accurately sketch the solutions to a differential equation?

15 Slope Fields Consider the differential equation dy = f(y) Compute some of the slopes for various y values and use this to sketch a slope field for this differential equation. Idea: dy is the slope of the tangent line to the solution y(t). The tangent line thus has slope equal to f(y) since dy = f(y).

16 Slope Fields: Document Camera/Board Example Example: dy = 2y Idea: dy is the slope of the tangent line to the solution y(t). The tangent line thus has slope equal to 2y since dy = 2y.

17 its tangent line at that point has a slope 2y, regardlessofthevalueoft. Thisexampleis Slope simple enough Fields: that we can state Document the following: for positive Camera values of y, theslopeispositive, for negative values of y, theslopeisnegative, andfory =the slope is zero. We provide some tabulated values of y indicating the values of the slope f(y), itssign,andwhatthis implies about the local behaviour of the solution and its direction. Then, in Figure 13.1 we combine this information to generate the direction field and the corresponding solution curves. Note that the direction of the arrows (rather than their absolute magnitude) provides the most important qualitative tendency for the slope field sketch. y f(y) =2y slope of tangent line behaviour of y direction of arrow ve decreasing ve decreasing no change in y 1 2 +ve increasing 2 4 +ve increasing Table Table of derivatives and slopes for the differential equation (13.4) in Example y 1.5 y 1.5

18 Slope Fields: Document Camera y y t -2

19 Slope Fields: Document Camera y t t

20 t Your turn... Sketch the slope field for df = a bf on the following set of axes. Then sketch some solution curves. F(t) a b

21 The Logistic Equation ( dn = rn 1 N ) K What do the solutions to the logistic equation look like?

22 The Logistic Equation: Slope field y() = y.thesuccessivevaluesofy were calculated according to 256For r = 1 and Chapter K = 1: 13. Qualitative methods for differential equations population 1.2 (a) population 1.25 (b) time time 1 Figure (a) Slope field and (b) solution curves for the logistic equation (13.9).

23 The Logistic Equation 256For r = 1 and Chapter K = 1: 13. Qualitative methods for differential equations population 1.2 (a) population 1.25 (b) time time 1 Next class: Do the solutions have an inflection point? Do the solutions y 1 = y +.5y ever cross? (1 y )h Figure (a) Slope field and (b) solution curves for the logistic equation (13.9). y() = y.thesuccessivevaluesofy were calculated according to

24 Qualitative analysis for dy = f(y): Phase-line analysis: 1. Sketch dy vs. f(y). 2. Identify steady-states on y axis, and draw arrows. Identify stability. 3. Sketch solutions. Slope field: 1. Figure out slope of tangent line for various y values. 2. Determine behaviour of y(t) (increasing vs. decreasing) 3. Plot slope field on y vs. t. 4. Sketch solutions.

25 Answers 1. B 2. C

26 Related Exam Problems 1. Consider the differential equation dy = y y3. a. Sketch the slope field corresponding to his equation in the range 2 y 2, and sketch on the same figure the graphs of the solutions that also satisfy y() = 1 and y() =.5. b. Find all steady state (i.e., constant or equilibrium) solutions of this different equation and classify their stability.

8. Qualitative analysis of autonomous equations on the line/population dynamics models, phase line, and stability of equilibrium points (corresponds

8. Qualitative analysis of autonomous equations on the line/population dynamics models, phase line, and stability of equilibrium points (corresponds c Dr Igor Zelenko, Spring 2017 1 8. Qualitative analysis of autonomous equations on the line/population dynamics models, phase line, and stability of equilibrium points (corresponds to section 2.5) 1.

More information

Where do differential equations come from?

Where do differential equations come from? Where do differential equations come from? Example: Keeping track of cell growth (a balance equation for cell mass) Rate of change = rate in rate out Old example: Cell size The cell is spherical. Nutrient

More information

1.2. Direction Fields: Graphical Representation of the ODE and its Solution Let us consider a first order differential equation of the form dy

1.2. Direction Fields: Graphical Representation of the ODE and its Solution Let us consider a first order differential equation of the form dy .. Direction Fields: Graphical Representation of the ODE and its Solution Let us consider a first order differential equation of the form dy = f(x, y). In this section we aim to understand the solution

More information

Use separation of variables to solve the following differential equations with given initial conditions. y 1 1 y ). y(y 1) = 1

Use separation of variables to solve the following differential equations with given initial conditions. y 1 1 y ). y(y 1) = 1 Chapter 11 Differential Equations 11.1 Use separation of variables to solve the following differential equations with given initial conditions. (a) = 2ty, y(0) = 10 (b) = y(1 y), y(0) = 0.5, (Hint: 1 y(y

More information

. For each initial condition y(0) = y 0, there exists a. unique solution. In fact, given any point (x, y), there is a unique curve through this point,

. For each initial condition y(0) = y 0, there exists a. unique solution. In fact, given any point (x, y), there is a unique curve through this point, 1.2. Direction Fields: Graphical Representation of the ODE and its Solution Section Objective(s): Constructing Direction Fields. Interpreting Direction Fields. Definition 1.2.1. A first order ODE of the

More information

Math 3B: Lecture 14. Noah White. February 13, 2016

Math 3B: Lecture 14. Noah White. February 13, 2016 Math 3B: Lecture 14 Noah White February 13, 2016 Last time Accumulated change problems Last time Accumulated change problems Adding up a value if it is changing over time Last time Accumulated change problems

More information

Solutions of Math 53 Midterm Exam I

Solutions of Math 53 Midterm Exam I Solutions of Math 53 Midterm Exam I Problem 1: (1) [8 points] Draw a direction field for the given differential equation y 0 = t + y. (2) [8 points] Based on the direction field, determine the behavior

More information

Math 108, Solution of Midterm Exam 3

Math 108, Solution of Midterm Exam 3 Math 108, Solution of Midterm Exam 3 1 Find an equation of the tangent line to the curve x 3 +y 3 = xy at the point (1,1). Solution. Differentiating both sides of the given equation with respect to x,

More information

MATH 215/255 Solutions to Additional Practice Problems April dy dt

MATH 215/255 Solutions to Additional Practice Problems April dy dt . For the nonlinear system MATH 5/55 Solutions to Additional Practice Problems April 08 dx dt = x( x y, dy dt = y(.5 y x, x 0, y 0, (a Show that if x(0 > 0 and y(0 = 0, then the solution (x(t, y(t of the

More information

Learning Target: I can sketch the graphs of rational functions without a calculator. a. Determine the equation(s) of the asymptotes.

Learning Target: I can sketch the graphs of rational functions without a calculator. a. Determine the equation(s) of the asymptotes. Learning Target: I can sketch the graphs of rational functions without a calculator Consider the graph of y= f(x), where f(x) = 3x 3 (x+2) 2 a. Determine the equation(s) of the asymptotes. b. Find the

More information

Numerical method for approximating the solution of an IVP. Euler Algorithm (the simplest approximation method)

Numerical method for approximating the solution of an IVP. Euler Algorithm (the simplest approximation method) Section 2.7 Euler s Method (Computer Approximation) Key Terms/ Ideas: Numerical method for approximating the solution of an IVP Linear Approximation; Tangent Line Euler Algorithm (the simplest approximation

More information

Calculus IV - HW 2 MA 214. Due 6/29

Calculus IV - HW 2 MA 214. Due 6/29 Calculus IV - HW 2 MA 214 Due 6/29 Section 2.5 1. (Problems 3 and 5 from B&D) The following problems involve differential equations of the form dy = f(y). For each, sketch the graph of f(y) versus y, determine

More information

Chapter 1: Introduction

Chapter 1: Introduction Chapter 1: Introduction Definition: A differential equation is an equation involving the derivative of a function. If the function depends on a single variable, then only ordinary derivatives appear and

More information

Math 163: Lecture notes

Math 163: Lecture notes Math 63: Lecture notes Professor Monika Nitsche March 2, 2 Special functions that are inverses of known functions. Inverse functions (Day ) Go over: early exam, hw, quizzes, grading scheme, attendance

More information

MATH 200 WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE

MATH 200 WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE WEEK 5 - WEDNESDAY DIRECTIONAL DERIVATIVE GOALS Be able to compute a gradient vector, and use it to compute a directional derivative of a given function in a given direction. Be able to use the fact that

More information

Final exam practice 1 UCLA: Math 3B, Winter 2019

Final exam practice 1 UCLA: Math 3B, Winter 2019 Instructor: Noah White Date: Final exam practice 1 UCLA: Math 3B, Winter 2019 This exam has 7 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions in

More information

Math 392 Exam 1 Solutions Fall (10 pts) Find the general solution to the differential equation dy dt = 1

Math 392 Exam 1 Solutions Fall (10 pts) Find the general solution to the differential equation dy dt = 1 Math 392 Exam 1 Solutions Fall 20104 1. (10 pts) Find the general solution to the differential equation = 1 y 2 t + 4ty = 1 t(y 2 + 4y). Hence (y 2 + 4y) = t y3 3 + 2y2 = ln t + c. 2. (8 pts) Perform Euler

More information

Average rates of change to instantaneous rates of change Math 102 Section 106

Average rates of change to instantaneous rates of change Math 102 Section 106 Average rates of change to instantaneous rates of change Math 102 Section 106 Cole Zmurchok September 14, 2016 Math 102: Announcements Office Hours today: 3-4 pm Math Annex 1118 and Thursday: 3-4 pm in

More information

ENGR 213: Applied Ordinary Differential Equations

ENGR 213: Applied Ordinary Differential Equations ENGR 213: Applied Ordinary Differential Equations Youmin Zhang Department of Mechanical and Industrial Engineering Concordia University Phone: x5741 Office Location: EV 4-109 Email: ymzhang@encs.concordia.ca

More information

Answer Key. Calculus I Math 141 Fall 2003 Professor Ben Richert. Exam 2

Answer Key. Calculus I Math 141 Fall 2003 Professor Ben Richert. Exam 2 Answer Key Calculus I Math 141 Fall 2003 Professor Ben Richert Exam 2 November 18, 2003 Please do all your work in this booklet and show all the steps. Calculators and note-cards are not allowed. Problem

More information

Lecture 3. Dynamical Systems in Continuous Time

Lecture 3. Dynamical Systems in Continuous Time Lecture 3. Dynamical Systems in Continuous Time University of British Columbia, Vancouver Yue-Xian Li November 2, 2017 1 3.1 Exponential growth and decay A Population With Generation Overlap Consider a

More information

Sample Questions, Exam 1 Math 244 Spring 2007

Sample Questions, Exam 1 Math 244 Spring 2007 Sample Questions, Exam Math 244 Spring 2007 Remember, on the exam you may use a calculator, but NOT one that can perform symbolic manipulation (remembering derivative and integral formulas are a part of

More information

MATH 2410 PRACTICE PROBLEMS FOR FINAL EXAM

MATH 2410 PRACTICE PROBLEMS FOR FINAL EXAM MATH 2410 PRACTICE PROBLEMS FOR FINAL EXAM Date and place: Saturday, December 16, 2017. Section 001: 3:30-5:30 pm at MONT 225 Section 012: 8:00-10:00am at WSRH 112. Material covered: Lectures, quizzes,

More information

ODE Math 3331 (Summer 2014) June 16, 2014

ODE Math 3331 (Summer 2014) June 16, 2014 Page 1 of 12 Please go to the next page... Sample Midterm 1 ODE Math 3331 (Summer 2014) June 16, 2014 50 points 1. Find the solution of the following initial-value problem 1. Solution (S.O.V) dt = ty2,

More information

Calculus for the Life Sciences II Assignment 6 solutions. f(x, y) = 3π 3 cos 2x + 2 sin 3y

Calculus for the Life Sciences II Assignment 6 solutions. f(x, y) = 3π 3 cos 2x + 2 sin 3y Calculus for the Life Sciences II Assignment 6 solutions Find the tangent plane to the graph of the function at the point (0, π f(x, y = 3π 3 cos 2x + 2 sin 3y Solution: The tangent plane of f at a point

More information

MATH section 4.4 Concavity and Curve Sketching Page 1. is increasing on I. is decreasing on I. = or. x c

MATH section 4.4 Concavity and Curve Sketching Page 1. is increasing on I. is decreasing on I. = or. x c MATH 0100 section 4.4 Concavity and Curve Sketching Page 1 Definition: The graph of a differentiable function y = (a) concave up on an open interval I if df f( x) (b) concave down on an open interval I

More information

MATH10001 Mathematical Workshop Difference Equations part 2 Non-linear difference equations

MATH10001 Mathematical Workshop Difference Equations part 2 Non-linear difference equations MATH10001 Mathematical Workshop Difference Equations part 2 Non-linear difference equations In a linear difference equation, the equation contains a sum of multiples of the elements in the sequence {y

More information

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end.

DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. Math 307A, Midterm 1 Spring 2013 Name: Instructions. DON T PANIC! If you get stuck, take a deep breath and go on to the next question. Come back to the question you left if you have time at the end. There

More information

dy dt = ty, y(0) = 3. (1)

dy dt = ty, y(0) = 3. (1) 2. (10pts) Solve the given intial value problem (IVP): dy dt = ty, y(0) = 3. (1) 3. (10pts) A plot of f(y) =y(1 y)(2 y) of the right hand side of the differential equation dy/dt = f(y) is shown below.

More information

Today. Qualitative analysis examples.

Today. Qualitative analysis examples. Toda Qualitative analsis examples. = -(-1)(+1) What are the stead states of this equation? Draw the slope fields for this equation. = -(-1)(+1) What are the stead states of this equation? Draw the slope

More information

Solutions to the Review Questions

Solutions to the Review Questions Solutions to the Review Questions Short Answer/True or False. True or False, and explain: (a) If y = y + 2t, then 0 = y + 2t is an equilibrium solution. False: This is an isocline associated with a slope

More information

Section 3.9. The Geometry of Graphs. Difference Equations to Differential Equations

Section 3.9. The Geometry of Graphs. Difference Equations to Differential Equations Difference Equations to Differential Equations Section 3.9 The Geometry of Graphs In Section. we discussed the graph of a function y = f(x) in terms of plotting points (x, f(x)) for many different values

More information

Autonomous means conditions are constant in time, though they may depend on the current value of y.

Autonomous means conditions are constant in time, though they may depend on the current value of y. 18.03 Class 8, Feb 19, 2010 Autonomous equations [1] Logistic equation [2] Phase line [3] Extrema, points of inflection Announcements: Final Tuesday, May 18, 9:00-12:00, Johnson Track Hour exam next Wednesday:

More information

1 y = Recitation Worksheet 1A. 1. Simplify the following: b. ( ) a. ( x ) Solve for y : 3. Plot these points in the xy plane:

1 y = Recitation Worksheet 1A. 1. Simplify the following: b. ( ) a. ( x ) Solve for y : 3. Plot these points in the xy plane: Math 13 Recitation Worksheet 1A 1 Simplify the following: a ( ) 7 b ( ) 3 4 9 3 5 3 c 15 3 d 3 15 Solve for y : 8 y y 5= 6 3 3 Plot these points in the y plane: A ( 0,0 ) B ( 5,0 ) C ( 0, 4) D ( 3,5) 4

More information

Integration - Past Edexcel Exam Questions

Integration - Past Edexcel Exam Questions Integration - Past Edexcel Exam Questions 1. (a) Given that y = 5x 2 + 7x + 3, find i. - ii. - (b) ( 1 + 3 ) x 1 x dx. [4] 2. Question 2b - January 2005 2. The gradient of the curve C is given by The point

More information

CALCULUS APPLICATIONS OF DIFFERENTIATION LESSON PLAN. C3 Topic Overview

CALCULUS APPLICATIONS OF DIFFERENTIATION LESSON PLAN. C3 Topic Overview CALCULUS C3 Topic Overview C3 APPLICATIONS OF DIFFERENTIATION Differentiation can be used to investigate the behaviour of a function, to find regions where the value of a function is increasing or decreasing

More information

Analyzing Autonomous DEs: Spotted Owls

Analyzing Autonomous DEs: Spotted Owls Analyzing Autonomous DEs: Spotted Owls A group of biologists are making predictions about the spotted owl population in a forest in the Pacific Northwest. The autonomous differential equation the scientist

More information

Parametric Functions and Vector Functions (BC Only)

Parametric Functions and Vector Functions (BC Only) Parametric Functions and Vector Functions (BC Only) Parametric Functions Parametric functions are another way of viewing functions. This time, the values of x and y are both dependent on another independent

More information

Numerical method for approximating the solution of an IVP. Euler Algorithm (the simplest approximation method)

Numerical method for approximating the solution of an IVP. Euler Algorithm (the simplest approximation method) Section 2.7 Euler s Method (Computer Approximation) Key Terms/ Ideas: Numerical method for approximating the solution of an IVP Linear Approximation; Tangent Line Euler Algorithm (the simplest approximation

More information

Final exam practice 4 (solutions) UCLA: Math 3B, Winter 2019

Final exam practice 4 (solutions) UCLA: Math 3B, Winter 2019 Final exam practice 4 (solutions) Instructor: Noah White Date: UCLA: Math 3B, Winter 2019 This exam has 7 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions

More information

Worksheet 1.8: Geometry of Vector Derivatives

Worksheet 1.8: Geometry of Vector Derivatives Boise State Math 275 (Ultman) Worksheet 1.8: Geometry of Vector Derivatives From the Toolbox (what you need from previous classes): Calc I: Computing derivatives of single-variable functions y = f (t).

More information

Problem Score Possible Points Total 150

Problem Score Possible Points Total 150 Math 250 Fall 2010 Final Exam NAME: ID No: SECTION: This exam contains 17 problems on 13 pages (including this title page) for a total of 150 points. There are 10 multiple-choice problems and 7 partial

More information

Solutions to the Review Questions

Solutions to the Review Questions Solutions to the Review Questions Short Answer/True or False. True or False, and explain: (a) If y = y + 2t, then 0 = y + 2t is an equilibrium solution. False: (a) Equilibrium solutions are only defined

More information

Math 116 Practice for Exam 2

Math 116 Practice for Exam 2 Math 6 Practice for Exam Generated October 6, 5 Name: Instructor: Section Number:. This exam has 5 questions. Note that the problems are not of equal difficulty, so you may want to skip over and return

More information

Final exam practice 4 UCLA: Math 3B, Winter 2019

Final exam practice 4 UCLA: Math 3B, Winter 2019 Instructor: Noah White Date: Final exam practice 4 UCLA: Math 3B, Winter 2019 This exam has 7 questions, for a total of 80 points. Please print your working and answers neatly. Write your solutions in

More information

MA 138 Calculus 2 for the Life Sciences Spring 2016 Final Exam May 4, Exam Scores. Question Score Total

MA 138 Calculus 2 for the Life Sciences Spring 2016 Final Exam May 4, Exam Scores. Question Score Total MA 138 Calculus 2 for the Life Sciences Spring 2016 Final Exam May 4, 2016 Exam Scores Question Score Total 1 10 Name: Section: Last 4 digits of student ID #: No books or notes may be used. Turn off all

More information

DRAFT - Math 101 Lecture Note - Dr. Said Algarni

DRAFT - Math 101 Lecture Note - Dr. Said Algarni 2 Limits 2.1 The Tangent Problems The word tangent is derived from the Latin word tangens, which means touching. A tangent line to a curve is a line that touches the curve and a secant line is a line that

More information

APPM 2350, Summer 2018: Exam 1 June 15, 2018

APPM 2350, Summer 2018: Exam 1 June 15, 2018 APPM 2350, Summer 2018: Exam 1 June 15, 2018 Instructions: Please show all of your work and make your methods and reasoning clear. Answers out of the blue with no supporting work will receive no credit

More information

Math Section Bekki George: 02/25/19. University of Houston. Bekki George (UH) Math /25/19 1 / 19

Math Section Bekki George: 02/25/19. University of Houston. Bekki George (UH) Math /25/19 1 / 19 Math 1431 Section 12200 Bekki George: rageorge@central.uh.edu University of Houston 02/25/19 Bekki George (UH) Math 1431 02/25/19 1 / 19 Office Hours: Mondays 1-2pm, Tuesdays 2:45-3:30pm (also available

More information

Today. Introduction to Differential Equations. Linear DE ( y = ky ) Nonlinear DE (e.g. y = y (1-y) ) Qualitative analysis (phase line)

Today. Introduction to Differential Equations. Linear DE ( y = ky ) Nonlinear DE (e.g. y = y (1-y) ) Qualitative analysis (phase line) Today Introduction to Differential Equations Linear DE ( y = ky ) Nonlinear DE (e.g. y = y (1-y) ) Qualitative analysis (phase line) Differential equations (DE) Carbon dating: The amount of Carbon-14 in

More information

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations

Math 312 Lecture Notes Linear Two-dimensional Systems of Differential Equations Math 2 Lecture Notes Linear Two-dimensional Systems of Differential Equations Warren Weckesser Department of Mathematics Colgate University February 2005 In these notes, we consider the linear system of

More information

Math 122 Fall Handout 11: Summary of Euler s Method, Slope Fields and Symbolic Solutions of Differential Equations

Math 122 Fall Handout 11: Summary of Euler s Method, Slope Fields and Symbolic Solutions of Differential Equations 1 Math 122 Fall 2008 Handout 11: Summary of Euler s Method, Slope Fields and Symbolic Solutions of Differential Equations The purpose of this handout is to review the techniques that you will learn for

More information

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1.

f (x) = 2x x = 2x2 + 4x 6 x 0 = 2x 2 + 4x 6 = 2(x + 3)(x 1) x = 3 or x = 1. F16 MATH 15 Test November, 016 NAME: SOLUTIONS CRN: Use only methods from class. You must show work to receive credit. When using a theorem given in class, cite the theorem. Reminder: Calculators are not

More information

Continuous-Time Dynamical Systems: Sketching solution curves and bifurcations

Continuous-Time Dynamical Systems: Sketching solution curves and bifurcations Math 360 Winter 07 Section 0 HW#4 Continuous-Time Dynamical Systems: Sketching solution curves and bifurcations (Due in one week! Thursday Nov 9, 07) Materials contained in this assignment are of great

More information

Autonomous Equations and Stability Sections

Autonomous Equations and Stability Sections A B I L E N E C H R I S T I A N U N I V E R S I T Y Department of Mathematics Autonomous Equations and Stability Sections 2.4-2.5 Dr. John Ehrke Department of Mathematics Fall 2012 Autonomous Differential

More information

Math 256: Applied Differential Equations: Final Review

Math 256: Applied Differential Equations: Final Review Math 256: Applied Differential Equations: Final Review Chapter 1: Introduction, Sec 1.1, 1.2, 1.3 (a) Differential Equation, Mathematical Model (b) Direction (Slope) Field, Equilibrium Solution (c) Rate

More information

2.1 Differential Equations and Solutions. Blerina Xhabli

2.1 Differential Equations and Solutions. Blerina Xhabli 2.1 Math 3331 Differential Equations 2.1 Differential Equations and Solutions Blerina Xhabli Department of Mathematics, University of Houston blerina@math.uh.edu math.uh.edu/ blerina/teaching.html Blerina

More information

Review for the Final Exam

Review for the Final Exam Math 171 Review for the Final Exam 1 Find the limits (4 points each) (a) lim 4x 2 3; x x (b) lim ( x 2 x x 1 )x ; (c) lim( 1 1 ); x 1 ln x x 1 sin (x 2) (d) lim x 2 x 2 4 Solutions (a) The limit lim 4x

More information

Exam 4 SCORE. MA 114 Exam 4 Spring Section and/or TA:

Exam 4 SCORE. MA 114 Exam 4 Spring Section and/or TA: Exam 4 Name: Section and/or TA: Last Four Digits of Student ID: Do not remove this answer page you will return the whole exam. You will be allowed two hours to complete this test. No books or notes may

More information

we get y 2 5y = x + e x + C: From the initial condition y(0) = 1, we get 1 5 = 0+1+C; so that C = 5. Completing the square to solve y 2 5y = x + e x 5

we get y 2 5y = x + e x + C: From the initial condition y(0) = 1, we get 1 5 = 0+1+C; so that C = 5. Completing the square to solve y 2 5y = x + e x 5 Math 24 Final Exam Solution 17 December 1999 1. Find the general solution to the differential equation ty 0 +2y = sin t. Solution: Rewriting the equation in the form (for t 6= 0),we find that y 0 + 2 t

More information

4 Insect outbreak model

4 Insect outbreak model 4 Insect outbreak model In this lecture I will put to a good use all the mathematical machinery we discussed so far. Consider an insect population, which is subject to predation by birds. It is a very

More information

UNIT 2 MATHEMATICAL METHODS 2013 MASTER CLASS PROGRAM WEEK 11 EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS

UNIT 2 MATHEMATICAL METHODS 2013 MASTER CLASS PROGRAM WEEK 11 EXAMINATION 2 SOLUTIONS SECTION 1 MULTIPLE CHOICE QUESTIONS UNIT MATHEMATICAL METHODS 01 MASTER CLASS PROGRAM WEEK 11 EXAMINATION SOLUTIONS FOR ERRORS AND UPDATES, PLEASE VISIT WWW.TSFX.COM.AU/MC-UPDATES SECTION 1 MULTIPLE CHOICE QUESTIONS QUESTION 1 QUESTION QUESTION

More information

Euler s Method (BC Only)

Euler s Method (BC Only) Euler s Method (BC Only) Euler s Method is used to generate numerical approximations for solutions to differential equations that are not separable by methods tested on the AP Exam. It is necessary to

More information

then the substitution z = ax + by + c reduces this equation to the separable one.

then the substitution z = ax + by + c reduces this equation to the separable one. 7 Substitutions II Some of the topics in this lecture are optional and will not be tested at the exams. However, for a curious student it should be useful to learn a few extra things about ordinary differential

More information

Math 31S. Rumbos Fall Solutions to Exam 1

Math 31S. Rumbos Fall Solutions to Exam 1 Math 31S. Rumbos Fall 2011 1 Solutions to Exam 1 1. When people smoke, carbon monoxide is released into the air. Suppose that in a room of volume 60 m 3, air containing 5% carbon monoxide is introduced

More information

Final exam practice UCLA: Math 3B, Fall 2016

Final exam practice UCLA: Math 3B, Fall 2016 Instructor: Noah White Date: Monday, November 28, 2016 Version: practice. Final exam practice UCLA: Math 3B, Fall 2016 This exam has 7 questions, for a total of 84 points. Please print your working and

More information

M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, Section time (circle one): 11:00am 1:00pm 2:00pm

M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, Section time (circle one): 11:00am 1:00pm 2:00pm M408 C Fall 2011 Dr. Jeffrey Danciger Exam 2 November 3, 2011 NAME EID Section time (circle one): 11:00am 1:00pm 2:00pm No books, notes, or calculators. Show all your work. Do NOT open this exam booklet

More information

1. (a) (4 points) Four students see this function: f(t) = 7 4t. Which student has written the derivative correctly? Circle the student s name.

1. (a) (4 points) Four students see this function: f(t) = 7 4t. Which student has written the derivative correctly? Circle the student s name. Math 170 - Spring 016 - Common Exam 1 Name: Part 1: Short Answer The first five (5) pages are short answer. You don t need to show work. Partial credit will be rare. When appropriate answers must include

More information

MATH The Derivative as a Function - Section 3.2. The derivative of f is the function. f x h f x. f x lim

MATH The Derivative as a Function - Section 3.2. The derivative of f is the function. f x h f x. f x lim MATH 90 - The Derivative as a Function - Section 3.2 The derivative of f is the function f x lim h 0 f x h f x h for all x for which the limit exists. The notation f x is read "f prime of x". Note that

More information

Constant Acceleration

Constant Acceleration Constant Acceleration Ch. in your text book Objectives Students will be able to: ) Write the definition of acceleration, either in words or as an equation ) Create an equation for the movement of an object

More information

Solutions to Dynamical Systems 2010 exam. Each question is worth 25 marks.

Solutions to Dynamical Systems 2010 exam. Each question is worth 25 marks. Solutions to Dynamical Systems exam Each question is worth marks [Unseen] Consider the following st order differential equation: dy dt Xy yy 4 a Find and classify all the fixed points of Hence draw the

More information

3 Single species models. Reading: Otto & Day (2007) section 4.2.1

3 Single species models. Reading: Otto & Day (2007) section 4.2.1 3 Single species models 3.1 Exponential growth Reading: Otto & Day (2007) section 4.2.1 We can solve equation 17 to find the population at time t given a starting population N(0) = N 0 as follows. N(t)

More information

Maximum and Minimum Values

Maximum and Minimum Values Maimum and Minimum Values y Maimum Minimum MATH 80 Lecture 4 of 6 Definitions: A function f has an absolute maimum at c if f ( c) f ( ) for all in D, where D is the domain of f. The number f (c) is called

More information

Math 2930 Worksheet Introduction to Differential Equations

Math 2930 Worksheet Introduction to Differential Equations Math 2930 Worksheet Introduction to Differential Equations Week 1 August 24, 2017 Question 1. Is the function y = 1 + t a solution to the differential equation How about the function y = 1 + 2t? How about

More information

Solutions to Math 41 Second Exam November 5, 2013

Solutions to Math 41 Second Exam November 5, 2013 Solutions to Math 4 Second Exam November 5, 03. 5 points) Differentiate, using the method of your choice. a) fx) = cos 03 x arctan x + 4π) 5 points) If u = x arctan x + 4π then fx) = fu) = cos 03 u and

More information

Name: MA 226 Exam 2 Show Your Work and JUSTIFY Your Responses. Problem Possible Actual Score TOTAL 100

Name: MA 226 Exam 2 Show Your Work and JUSTIFY Your Responses. Problem Possible Actual Score TOTAL 100 Name: MA 226 Exam 2 Show Your Work and JUSTIFY Your Responses Problem Possible Actual Score 1 20 2 16 3 18 4 16 5 10 6 20 TOTAL 100 1.) 20 points - Short Answer (4 each) A) Consider the predator-prey system

More information

AP Calculus AB 2015 Free-Response Questions

AP Calculus AB 2015 Free-Response Questions AP Calculus AB 015 Free-Response Questions College Board, Advanced Placement Program, AP, AP Central, and the acorn logo are registered trademarks of the College Board. AP Central is the official online

More information

Model Structures and Behavior Patterns

Model Structures and Behavior Patterns Model Structures and Behavior Patterns The systems modeler believes that the behavior of the system is a function of the system itself Translating that idea to the model realm, this means that certain

More information

Math 2300 Calculus II University of Colorado Final exam review problems

Math 2300 Calculus II University of Colorado Final exam review problems Math 300 Calculus II University of Colorado Final exam review problems. A slope field for the differential equation y = y e x is shown. Sketch the graphs of the solutions that satisfy the given initial

More information

Math 215/255 Final Exam (Dec 2005)

Math 215/255 Final Exam (Dec 2005) Exam (Dec 2005) Last Student #: First name: Signature: Circle your section #: Burggraf=0, Peterson=02, Khadra=03, Burghelea=04, Li=05 I have read and understood the instructions below: Please sign: Instructions:.

More information

Math 216 First Midterm 19 October, 2017

Math 216 First Midterm 19 October, 2017 Math 6 First Midterm 9 October, 7 This sample exam is provided to serve as one component of your studying for this exam in this course. Please note that it is not guaranteed to cover the material that

More information

MATH 251 Examination II July 28, Name: Student Number: Section:

MATH 251 Examination II July 28, Name: Student Number: Section: MATH 251 Examination II July 28, 2008 Name: Student Number: Section: This exam has 9 questions for a total of 100 points. In order to obtain full credit for partial credit problems, all work must be shown.

More information

Copyright (c) 2006 Warren Weckesser

Copyright (c) 2006 Warren Weckesser 2.2. PLANAR LINEAR SYSTEMS 3 2.2. Planar Linear Systems We consider the linear system of two first order differential equations or equivalently, = ax + by (2.7) dy = cx + dy [ d x x = A x, where x =, and

More information

Final Exam Review Part I: Unit IV Material

Final Exam Review Part I: Unit IV Material Final Exam Review Part I: Unit IV Material Math114 Department of Mathematics, University of Kentucky April 26, 2017 Math114 Lecture 37 1/ 11 Outline 1 Conic Sections Math114 Lecture 37 2/ 11 Outline 1

More information

5. Introduction to limit

5. Introduction to limit 5. 5.1. The main idea in calculus is that of finding a desired quantity by pushing to the limit the process of taking ever better approximations (see 0 Introduction). In the implementation, a real number

More information

Math 225 Differential Equations Notes Chapter 1

Math 225 Differential Equations Notes Chapter 1 Math 225 Differential Equations Notes Chapter 1 Michael Muscedere September 9, 2004 1 Introduction 1.1 Background In science and engineering models are used to describe physical phenomena. Often these

More information

Kinetics Teacher Answer Key Section I

Kinetics Teacher Answer Key Section I Kinetics Teacher Answer Key Section I Q1. Sketch the graph on the axes provided, labeling all parts as described in the Level I Generic Graph Questions. See Appendix A. Q2. Referring to your copy of the

More information

Math 116 Practice for Exam 2

Math 116 Practice for Exam 2 Math 116 Practice for Exam Generated October 8, 016 Name: SOLUTIONS Instructor: Section Number: 1. This exam has 6 questions. Note that the problems are not of equal difficulty, so you may want to skip

More information

Part A: Short Answer Questions

Part A: Short Answer Questions Math 111 Practice Exam Your Grade: Fall 2015 Total Marks: 160 Instructor: Telyn Kusalik Time: 180 minutes Name: Part A: Short Answer Questions Answer each question in the blank provided. 1. If a city grows

More information

Name: 4 sin(2u) 4 sin(1.4)

Name: 4 sin(2u) 4 sin(1.4) Common Exam 1 Math 170, Fall, 2014 Name: Instructions For Part I. The first six (6) pages are short answer. You don t need to show work. Partial credit will be rare. 1. (10 pts.) Compute the derivatives.

More information

Exam 1 Review SOLUTIONS

Exam 1 Review SOLUTIONS 1. True or False (and give a short reason): Exam 1 Review SOLUTIONS (a) If the parametric curve x = f(t), y = g(t) satisfies g (1) = 0, then it has a horizontal tangent line when t = 1. FALSE: To make

More information

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1

Math 131. The Derivative and the Tangent Line Problem Larson Section 2.1 Math 131. The Derivative and the Tangent Line Problem Larson Section.1 From precalculus, the secant line through the two points (c, f(c)) and (c +, f(c + )) is given by m sec = rise f(c + ) f(c) f(c +

More information

Math 106 Answers to Exam 3a Fall 2015

Math 106 Answers to Exam 3a Fall 2015 Math 6 Answers to Exam 3a Fall 5.. Consider the curve given parametrically by x(t) = cos(t), y(t) = (t 3 ) 3, for t from π to π. (a) (6 points) Find all the points (x, y) where the graph has either a vertical

More information

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1

California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1 California State University Northridge MATH 280: Applied Differential Equations Midterm Exam 1 October 9, 2013. Duration: 75 Minutes. Instructor: Jing Li Student Name: Student number: Take your time to

More information

sec x dx = ln sec x + tan x csc x dx = ln csc x cot x

sec x dx = ln sec x + tan x csc x dx = ln csc x cot x Name: Instructions: The exam will have eight problems. Make sure that your reasoning and your final answers are clear. Include labels and units when appropriate. No notes, books, or calculators are permitted

More information

1. Compute the derivatives of the following functions, by any means necessary. f (x) = (1 x3 )(1/2)(x 2 1) 1/2 (2x) x 2 1( 3x 2 ) (1 x 3 ) 2

1. Compute the derivatives of the following functions, by any means necessary. f (x) = (1 x3 )(1/2)(x 2 1) 1/2 (2x) x 2 1( 3x 2 ) (1 x 3 ) 2 Math 51 Exam Nov. 4, 009 SOLUTIONS Directions 1. SHOW YOUR WORK and be thorough in your solutions. Partial credit will only be given for work shown.. Any numerical answers should be left in exact form,

More information

MATH 135 Calculus 1 Solutions/Answers for Exam 3 Practice Problems November 18, 2016

MATH 135 Calculus 1 Solutions/Answers for Exam 3 Practice Problems November 18, 2016 MATH 35 Calculus Solutions/Answers for Exam 3 Practice Problems November 8, 206 I. Find the indicated derivative(s) and simplify. (A) ( y = ln(x) x 7 4 ) x Solution: By the product rule and the derivative

More information

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3

(1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 Math 127 Introduction and Review (1) Recap of Differential Calculus and Integral Calculus (2) Preview of Calculus in three dimensional space (3) Tools for Calculus 3 MATH 127 Introduction to Calculus III

More information

Name: October 24, 2014 ID Number: Fall Midterm I. Number Total Points Points Obtained Total 40

Name: October 24, 2014 ID Number: Fall Midterm I. Number Total Points Points Obtained Total 40 Math 307O: Introduction to Differential Equations Name: October 24, 204 ID Number: Fall 204 Midterm I Number Total Points Points Obtained 0 2 0 3 0 4 0 Total 40 Instructions.. Show all your work and box

More information

True or False. Circle T if the statement is always true; otherwise circle F. for all angles θ. T F. 1 sin θ

True or False. Circle T if the statement is always true; otherwise circle F. for all angles θ. T F. 1 sin θ Math 90 Practice Midterm III Solutions Ch. 8-0 (Ebersole), 3.3-3.8 (Stewart) DISCLAIMER. This collection of practice problems is not guaranteed to be identical, in length or content, to the actual exam.

More information