CALCULUS APPLICATIONS OF DIFFERENTIATION LESSON PLAN. C3 Topic Overview

Size: px
Start display at page:

Download "CALCULUS APPLICATIONS OF DIFFERENTIATION LESSON PLAN. C3 Topic Overview"

Transcription

1 CALCULUS C3 Topic Overview C3 APPLICATIONS OF DIFFERENTIATION Differentiation can be used to investigate the behaviour of a function, to find regions where the value of a function is increasing or decreasing and to find maimum and minimum values. illustrates how the technique of differentiation is applied to solving the problem of determining the maimum and minimum values of polynomial functions. assumes you know the basic rules of differentiation given in Topic C and can solve quadratic equations [Ref: Algebra A3 Quadratic Equations]. LESSON PLAN Lesson No. LESSON TITLE Page Eamples SAQs 1 C3.1 Maimum and Minimum Values C3.1 C3. Maimum and Minimum Values C3. Appendi C3.3 Solutions to the Self-Assessment Questions 11 Page 1

2 CALCULUS: DIFFERENTIATION C3.1 Maimum and Minimum Values 1 C3.1 MAXIMUM AND MINIMUM VALUES There are some situations where we need to investigate maimum or minimum values of a particular quantity. For eample, we might wish to find: the load resistance for which the power dissipated is a maimum in an electrical circuit the point at which the bending moment of a cantilever beam is a maimum in a mechanical system the dimensions of a cylindrical hot water tank for which heat loss is a minimum. In these applications, we may be able to graph one variable against the other over a limited range of values and then find the point on the graph at which a maimum or minimum point occurs. However, in certain situations, we can also use calculus techniques to find the eact maimum or minimum values. STATIONARY POINTS A stationary point on a curve is a point at which the gradient is zero, i.e. the tangent line is horizontal at the point. The graph may have a local maimum, local minimum or a point of inflection at a stationary point. In Topic C1.3., the derivative f '() of a function was defined as the gradient of the curve y = f() at a particular value of. Hence, a given point (a, f(a)) on the curve y = f() is a stationary point if f '(a) = 0. A. MAXIMUM TURNING POINT A stationary point is a local maimum turning point if the gradient f '() changes sign from positive to negative at = a. f() Positive Negative a a a a Sign of f '() 0 a a means a value just less than = a means a value just more than = a Page

3 CALCULUS: DIFFERENTIATION C3.1 Maimum and Minimum Values 1 B. MINIMUM TURNING POINT A stationary point is a local minimum turning point if the gradient f '() changes sign from negative to positive at = a. f() Negative Positive a a a a Sign of f '() 0 C. POINT OF INFLECTION A stationary point is a point of inflection if the gradient f '() does not change sign at = a. f() Positive Positive a a a a Sign of f '() 0 or f() Negative Negative a a a a Sign of f '() 0 Page 3

4 CALCULUS: DIFFERENTIATION C3.1 Maimum and Minimum Values 1 SUMMARY Stationary points on a curve occur where f '() = 0. The nature of the stationary points can be deduced by observing changes in the sign of f '() in the vicinity of the stationary points or by eamining the sign of f "() at the stationary points. This is eplained below: The Sign of the First Derivative f '() The first derivative f '() measures the rate of change of f () with respect to. A f '() = 0 B Slope: f '() > 0 f() is increasing f '() < 0 f() is decreasing Turning points (f '() = 0): A is a local maimum B is a local minimum The Sign of the Second Derivative f "() The second derivative f "() measures the rate of change of f'() with respect to. At a maimum turning point, the gradient is decreasing since it changes from ve just before the turning point to ve just after the turning point. At a minimum turning point, the gradient is increasing since it changes from ve just before the turning point to ve just after the turning point. Hence, at a stationary point: f "() < 0 Maimum turning point f "() > 0 Minimum turning point Unfortunately, the use of the second derivative to determine the nature of a stationary point does not help if f "() = 0 at the stationary point. In such cases, the point can be a maimum, minimum or a point of inflection. If f "() = 0 at a stationary point, then it is necessary to investigate the changes of sign in the first derivative f '() to determine the nature of the stationary point (as shown in Eample 3.3). Page 4

5 CALCULUS: DIFFERENTIATION C3.1 Maimum and Minimum Values 1 EXAMPLE 3.1 Find the position and nature of the stationary point on the graph of the function y = 4. Hence sketch the curve. Solution: Step 1: Find the stationary point Differentiate: f() = 4 f ' () = f " () = At the stationary point(s): f ' () = 0 = 0 = 0 When = 0, y = 4 = 4 Thus, there is one stationary point at (0, 4) on the curve y = 4 Step : Determine the nature of the stationary point From Step 1, f " () = At the stationary point, where = 0 f " (0) = < 0 Local Maimum The sign of the second derivative is negative, hence (0, 4) is a maimum turning point. Step 3: Sketch the curve Before sketching the graph of a function, first determine certain critical values. These are: the points where the graph cuts the ais and the yais the values of y = f() over a range of values of the stationary points (maimum, minimum, points of inflection) the slope of the curve between and beyond the stationary point(s). On the ais, y = 0 4 = 0 = 4 = ± Hence, the graph cuts the ais at points (, 0) and (, 0) On the yais, = 0 y = 4 = 4 0 = 4 Hence, the graph cuts the yais at the point (0, 4) Page 5

6 CALCULUS: DIFFERENTIATION C3.1 Maimum and Minimum Values 1 Tabulate the values of f() = 4 over the range = 4 to = 4. Also determine the sign of f '() at these values (the numerical values of f '() are not required). Observe that the sign of f '() changes from ve just before and ve just after the stationary point at (0, 4). This confirms that point (0,4) is a maimum turning point f() = f '() = 0 Slope of the curve Maimum Turning Point Graph of f() = 4 f() SAQ C3.1 Find the position and nature of the stationary point on the graph of the following functions. Hence sketch the curve. (a) y = 4 (b) y = 4 1 Page 6

7 CALCULUS: DIFFERENTIATION C3. Maimum and Minimum Values C3. MAXIMUM AND MINIMUM VALUES The following eamples involve cubic functions and require more work to determine the stationary point(s). EXAMPLE 3. Find the position and nature of the stationary point(s) on the graph of the function y = (1 )(1 ). Hence sketch the curve. Solution: Step 1: Find the stationary point(s) Differentiate: f() = (1 )(1 ) At the stationary point(s): = (1 ) = 3 f '() = 1 3 f " () = 6 f'() = = ± When = 0.577, y = 3 = When = 0.577, y = 3 = = 0 = 1 = Thus, there are stationary points at (0.58, 0.38) and (0.58, 0.38) 1 3 Step : Determine the nature of the stationary points From Step 1, f " () = 6 At = 0.58 f " (0.58) = 3.48 < 0 Local maimum At = 0.58 f " (0.58) = 3.48 > 0 Local minimum Hence, there is a local maimum turning point at (0.58, 0.38) and a local minimum turning point at (0.58, 0.38) Page 7

8 CALCULUS: DIFFERENTIATION C3. Maimum and Minimum Values Step 3: Sketch the curve First, find the points where the graph cuts the ais and the yais. On the ais, y = 0 (1 )(1 ) = 0 Solving this equation gives = 0, 1, 1 Hence, the graph cuts the ais at points (1, 0), (0, 0) and (1, 0) On the yais, = 0 y = (1 )(1 ) = 0 Hence, the graph cuts the yais at the point (0,0) Tabulate the values of f() = (1 )(1 ) over the range = 1.5 to = 1.5. Observe changes in the sign of f ' () which confirm that there is a minimum turning point at (0.58,0.38) and a maimum turning point at (0.58, 0.38) f() = (1)(1) f '() = Slope of the curve Minimum Turning Point Maimum Turning Point Graph of f()= (1 )(1 ) f() Page 8

9 CALCULUS: DIFFERENTIATION C3. Maimum and Minimum Values EXAMPLE 3.3 Find the position and nature of the stationary point(s) on the graph of the function y = ( 1)( 5 7). Hence sketch the curve. Solution: Step 1: Find the stationary point(s) Differentiate: f() = ( 1)( 5 7) = f '() = f " () = 6 1 At the stationary point(s): f '() = = = 0 ( ) = 0 = [Ref: A3.1 Factorisation Method] When =, y = ( 1)( 5 7) = ( 1)( 5() 7) = 1 Thus, there is a stationary point at (, 1) Step : Determine the nature of the stationary point From Step 1, f " () = 6 1 At = f "() = 6() 1 = 0 Inconclusive Since the sign of the second derivative is zero at the point (, 1), it is necessary to investigate the changes of sign in the first derivative f '() to determine the nature of the stationary point. Tabulate the values of f() = ( 1)( 5 7) over the range = 0 to = 4. Observe that the sign of f ' () indicates that there is a point of inflection at (, 1) f() = ( 1)( 5 7) f'() = Slope of the curve Point of Inflection Page 9

10 CALCULUS: DIFFERENTIATION C3. Maimum and Minimum Values Step 3: Sketch the curve Determine points where the graph cuts and ais and the yais. On the ais, y = 0 ( 1)( 5 7) = 0 1 = 0 or 5 7 = 0 The discriminant of the quadratic 5 7 is b 4ac = 5 8 = 3 < 0 and so 5 7 = 0 has no real roots. [Ref: A3. Formula Method (The Discriminant)] Thus, the graph cuts the ais at one point (1, 0) On the yais, = 0 y = ( 1)( 5 7) = 7 Thus, the graph cuts the yais at the point (0, 7) Graph of f() = ( 1)( 5 7) f() SAQ C3. Find the position and nature of the stationary point(s) on the graph of the following functions. Hence sketch the curve. (a) y = ( 1)( ) (b) y = ( 1)( ) (c) y = 3 8 Page 10

11 CALCULUS: DIFFERENTIATION C3.3 APPENDIX C3.3 SOLUTIONS TO SELF-ASSESSMENT QUESTIONS SAQ C3.1 (a) f() = 4 At the stationary points: f ' () = 4= 0 =, y = 4 At =, f " () = > 0 Local minimum at (, 4) On the ais, y = 4 = ( 4 ) = 0 = 0 or = 4 On the yais, y = 4 = 0 Graph of y = 4 (b) f() = 4 1 At the stationary points: f ' () = 4= 0 =, y = 3 At =, f " () = < 0 Local maimum at (, 3) On the ais 4 1 = = 0 Using the quadratic roots formula: ± = (1) 4(1)(1) 4 ± 1 = = 3.73 or 0.68 Thus, the graph cuts the ais at points (3.73, 0) and (0.7, 0) and on the yais, y = 4 1 = 1 4 [Ref: Algebra A3.] Graph of y = Page 11

12 CALCULUS: DIFFERENTIATION C3.3 APPENDIX SAQ C3. (a) f() = (1)() = 3 At the stationary points: f '() = 3 = 0 ± 4 4 = 6 = 0.55 or 1. y = 0.63 or.11 using quadratics roots formula At = 0.55, f " () = 6 = > 0 Local minimum at (0.55, 0.63) At = 1., f " () = 6 = < 0 Local maimum at (1.,.11) On the ais, y = (1)() = 0 = 0, 1, Graph of y = (1)() (b) f() = (1)() = At the stationary points: f '() = 3 6 = 0 3( ) = 0 = 0, y = 4, 0 At = 0, f " () = 6 6 = > 0 Local minimum at (0, 4) At =, f " () = 6 6 = < 0 Local maimum at (, 0) On the ais, y = (1)() = 0 = 1, On the yais, y = (1)() = 4 Graph of y = (1)() Page 1

13 CALCULUS: DIFFERENTIATION C3.3 APPENDIX (c) f() = 3 8 At the stationary points: f '() = 3 = 0 = 0, y = 8 At = 0, f " () = 6 = 0 Inconclusive Eamine sign of f '() = 3 Table of values of f() = 3 8 over the range = 3 to = f() = f '() = 3 0 Slope of the curve Point of Inflection On the ais, y = 3 8 = 0 3 = 8 = On the yais, y = 8 Graph of y = Page 13

1 x

1 x Unit 1. Calculus Topic 4: Increasing and decreasing functions: turning points In topic 4 we continue with straightforward derivatives and integrals: Locate turning points where f () = 0. Determine the

More information

SOLUTION OF QUADRATIC EQUATIONS LESSON PLAN. A3 Topic Overview ALGEBRA

SOLUTION OF QUADRATIC EQUATIONS LESSON PLAN. A3 Topic Overview ALGEBRA ALGEBRA A Topic Overview A SOLUTION OF QUADRATIC EQUATIONS This topic describes three methods of solving Quadratic equations. assumes you understand and have practised using the algebraic methods described

More information

Calculus Interpretation: Part 1

Calculus Interpretation: Part 1 Saturday X-tra X-Sheet: 8 Calculus Interpretation: Part Key Concepts In this session we will focus on summarising what you need to know about: Tangents to a curve. Remainder and factor theorem. Sketching

More information

MORE CURVE SKETCHING

MORE CURVE SKETCHING Mathematics Revision Guides More Curve Sketching Page of 3 MK HOME TUITION Mathematics Revision Guides Level: AS / A Level MEI OCR MEI: C4 MORE CURVE SKETCHING Version : 5 Date: 05--007 Mathematics Revision

More information

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012

Daily Lessons and Assessments for AP* Calculus AB, A Complete Course Page 119 Mark Sparks 2012 Unit # Understanding the Derivative Homework Packet f ( h) f ( Find lim for each of the functions below. Then, find the equation of the tangent line to h 0 h the graph of f( at the given value of. 1. f

More information

1. Given the function f (x) = x 2 3bx + (c + 2), determine the values of b and c such that f (1) = 0 and f (3) = 0.

1. Given the function f (x) = x 2 3bx + (c + 2), determine the values of b and c such that f (1) = 0 and f (3) = 0. Chapter Review IB Questions 1. Given the function f () = 3b + (c + ), determine the values of b and c such that f = 0 and f = 0. (Total 4 marks). Consider the function ƒ : 3 5 + k. (a) Write down ƒ ().

More information

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature.

In order to master the techniques explained here it is vital that you undertake plenty of practice exercises so that they become second nature. Maima and minima In this unit we show how differentiation can be used to find the maimum and minimum values of a function. Because the derivative provides information about the gradient or slope of the

More information

Section 4.1 Increasing and Decreasing Functions

Section 4.1 Increasing and Decreasing Functions Section.1 Increasing and Decreasing Functions The graph of the quadratic function f 1 is a parabola. If we imagine a particle moving along this parabola from left to right, we can see that, while the -coordinates

More information

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY

3.1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY MATH00 (Calculus).1 ANALYSIS OF FUNCTIONS I INCREASE, DECREASE, AND CONCAVITY Name Group No. KEYWORD: increasing, decreasing, constant, concave up, concave down, and inflection point Eample 1. Match the

More information

1A (13) 1. Find an equation for the tangent line to the graph of y = 3 3y +3at the point ( ; 1). The first thing to do is to check that the values =, y =1satisfy the given equation. They do. Differentiating

More information

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2)

(a) Show that there is a root α of f (x) = 0 in the interval [1.2, 1.3]. (2) . f() = 4 cosec 4 +, where is in radians. (a) Show that there is a root α of f () = 0 in the interval [.,.3]. Show that the equation f() = 0 can be written in the form = + sin 4 Use the iterative formula

More information

Pure Core 2. Revision Notes

Pure Core 2. Revision Notes Pure Core Revision Notes June 06 Pure Core Algebra... Polynomials... Factorising... Standard results... Long division... Remainder theorem... 4 Factor theorem... 5 Choosing a suitable factor... 6 Cubic

More information

Brief Revision Notes and Strategies

Brief Revision Notes and Strategies Brief Revision Notes and Strategies Straight Line Distance Formula d = ( ) + ( y y ) d is distance between A(, y ) and B(, y ) Mid-point formula +, y + M y M is midpoint of A(, y ) and B(, y ) y y Equation

More information

Calculus I Practice Test Problems for Chapter 2 Page 1 of 7

Calculus I Practice Test Problems for Chapter 2 Page 1 of 7 Calculus I Practice Test Problems for Chapter Page of 7 This is a set of practice test problems for Chapter This is in no way an inclusive set of problems there can be other types of problems on the actual

More information

Higher. Differentiation 28

Higher. Differentiation 28 Higher Mathematics UNIT OUTCOME Differentiation Contents Differentiation 8 Introduction to Differentiation 8 Finding the Derivative 9 Differentiating with Respect to Other Variables 4 Rates of Change 4

More information

Math Honors Calculus I Final Examination, Fall Semester, 2013

Math Honors Calculus I Final Examination, Fall Semester, 2013 Math 2 - Honors Calculus I Final Eamination, Fall Semester, 2 Time Allowed: 2.5 Hours Total Marks:. (2 Marks) Find the following: ( (a) 2 ) sin 2. (b) + (ln 2)/(+ln ). (c) The 2-th Taylor polynomial centered

More information

Unit #3 Rules of Differentiation Homework Packet

Unit #3 Rules of Differentiation Homework Packet Unit #3 Rules of Differentiation Homework Packet In the table below, a function is given. Show the algebraic analysis that leads to the derivative of the function. Find the derivative by the specified

More information

CALCULUS AB SECTION II, Part A

CALCULUS AB SECTION II, Part A CALCULUS AB SECTION II, Part A Time 45 minutes Number of problems 3 A graphing calculator is required for some problems or parts of problems. pt 1. The rate at which raw sewage enters a treatment tank

More information

Learning Targets: Standard Form: Quadratic Function. Parabola. Vertex Max/Min. x-coordinate of vertex Axis of symmetry. y-intercept.

Learning Targets: Standard Form: Quadratic Function. Parabola. Vertex Max/Min. x-coordinate of vertex Axis of symmetry. y-intercept. Name: Hour: Algebra A Lesson:.1 Graphing Quadratic Functions Learning Targets: Term Picture/Formula In your own words: Quadratic Function Standard Form: Parabola Verte Ma/Min -coordinate of verte Ais of

More information

CURVE SKETCHING M.K. HOME TUITION. Mathematics Revision Guides Level: AS / A Level. AQA : C1 Edexcel: C1 OCR: C1 OCR MEI: C1

CURVE SKETCHING M.K. HOME TUITION. Mathematics Revision Guides Level: AS / A Level. AQA : C1 Edexcel: C1 OCR: C1 OCR MEI: C1 Mathematics Revision Guides Curve Sketching Page 1 of 11 M.K. HOME TUITION Mathematics Revision Guides Level: AS / A Level AQA : C1 Edexcel: C1 OCR: C1 OCR MEI: C1 CURVE SKETCHING Version :.1 Date: 03-08-007

More information

sketching Jan 22, 2015 Calculus with Algebra and Trigonometry II Lecture 2Maxima andjan minima, 22, 2015 convexity/concav 1 / 15

sketching Jan 22, 2015 Calculus with Algebra and Trigonometry II Lecture 2Maxima andjan minima, 22, 2015 convexity/concav 1 / 15 Calculus with Algebra and Trigonometry II Lecture 2 Maxima and minima, convexity/concavity, and curve sketching Jan 22, 2015 Calculus with Algebra and Trigonometry II Lecture 2Maxima andjan minima, 22,

More information

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed.

The region enclosed by the curve of f and the x-axis is rotated 360 about the x-axis. Find the volume of the solid formed. Section A ln. Let g() =, for > 0. ln Use the quotient rule to show that g ( ). 3 (b) The graph of g has a maimum point at A. Find the -coordinate of A. (Total 7 marks) 6. Let h() =. Find h (0). cos 3.

More information

Mark Scheme (Results) January 2007

Mark Scheme (Results) January 2007 Mark Scheme (Results) January 007 GCE GCE Mathematics Core Mathematics C (666) Edecel Limited. Registered in England and Wales No. 4496750 Registered Office: One90 High Holborn, London WCV 7BH January

More information

Lesson 7.1 Polynomial Degree and Finite Differences

Lesson 7.1 Polynomial Degree and Finite Differences Lesson 7.1 Polynomial Degree and Finite Differences 1. Identify the degree of each polynomial. a. 1 b. 0.2 1. 2 3.2 3 c. 20 16 2 20 2. Determine which of the epressions are polynomials. For each polynomial,

More information

Math 3201 UNIT 5: Polynomial Functions NOTES. Characteristics of Graphs and Equations of Polynomials Functions

Math 3201 UNIT 5: Polynomial Functions NOTES. Characteristics of Graphs and Equations of Polynomials Functions 1 Math 301 UNIT 5: Polnomial Functions NOTES Section 5.1 and 5.: Characteristics of Graphs and Equations of Polnomials Functions What is a polnomial function? Polnomial Function: - A function that contains

More information

1 y = Recitation Worksheet 1A. 1. Simplify the following: b. ( ) a. ( x ) Solve for y : 3. Plot these points in the xy plane:

1 y = Recitation Worksheet 1A. 1. Simplify the following: b. ( ) a. ( x ) Solve for y : 3. Plot these points in the xy plane: Math 13 Recitation Worksheet 1A 1 Simplify the following: a ( ) 7 b ( ) 3 4 9 3 5 3 c 15 3 d 3 15 Solve for y : 8 y y 5= 6 3 3 Plot these points in the y plane: A ( 0,0 ) B ( 5,0 ) C ( 0, 4) D ( 3,5) 4

More information

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14.

Study Guide and Intervention. The Quadratic Formula and the Discriminant. Quadratic Formula. Replace a with 1, b with -5, and c with -14. Study Guide and Intervention Quadratic Formula The Quadratic Formula can be used to solve any quadratic equation once it is written in the form a 2 + b + c = 0. Quadratic Formula The solutions of a 2 +

More information

INDEX UNIT 3 TSFX REFERENCE MATERIALS 2014 ALGEBRA AND ARITHMETIC

INDEX UNIT 3 TSFX REFERENCE MATERIALS 2014 ALGEBRA AND ARITHMETIC INDEX UNIT 3 TSFX REFERENCE MATERIALS 2014 ALGEBRA AND ARITHMETIC Surds Page 1 Algebra of Polynomial Functions Page 2 Polynomial Expressions Page 2 Expanding Expressions Page 3 Factorising Expressions

More information

Rules for Differentiation Finding the Derivative of a Product of Two Functions. What does this equation of f '(

Rules for Differentiation Finding the Derivative of a Product of Two Functions. What does this equation of f '( Rules for Differentiation Finding the Derivative of a Product of Two Functions Rewrite the function f( = ( )( + 1) as a cubic function. Then, find f '(. What does this equation of f '( represent, again?

More information

Section 3.3 Limits Involving Infinity - Asymptotes

Section 3.3 Limits Involving Infinity - Asymptotes 76 Section. Limits Involving Infinity - Asymptotes We begin our discussion with analyzing its as increases or decreases without bound. We will then eplore functions that have its at infinity. Let s consider

More information

Differentiation and applications

Differentiation and applications FS O PA G E PR O U N C O R R EC TE D Differentiation and applications. Kick off with CAS. Limits, continuit and differentiabilit. Derivatives of power functions.4 C oordinate geometr applications of differentiation.5

More information

12.2. Maxima and Minima. Introduction. Prerequisites. Learning Outcomes

12.2. Maxima and Minima. Introduction. Prerequisites. Learning Outcomes Maima and Minima 1. Introduction In this section we analse curves in the local neighbourhood of a stationar point and, from this analsis, deduce necessar conditions satisfied b local maima and local minima.

More information

The Detective s Hat Function

The Detective s Hat Function The Detective s Hat Function (,) (,) (,) (,) (, ) (4, ) The graph of the function f shown above is a piecewise continuous function defined on [, 4]. The graph of f consists of five line segments. Let g

More information

Graphs of Polynomials: Polynomial functions of degree 2 or higher are smooth and continuous. (No sharp corners or breaks).

Graphs of Polynomials: Polynomial functions of degree 2 or higher are smooth and continuous. (No sharp corners or breaks). Graphs of Polynomials: Polynomial functions of degree or higher are smooth and continuous. (No sharp corners or breaks). These are graphs of polynomials. These are NOT graphs of polynomials There is a

More information

Question Answer 1 C 2 B 3 D 4 A 5 C 6 B 7 C 8 D 9 B 10 D 11 C 12 C 13 B 14 D 15 A 16 B 17 D 18 C 19 B 20 A

Question Answer 1 C 2 B 3 D 4 A 5 C 6 B 7 C 8 D 9 B 10 D 11 C 12 C 13 B 14 D 15 A 16 B 17 D 18 C 19 B 20 A Paper Section A Question Answer C B D 4 A 5 C 6 B 7 C 8 D 9 B 0 D C C B 4 D 5 A 6 B 7 D 8 C 9 B 0 A Summary A B 6 C 6 D 5 Page 5 Paper - Section B Question Generic Scheme Illustrative Scheme Ma Mark (a).

More information

+ 2 on the interval [-1,3]

+ 2 on the interval [-1,3] Section.1 Etrema on an Interval 1. Understand the definition of etrema of a function on an interval.. Understand the definition of relative etrema of a function on an open interval.. Find etrema on a closed

More information

Chapter 2. Shear Force and Bending Moment. After successfully completing this chapter the students should be able to:

Chapter 2. Shear Force and Bending Moment. After successfully completing this chapter the students should be able to: Chapter Shear Force and Bending Moment This chapter begins with a discussion of beam types. It is also important for students to know and understand the reaction from the types of supports holding the

More information

Multivariable Calculus

Multivariable Calculus Multivariable Calculus Multivariable calculus is a popular topic (chapter 2) in FP3. As is made clear in the introduction to that chapter, an important reason for stuing functions of more than one variable

More information

Understanding Part 2 of The Fundamental Theorem of Calculus

Understanding Part 2 of The Fundamental Theorem of Calculus Understanding Part of The Fundamental Theorem of Calculus Worksheet 8: The Graph of F () What is an Anti-Derivative? Give an eample that is algebraic: and an eample that is graphical: eample : Below is

More information

G r a d e 1 1 P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Final Practice Exam Answer Key

G r a d e 1 1 P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Final Practice Exam Answer Key G r a d e P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Final Practice Eam Answer Key G r a d e P r e - C a l c u l u s M a t h e m a t i c s Final Practice Eam Answer Key Name: Student Number:

More information

1. Find A and B so that f x Axe Bx. has a local minimum of 6 when. x 2.

1. Find A and B so that f x Axe Bx. has a local minimum of 6 when. x 2. . Find A and B so that f Ae B has a local minimum of 6 when.. The graph below is the graph of f, the derivative of f; The domain of the derivative is 5 6. Note there is a cusp when =, a horizontal tangent

More information

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives

UNCORRECTED SAMPLE PAGES. 3Quadratics. Chapter 3. Objectives Chapter 3 3Quadratics Objectives To recognise and sketch the graphs of quadratic polnomials. To find the ke features of the graph of a quadratic polnomial: ais intercepts, turning point and ais of smmetr.

More information

AP Calculus Prep Session Handout. Integral Defined Functions

AP Calculus Prep Session Handout. Integral Defined Functions AP Calculus Prep Session Handout A continuous, differentiable function can be epressed as a definite integral if it is difficult or impossible to determine the antiderivative of a function using known

More information

AP CALCULUS AB UNIT 3 BASIC DIFFERENTIATION RULES TOTAL NAME DATE PERIOD DATE TOPIC ASSIGNMENT /18 9/19 9/24 9/25 9/26 9/27 9/28 10/1 10/2 10/3

AP CALCULUS AB UNIT 3 BASIC DIFFERENTIATION RULES TOTAL NAME DATE PERIOD DATE TOPIC ASSIGNMENT /18 9/19 9/24 9/25 9/26 9/27 9/28 10/1 10/2 10/3 NAME DATE PERIOD AP CALCULUS AB UNIT BASIC DIFFERENTIATION RULES DATE TOPIC ASSIGNMENT 0 0 9/8 9/9 9/ 9/5 9/6 9/7 9/8 0/ 0/ 0/ 0/ 0/5 TOTAL AP Calculus AB Worksheet 9 Average Rates of Change Find the

More information

y x is symmetric with respect to which of the following?

y x is symmetric with respect to which of the following? AP Calculus Summer Assignment Name: Note: Unless otherwise specified, the domain of a function f is assumed to be the set of all real numbers for which f () is a real number. Part : Multiple Choice Solve

More information

20.2 Connecting Intercepts and Linear Factors

20.2 Connecting Intercepts and Linear Factors Name Class Date 20.2 Connecting Intercepts and Linear Factors Essential Question: How are -intercepts of a quadratic function and its linear factors related? Resource Locker Eplore Connecting Factors and

More information

Moment Area Method. 1) Read

Moment Area Method. 1) Read Moment Area Method Lesson Objectives: 1) Identify the formulation and sign conventions associated with the Moment Area method. 2) Derive the Moment Area method theorems using mechanics and mathematics.

More information

St Peter the Apostle High. Mathematics Dept.

St Peter the Apostle High. Mathematics Dept. St Peter the postle High Mathematics Dept. Higher Prelim Revision 6 Paper I - Non~calculator Time allowed - hour 0 minutes Section - Questions - 0 (40 marks) Instructions for the completion of Section

More information

AP Calculus AB Free-Response Scoring Guidelines

AP Calculus AB Free-Response Scoring Guidelines Question pt The rate at which raw sewage enters a treatment tank is given by Et 85 75cos 9 gallons per hour for t 4 hours. Treated sewage is removed from the tank at the constant rate of 645 gallons per

More information

Math Review and Lessons in Calculus

Math Review and Lessons in Calculus Math Review and Lessons in Calculus Agenda Rules o Eponents Functions Inverses Limits Calculus Rules o Eponents 0 Zero Eponent Rule a * b ab Product Rule * 3 5 a / b a-b Quotient Rule 5 / 3 -a / a Negative

More information

NATIONAL QUALIFICATIONS

NATIONAL QUALIFICATIONS Mathematics Higher Prelim Eamination 04/05 Paper Assessing Units & + Vectors NATIONAL QUALIFICATIONS Time allowed - hour 0 minutes Read carefully Calculators may NOT be used in this paper. Section A -

More information

King s Year 12 Medium Term Plan for LC1- A-Level Mathematics

King s Year 12 Medium Term Plan for LC1- A-Level Mathematics King s Year 12 Medium Term Plan for LC1- A-Level Mathematics Modules Algebra, Geometry and Calculus. Materials Text book: Mathematics for A-Level Hodder Education. needed Calculator. Progress objectives

More information

January Core Mathematics C1 Mark Scheme

January Core Mathematics C1 Mark Scheme January 007 666 Core Mathematics C Mark Scheme Question Scheme Mark. 4 k or k (k a non-zero constant) M, +..., ( 0) A, A, B (4) 4 Accept equivalent alternatives to, e.g. 0.5,,. M: 4 differentiated to give

More information

- Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the axes.

- Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the axes. 4. Shear and Moment functions - Beams are structural member supporting lateral loadings, i.e., these applied perpendicular to the aes. - The design of such members requires a detailed knowledge of the

More information

4.3 Exercises. local maximum or minimum. The second derivative is. e 1 x 2x 1. f x x 2 e 1 x 1 x 2 e 1 x 2x x 4

4.3 Exercises. local maximum or minimum. The second derivative is. e 1 x 2x 1. f x x 2 e 1 x 1 x 2 e 1 x 2x x 4 SECTION 4.3 HOW DERIVATIVES AFFECT THE SHAPE OF A GRAPH 297 local maimum or minimum. The second derivative is f 2 e 2 e 2 4 e 2 4 Since e and 4, we have f when and when 2 f. So the curve is concave downward

More information

Higher Portfolio Quadratics and Polynomials

Higher Portfolio Quadratics and Polynomials Higher Portfolio Quadratics and Polynomials Higher 5. Quadratics and Polynomials Section A - Revision Section This section will help you revise previous learning which is required in this topic R1 I have

More information

Lesson 4.1 Exercises, pages

Lesson 4.1 Exercises, pages Lesson 4.1 Eercises, pages 57 61 When approimating answers, round to the nearest tenth. A 4. Identify the y-intercept of the graph of each quadratic function. a) y = - 1 + 5-1 b) y = 3-14 + 5 Use mental

More information

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f

Exact Differential Equations. The general solution of the equation is f x, y C. If f has continuous second partials, then M y 2 f APPENDIX C Additional Topics in Differential Equations APPENDIX C. Eact First-Order Equations Eact Differential Equations Integrating Factors Eact Differential Equations In Chapter 6, ou studied applications

More information

Math 2412 Activity 2(Due by EOC Feb. 27) Find the quadratic function that satisfies the given conditions. Show your work!

Math 2412 Activity 2(Due by EOC Feb. 27) Find the quadratic function that satisfies the given conditions. Show your work! Math 4 Activity (Due by EOC Feb 7) Find the quadratic function that satisfies the given conditions Show your work! The graph has a verte at 5, and it passes through the point, 0 7 The graph passes through

More information

Calculus and Structures

Calculus and Structures Calculus and Structures CHAPTER 8 SHEAR FORCE AND BENDING MOMENTS FOR BEAMS WITH CONTINUOUS FORCES Calculus and Structures 11 Copyright Chapter 8 CONTINUOUS FORCE 8.1 INTRODUCTION The last section was

More information

4.3 - How Derivatives Affect the Shape of a Graph

4.3 - How Derivatives Affect the Shape of a Graph 4.3 - How Derivatives Affect the Shape of a Graph 1. Increasing and Decreasing Functions Definition: A function f is (strictly) increasing on an interval I if for every 1, in I with 1, f 1 f. A function

More information

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): f t dt

CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS. Second Fundamental Theorem of Calculus (Chain Rule Version): f t dt CALCULUS EXPLORATION OF THE SECOND FUNDAMENTAL THEOREM OF CALCULUS d d d d t dt 6 cos t dt Second Fundamental Theorem of Calculus: d f tdt d a d d 4 t dt d d a f t dt d d 6 cos t dt Second Fundamental

More information

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources

SOLVING QUADRATICS. Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS Copyright - Kramzil Pty Ltd trading as Academic Teacher Resources SOLVING QUADRATICS General Form: y a b c Where a, b and c are constants To solve a quadratic equation, the equation

More information

x π. Determine all open interval(s) on which f is decreasing

x π. Determine all open interval(s) on which f is decreasing Calculus Maimus Increasing, Decreasing, and st Derivative Test Show all work. No calculator unless otherwise stated. Multiple Choice = /5 + _ /5 over. Determine the increasing and decreasing open intervals

More information

CHAPTER 3 : QUADRARIC FUNCTIONS MODULE CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions Graphs of quadratic functions 4 Eercis

CHAPTER 3 : QUADRARIC FUNCTIONS MODULE CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions Graphs of quadratic functions 4 Eercis ADDITIONAL MATHEMATICS MODULE 5 QUADRATIC FUNCTIONS CHAPTER 3 : QUADRARIC FUNCTIONS MODULE 5 3.1 CONCEPT MAP Eercise 1 3. Recognizing the quadratic functions 3 3.3 Graphs of quadratic functions 4 Eercise

More information

Lesson #33 Solving Incomplete Quadratics

Lesson #33 Solving Incomplete Quadratics Lesson # Solving Incomplete Quadratics A.A.4 Know and apply the technique of completing the square ~ 1 ~ We can also set up any quadratic to solve it in this way by completing the square, the technique

More information

Technical Calculus I Homework. Instructions

Technical Calculus I Homework. Instructions Technical Calculus I Homework Instructions 1. Each assignment is to be done on one or more pieces of regular-sized notebook paper. 2. Your name and the assignment number should appear at the top of the

More information

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 1. CfE Edition

Mathematics. Polynomials and Quadratics. hsn.uk.net. Higher. Contents. Polynomials and Quadratics 1. CfE Edition Higher Mathematics Contents 1 1 Quadratics EF 1 The Discriminant EF 3 3 Completing the Square EF 4 4 Sketching Parabolas EF 7 5 Determining the Equation of a Parabola RC 9 6 Solving Quadratic Inequalities

More information

Quadratics NOTES.notebook November 02, 2017

Quadratics NOTES.notebook November 02, 2017 1) Find y where y = 2-1 and a) = 2 b) = -1 c) = 0 2) Epand the brackets and simplify: (m + 4)(2m - 3) To find the equation of quadratic graphs using substitution of a point. 3) Fully factorise 4y 2-5y

More information

Maths A Level Summer Assignment & Transition Work

Maths A Level Summer Assignment & Transition Work Maths A Level Summer Assignment & Transition Work The summer assignment element should take no longer than hours to complete. Your summer assignment for each course must be submitted in the relevant first

More information

14.6 Spring Force Energy Diagram

14.6 Spring Force Energy Diagram 14.6 Spring Force Energy Diagram The spring force on an object is a restoring force F s = F s î = k î where we choose a coordinate system with the equilibrium position at i = 0 and is the amount the spring

More information

All work must be shown in this course for full credit. Unsupported answers may receive NO credit.

All work must be shown in this course for full credit. Unsupported answers may receive NO credit. AP Calculus.1 Worksheet Day 1 All work must be shown in this course for full credit. Unsupported answers may receive NO credit. 1. The only way to guarantee the eistence of a it is to algebraically prove

More information

Asymptotes are additional pieces of information essential for curve sketching.

Asymptotes are additional pieces of information essential for curve sketching. Mathematics 00a Summary Notes page 57 4. Curve Sketching Asymptotes are additional pieces of information essential for curve sketching. Vertical Asymptotes The line a is a vertical asymptote of the graph

More information

4.3 Mean-Value Theorem and Monotonicity

4.3 Mean-Value Theorem and Monotonicity .3 Mean-Value Theorem and Monotonicit 1. Mean Value Theorem Theorem: Suppose that f is continuous on the interval a, b and differentiable on the interval a, b. Then there eists a number c in a, b such

More information

Constant no variables, just a number. Linear Note: Same form as f () x mx b. Quadratic Note: Same form as. Cubic x to the third power

Constant no variables, just a number. Linear Note: Same form as f () x mx b. Quadratic Note: Same form as. Cubic x to the third power Precalculus Notes: Section. Modeling High Degree Polnomial Functions Graphs of Polnomials Polnomial Notation f ( ) a a a... a a a is a polnomial function of degree n. n n 1 n n n1 n 1 0 n is the degree

More information

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION

2008 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 28 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION 8 CALCULUS AB SECTION I, Part A Time 55 minutes Number of Questions 8 A CALCULATOR MAY NOT BE USED ON THIS PART OF THE EXAMINATION Directions: Solve each of the following problems. After eamining the form

More information

Lesson 5.1 Exercises, pages

Lesson 5.1 Exercises, pages Lesson 5.1 Eercises, pages 346 352 A 4. Use the given graphs to write the solutions of the corresponding quadratic inequalities. a) 2 2-8 - 10 < 0 The solution is the values of for which y

More information

UNIT 3 MATHEMATICAL METHODS ALGEBRA

UNIT 3 MATHEMATICAL METHODS ALGEBRA UNIT 3 MATHEMATICAL METHODS ALGEBRA Substitution of Values Rearrangement and Substitution Polynomial Expressions Expanding Expressions Expanding Expressions by Rule Perfect Squares The Difference of Two

More information

Higher. Polynomials and Quadratics. Polynomials and Quadratics 1

Higher. Polynomials and Quadratics. Polynomials and Quadratics 1 Higher Mathematics Contents 1 1 Quadratics EF 1 The Discriminant EF 3 3 Completing the Square EF 4 4 Sketching Parabolas EF 7 5 Determining the Equation of a Parabola RC 9 6 Solving Quadratic Inequalities

More information

MATH section 3.4 Curve Sketching Page 1 of 29

MATH section 3.4 Curve Sketching Page 1 of 29 MATH section. Curve Sketching Page of 9 The step by step procedure below is for regular rational and polynomial functions. If a function contains radical or trigonometric term, then proceed carefully because

More information

Lesson Goals. Unit 2 Functions Analyzing Graphs of Functions (Unit 2.2) Graph of a Function. Lesson Goals

Lesson Goals. Unit 2 Functions Analyzing Graphs of Functions (Unit 2.2) Graph of a Function. Lesson Goals Unit Functions Analzing Graphs of Functions (Unit.) William (Bill) Finch Mathematics Department Denton High School Lesson Goals When ou have completed this lesson ou will: Find the domain and range of

More information

Math 121 Calculus 1 Fall 2009 Outcomes List for Final Exam

Math 121 Calculus 1 Fall 2009 Outcomes List for Final Exam Math 121 Calculus 1 Fall 2009 Outcomes List for Final Exam This outcomes list summarizes what skills and knowledge you should have reviewed and/or acquired during this entire quarter in Math 121, and what

More information

7.2 Connecting Intercepts and Linear Factors

7.2 Connecting Intercepts and Linear Factors Name Class Date 7.2 Connecting Intercepts and Linear Factors Essential Question: How are -intercepts of a quadratic function and its linear factors related? Resource Locker Eplore Connecting Factors and

More information

Section 3.3 Graphs of Polynomial Functions

Section 3.3 Graphs of Polynomial Functions 3.3 Graphs of Polynomial Functions 179 Section 3.3 Graphs of Polynomial Functions In the previous section we eplored the short run behavior of quadratics, a special case of polynomials. In this section

More information

AP Calculus BC Summer Review

AP Calculus BC Summer Review AP Calculus BC 07-08 Summer Review Due September, 07 Name: All students entering AP Calculus BC are epected to be proficient in Pre-Calculus skills. To enhance your chances for success in this class, it

More information

HEINEMANN HIGHER CHECKLIST

HEINEMANN HIGHER CHECKLIST St Ninian s High School HEINEMANN HIGHER CHECKLIST I understand this part of the course = I am unsure of this part of the course = Name Class Teacher I do not understand this part of the course = Topic

More information

Example 1. What are the critical points of f x 1 x x, 0 x? The maximal domain of f is 0 x and we find that

Example 1. What are the critical points of f x 1 x x, 0 x? The maximal domain of f is 0 x and we find that 6. Local Etrema of Functions We continue on our quest to etract as much information as possible about a function. The more information we gather, the better we can sketch the graph of the function. This

More information

November 13, 2018 MAT186 Week 8 Justin Ko

November 13, 2018 MAT186 Week 8 Justin Ko 1 Mean Value Theorem Theorem 1 (Mean Value Theorem). Let f be a continuous on [a, b] and differentiable on (a, b). There eists a c (a, b) such that f f(b) f(a) (c) =. b a Eample 1: The Mean Value Theorem

More information

G r a d e 1 1 P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Midterm Practice Exam Answer Key

G r a d e 1 1 P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Midterm Practice Exam Answer Key G r a d e 1 1 P r e - C a l c u l u s M a t h e m a t i c s ( 3 0 S ) Midterm Practice Eam Answer Key G r a d e 1 1 P r e - C a l c u l u s M a t h e m a t i c s Midterm Practice Eam Answer Key Name:

More information

Mathematics syllabus for Grade 11 and 12 For Bilingual Schools in the Sultanate of Oman

Mathematics syllabus for Grade 11 and 12 For Bilingual Schools in the Sultanate of Oman 03 04 Mathematics syllabus for Grade and For Bilingual Schools in the Sultanate of Oman Prepared By: A Stevens (Qurum Private School) M Katira (Qurum Private School) M Hawthorn (Al Sahwa Schools) In Conjunction

More information

Alg II Syllabus (First Semester)

Alg II Syllabus (First Semester) Alg II Syllabus (First Semester) Unit 1: Solving linear equations and inequalities Lesson 01: Solving linear equations Lesson 02: Solving linear inequalities (See Calculator Appendix A and associated video.)

More information

14 Increasing and decreasing functions

14 Increasing and decreasing functions 14 Increasing and decreasing functions 14.1 Sketching derivatives READING Read Section 3.2 of Rogawski Reading Recall, f (a) is the gradient of the tangent line of f(x) at x = a. We can use this fact to

More information

Math 231 Final Exam Review

Math 231 Final Exam Review Math Final Eam Review Find the equation of the line tangent to the curve 4y y at the point (, ) Find the slope of the normal line to y ) ( e at the point (,) dy Find d if cos( y) y 4 y 4 Find the eact

More information

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4]

It s Your Turn Problems I. Functions, Graphs, and Limits 1. Here s the graph of the function f on the interval [ 4,4] It s Your Turn Problems I. Functions, Graphs, and Limits. Here s the graph of the function f on the interval [ 4,4] f ( ) =.. It has a vertical asymptote at =, a) What are the critical numbers of f? b)

More information

Directions: Please read questions carefully. It is recommended that you do the Short Answer Section prior to doing the Multiple Choice.

Directions: Please read questions carefully. It is recommended that you do the Short Answer Section prior to doing the Multiple Choice. AP Calculus AB SUMMER ASSIGNMENT Multiple Choice Section Directions: Please read questions carefully It is recommended that you do the Short Answer Section prior to doing the Multiple Choice Show all work

More information

Section Derivatives and Rates of Change

Section Derivatives and Rates of Change Section. - Derivatives and Rates of Change Recall : The average rate of change can be viewed as the slope of the secant line between two points on a curve. In Section.1, we numerically estimated the slope

More information

This problem set is a good representation of some of the key skills you should have when entering this course.

This problem set is a good representation of some of the key skills you should have when entering this course. Math 4 Review of Previous Material: This problem set is a good representation of some of the key skills you should have when entering this course. Based on the course work leading up to Math 4, you should

More information

AP Calculus BC Final Exam Preparatory Materials December 2016

AP Calculus BC Final Exam Preparatory Materials December 2016 AP Calculus BC Final Eam Preparatory Materials December 06 Your first semester final eam will consist of both multiple choice and free response questions, similar to the AP Eam The following practice problems

More information

DISCRIMINANT EXAM QUESTIONS

DISCRIMINANT EXAM QUESTIONS DISCRIMINANT EXAM QUESTIONS Question 1 (**) Show by using the discriminant that the graph of the curve with equation y = x 4x + 10, does not cross the x axis. proof Question (**) Show that the quadratic

More information

Common Core State Standards for Activity 14. Lesson Postal Service Lesson 14-1 Polynomials PLAN TEACH

Common Core State Standards for Activity 14. Lesson Postal Service Lesson 14-1 Polynomials PLAN TEACH Postal Service Lesson 1-1 Polynomials Learning Targets: Write a third-degree equation that represents a real-world situation. Graph a portion of this equation and evaluate the meaning of a relative maimum.

More information