Eigenvalues in Applications

Size: px
Start display at page:

Download "Eigenvalues in Applications"

Transcription

1 Eigenvalues in Applications Abstract We look at the role of eigenvalues and eigenvectors in various applications. Specifically, we consider differential equations, Markov chains, population growth, and consumption. 1 Differential equations We consider linear differential equations of the form = Au. (1) The complex matrix A is n n and u 1 (t) u 2 (t) u = u(t) =.. (2) u n (t) The equations are linear, since if v and w are two solutions, then so is u = αv + βw, as shown by 1.1 Scalar case (n = 1) = d (αv + βw) = α dv + β dw = αav + βaw = A(αv + βw) = Au. In the scalar case, i.e., n = 1, the differential equation (1) reces to the scalar differential equation = λu, (3) where λ C. Its general solution is u = e λt c where c is an arbitrary constant. 1

2 By specifying an initial condition u(0) = u 0 we can determine c from u 0 = u(0) = e 0 c = c. Thus, the general solution given an initial condition is u(t) = e λt u 0. (4) The real part of λ determines growth or decay according to Re(λ) < 0: exponential decay, Re(λ) > 0: exponential growth, Re(λ) = 0: neither growth nor decay. A nonzero imaginary part adds oscillation in the form of a sine wave. 1.2 General case (n > 1) In the general case, i.e., n > 1, we can solve (1) similar to the scalar case if the matrix A is diagonalizable. Using the spectral decomposition A = SΛS 1 and multiplying both sides of (1) from the left by S 1, we get d (S 1 u) = Λ(S 1 u). (5) After changing variables from u to y = S 1 u we have which is nothing more than the set dy = Λy, (6) dy 1 = λ 1y 1, dy 2 = λ 1y 2,. =. (7) dy n = λ 1 y n, of n decoupled scalar differential equations. The solutions to (7) are y i (t) = e λit c i for i = 1, 2,..., n. The parameters c i are some arbitrary constants. Using linear algebra notation, we have the solutions y(t) = e λ1t e λ2t... c. (8) e λnt 2

3 The constants c are determined by the n initial conditions u(0) = u 0 to the original differential equation (1) by u(0) = Sy(0) = Sc = u 0 c = S 1 u 0. (9) We put the pieces back together and find the general solution u(t) = Sy(t) = S e λ1t e λ2t... S 1 u 0 (10) e λnt to the differential equation (1) with initial conditions u Matrix exponential We would like to express the general solution of (1) as u(t) = e At u 0. (11) But how do we generalize the exponential function to matrices? Recall that the scalar exponential function e x is defined by the infinite series e x = 1 + x + (1/2)x 2 + (1/6)x 3 +. (12) Let us define the matrix exponential e A by simply replacing x with A in (12), as in e A = I + A + (1/2)A 2 + (1/6)A 3 +. (13) The series (13) is defined for square matrices and it always converges. But is u(t) = e At u 0 (14) actually a solution of (1) if we use the definition (13)? The answer is yes since the derivative of e At u 0 with respect to t is d eat u 0 = (A + A 2 t + (1/2)A 3 t 2 + )u 0 = Ae At u 0. If A has the spectral decomposition A = SΛS 1, then from e At = Se Λt S 1 we see immediate connections with the previous section. Note that the matrix exponential solves the differential equation even when A is not diagonalizable. 3

4 2 Markov A Markov chain is a random process that can be in one of a finite number of states at any given time and the next state depends only on the current state. We are given n 2 transition probabilities p ij [0, 1]. The number p ij gives the probability that the next state is state i if the current state is state j. By putting the transition probabilities in a square matrix A such that a ij = p ij we obtain a Markov matrix. Definition 1 (Markov matrix). A square matrix A is a Markov matrix if it satisfies the following two properties. First, every entry in A is nonnegative. Second, every column of A adds to 1. Two facts about Markov matrices follow directly from the definition. First, multiplying a Markov matrix A with a nonnegative vector u 0 proces a nonnegative vector u 1 = Au 0. Second, if the components of u 0 add to 1, then so does the components of u 1 = Au 0. The first fact is trivial, and the second fact can be shown as follows. Let e = ( 1 1 ) T be a vector of all 1s. Then e T u 1 = e T (Au 0 ) = (e T A)u 0 = e T u 0 = 1. After k steps in a Markov chain, the initial probability distribution u 0 changes to u k = A k u 0. For many Markov matrices, the limit of u k as k exists and is unqiue. We say that the Markov chain approaches the steady state u. The existence of a steady state also shows that 1 is an eigenvalue of A and the corresponding eigenvector is a steady state. A famous theorem e to Perron and Frobenius shows that a Markov matrix with strictly positive entries has 1 as its largest eigenvalue. That eigenvalue is also simple (multiplicity equal to 1) and the corresponding eigenvector can be scaled so that it has positive entries. Let us show that 1 is indeed an eigenvalue of any Markov matrix. The rows of A I sum to 1 1 = 0, which means that A I is singular. Hence, λ = 1 is an eigenvalue of A. Suppose that A is diagonalizable, i.e., A = SΛS 1. We have u k = A k u 0 = SΛ k S 1 u 0. (15) Thus, if λ 1 = 1 and λ i < 1 for all i 1, then u k approaches a steady state in the direction of the dominant eigenvector s 1. 3 Population A Leslie model models the long-term age distribution and growth rate of a population. It is popular in, e.g., ecology, and it works as follows. Partition the population into n disjoint age groups. The population in the age groups are represented as a vector p with n components. After one time step, the population in each age group is given by Ap, where A is an n n Leslie matrix. 4

5 The long-term growth rate and age distribution come from the largest eigenvalue and its corresponding eigenvector. The Leslie matrix is constructed as follows. The members of the youngest age group is a proct only of reproctive activity. Formally, we write p (k+1) 1 = n i=1 f i p (k) i, (16) where the coefficients f i reflect the rate of reproction in age group i. If f i = 0, then no reproction occurs in that age group and if f i = 2, then each indivial in the age group proces two (unique) offsprings. In this model, all the members of the oldest age group die off in one time step. The members of the other age groups have a chance of surviving and thereby transition to the next age group. Formally, we write this as p (k+1) i+1 = s i p (k) i, (17) where the coefficients s i reflect the chance of surviving from age group i and transition to age group i + 1. For example, consider n = 4 and combine the formulas (16) and (17) to obtain, in matrix form, the Leslie model f 1 f 2 f 3 f 4 p (k+1) = Ap (k) = s s p(k). 0 0 s Consumption Let A be a consumption matrix, p the proction levels, and y the demand. The proction levels are given by p = (I A) 1 y. (18) The question is: When does (I A) 1 exist and when is it a nonnegative matrix? Intuitively, if A is small then (I A) 1 exists and the economy can meet any demand, but if A is large then the proction consumes too much of the procts and as a consequence the economy can not meet the demand. What we consider small and large depends entirely on the eigenvalues of A. We show that when the series B = I+A+A 2 + converges, then B(I A) = I and thus B = (I A) 1. Suppose that A is diagonalizable and write B as B = S(I + Λ + Λ 2 + )S 1. (19) The infinite series within the parenthesis is nothing but n independent scalar geometric series. The n scalar series converge if and only if λ i < 1. The matrix B is obviously nonnegative since it is the sum of nonnegative matrices. The inverse of (I A) exists and is nonnegative when all the eigenvalues satisfy λ i < 1. 5

Chapter 7. Canonical Forms. 7.1 Eigenvalues and Eigenvectors

Chapter 7. Canonical Forms. 7.1 Eigenvalues and Eigenvectors Chapter 7 Canonical Forms 7.1 Eigenvalues and Eigenvectors Definition 7.1.1. Let V be a vector space over the field F and let T be a linear operator on V. An eigenvalue of T is a scalar λ F such that there

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors /88 Chia-Ping Chen Department of Computer Science and Engineering National Sun Yat-sen University Linear Algebra Eigenvalue Problem /88 Eigenvalue Equation By definition, the eigenvalue equation for matrix

More information

Generalized Eigenvectors and Jordan Form

Generalized Eigenvectors and Jordan Form Generalized Eigenvectors and Jordan Form We have seen that an n n matrix A is diagonalizable precisely when the dimensions of its eigenspaces sum to n. So if A is not diagonalizable, there is at least

More information

Linear Algebra Practice Problems

Linear Algebra Practice Problems Math 7, Professor Ramras Linear Algebra Practice Problems () Consider the following system of linear equations in the variables x, y, and z, in which the constants a and b are real numbers. x y + z = a

More information

4 Matrix Diagonalization and Eigensystems

4 Matrix Diagonalization and Eigensystems 14.102, Math for Economists Fall 2004 Lecture Notes, 9/21/2004 These notes are primarily based on those written by George Marios Angeletos for the Harvard Math Camp in 1999 and 2000, and updated by Stavros

More information

Detailed Proof of The PerronFrobenius Theorem

Detailed Proof of The PerronFrobenius Theorem Detailed Proof of The PerronFrobenius Theorem Arseny M Shur Ural Federal University October 30, 2016 1 Introduction This famous theorem has numerous applications, but to apply it you should understand

More information

MAT1302F Mathematical Methods II Lecture 19

MAT1302F Mathematical Methods II Lecture 19 MAT302F Mathematical Methods II Lecture 9 Aaron Christie 2 April 205 Eigenvectors, Eigenvalues, and Diagonalization Now that the basic theory of eigenvalues and eigenvectors is in place most importantly

More information

MATH SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER Given vector spaces V and W, V W is the vector space given by

MATH SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER Given vector spaces V and W, V W is the vector space given by MATH 110 - SOLUTIONS TO PRACTICE MIDTERM LECTURE 1, SUMMER 2009 GSI: SANTIAGO CAÑEZ 1. Given vector spaces V and W, V W is the vector space given by V W = {(v, w) v V and w W }, with addition and scalar

More information

Lecture Notes 6: Dynamic Equations Part C: Linear Difference Equation Systems

Lecture Notes 6: Dynamic Equations Part C: Linear Difference Equation Systems University of Warwick, EC9A0 Maths for Economists Peter J. Hammond 1 of 45 Lecture Notes 6: Dynamic Equations Part C: Linear Difference Equation Systems Peter J. Hammond latest revision 2017 September

More information

π 1 = tr(a), π n = ( 1) n det(a). In particular, when n = 2 one has

π 1 = tr(a), π n = ( 1) n det(a). In particular, when n = 2 one has Eigen Methods Math 246, Spring 2009, Professor David Levermore Eigenpairs Let A be a real n n matrix A number λ possibly complex is an eigenvalue of A if there exists a nonzero vector v possibly complex

More information

Maths for Signals and Systems Linear Algebra in Engineering

Maths for Signals and Systems Linear Algebra in Engineering Maths for Signals and Systems Linear Algebra in Engineering Lectures 13-14, Tuesday 11 th November 2014 DR TANIA STATHAKI READER (ASSOCIATE PROFFESOR) IN SIGNAL PROCESSING IMPERIAL COLLEGE LONDON Eigenvectors

More information

21 Linear State-Space Representations

21 Linear State-Space Representations ME 132, Spring 25, UC Berkeley, A Packard 187 21 Linear State-Space Representations First, let s describe the most general type of dynamic system that we will consider/encounter in this class Systems may

More information

Markov Chains, Stochastic Processes, and Matrix Decompositions

Markov Chains, Stochastic Processes, and Matrix Decompositions Markov Chains, Stochastic Processes, and Matrix Decompositions 5 May 2014 Outline 1 Markov Chains Outline 1 Markov Chains 2 Introduction Perron-Frobenius Matrix Decompositions and Markov Chains Spectral

More information

Section 3.9. Matrix Norm

Section 3.9. Matrix Norm 3.9. Matrix Norm 1 Section 3.9. Matrix Norm Note. We define several matrix norms, some similar to vector norms and some reflecting how multiplication by a matrix affects the norm of a vector. We use matrix

More information

Topic 1: Matrix diagonalization

Topic 1: Matrix diagonalization Topic : Matrix diagonalization Review of Matrices and Determinants Definition A matrix is a rectangular array of real numbers a a a m a A = a a m a n a n a nm The matrix is said to be of order n m if it

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2018 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

EE5120 Linear Algebra: Tutorial 6, July-Dec Covers sec 4.2, 5.1, 5.2 of GS

EE5120 Linear Algebra: Tutorial 6, July-Dec Covers sec 4.2, 5.1, 5.2 of GS EE0 Linear Algebra: Tutorial 6, July-Dec 07-8 Covers sec 4.,.,. of GS. State True or False with proper explanation: (a) All vectors are eigenvectors of the Identity matrix. (b) Any matrix can be diagonalized.

More information

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark 1 By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 5 Eigenvectors and Eigenvalues In this chapter, vector means column vector Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called

More information

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition

Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Linear Algebra review Powers of a diagonalizable matrix Spectral decomposition Prof. Tesler Math 283 Fall 2016 Also see the separate version of this with Matlab and R commands. Prof. Tesler Diagonalizing

More information

Invertibility and stability. Irreducibly diagonally dominant. Invertibility and stability, stronger result. Reducible matrices

Invertibility and stability. Irreducibly diagonally dominant. Invertibility and stability, stronger result. Reducible matrices Geršgorin circles Lecture 8: Outline Chapter 6 + Appendix D: Location and perturbation of eigenvalues Some other results on perturbed eigenvalue problems Chapter 8: Nonnegative matrices Geršgorin s Thm:

More information

Review of Linear Algebra

Review of Linear Algebra Review of Linear Algebra VBS/MRC Review of Linear Algebra 0 Ok, the Questions Why does algebra sound like cobra? Why do they say abstract algebra? Why bother about all this abstract stuff? What is a vector,

More information

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in

18.06 Problem Set 8 - Solutions Due Wednesday, 14 November 2007 at 4 pm in 806 Problem Set 8 - Solutions Due Wednesday, 4 November 2007 at 4 pm in 2-06 08 03 Problem : 205+5+5+5 Consider the matrix A 02 07 a Check that A is a positive Markov matrix, and find its steady state

More information

Perron Frobenius Theory

Perron Frobenius Theory Perron Frobenius Theory Oskar Perron Georg Frobenius (1880 1975) (1849 1917) Stefan Güttel Perron Frobenius Theory 1 / 10 Positive and Nonnegative Matrices Let A, B R m n. A B if a ij b ij i, j, A > B

More information

MATH3200, Lecture 31: Applications of Eigenvectors. Markov Chains and Chemical Reaction Systems

MATH3200, Lecture 31: Applications of Eigenvectors. Markov Chains and Chemical Reaction Systems Lecture 31: Some Applications of Eigenvectors: Markov Chains and Chemical Reaction Systems Winfried Just Department of Mathematics, Ohio University April 9 11, 2018 Review: Eigenvectors and left eigenvectors

More information

MATH36001 Perron Frobenius Theory 2015

MATH36001 Perron Frobenius Theory 2015 MATH361 Perron Frobenius Theory 215 In addition to saying something useful, the Perron Frobenius theory is elegant. It is a testament to the fact that beautiful mathematics eventually tends to be useful,

More information

A Brief Outline of Math 355

A Brief Outline of Math 355 A Brief Outline of Math 355 Lecture 1 The geometry of linear equations; elimination with matrices A system of m linear equations with n unknowns can be thought of geometrically as m hyperplanes intersecting

More information

Linear Algebra Review (Course Notes for Math 308H - Spring 2016)

Linear Algebra Review (Course Notes for Math 308H - Spring 2016) Linear Algebra Review (Course Notes for Math 308H - Spring 2016) Dr. Michael S. Pilant February 12, 2016 1 Background: We begin with one of the most fundamental notions in R 2, distance. Letting (x 1,

More information

Section 1.7: Properties of the Leslie Matrix

Section 1.7: Properties of the Leslie Matrix Section 1.7: Properties of the Leslie Matrix Definition: A matrix A whose entries are nonnegative (positive) is called a nonnegative (positive) matrix, denoted as A 0 (A > 0). Definition: A square m m

More information

MTH 464: Computational Linear Algebra

MTH 464: Computational Linear Algebra MTH 464: Computational Linear Algebra Lecture Outlines Exam 4 Material Prof. M. Beauregard Department of Mathematics & Statistics Stephen F. Austin State University April 15, 2018 Linear Algebra (MTH 464)

More information

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero.

Remark By definition, an eigenvector must be a nonzero vector, but eigenvalue could be zero. Sec 6 Eigenvalues and Eigenvectors Definition An eigenvector of an n n matrix A is a nonzero vector x such that A x λ x for some scalar λ A scalar λ is called an eigenvalue of A if there is a nontrivial

More information

Chapter 7: Symmetric Matrices and Quadratic Forms

Chapter 7: Symmetric Matrices and Quadratic Forms Chapter 7: Symmetric Matrices and Quadratic Forms (Last Updated: December, 06) These notes are derived primarily from Linear Algebra and its applications by David Lay (4ed). A few theorems have been moved

More information

and let s calculate the image of some vectors under the transformation T.

and let s calculate the image of some vectors under the transformation T. Chapter 5 Eigenvalues and Eigenvectors 5. Eigenvalues and Eigenvectors Let T : R n R n be a linear transformation. Then T can be represented by a matrix (the standard matrix), and we can write T ( v) =

More information

Lecture 15, 16: Diagonalization

Lecture 15, 16: Diagonalization Lecture 15, 16: Diagonalization Motivation: Eigenvalues and Eigenvectors are easy to compute for diagonal matrices. Hence, we would like (if possible) to convert matrix A into a diagonal matrix. Suppose

More information

The Singular Value Decomposition

The Singular Value Decomposition The Singular Value Decomposition Philippe B. Laval KSU Fall 2015 Philippe B. Laval (KSU) SVD Fall 2015 1 / 13 Review of Key Concepts We review some key definitions and results about matrices that will

More information

Recall : Eigenvalues and Eigenvectors

Recall : Eigenvalues and Eigenvectors Recall : Eigenvalues and Eigenvectors Let A be an n n matrix. If a nonzero vector x in R n satisfies Ax λx for a scalar λ, then : The scalar λ is called an eigenvalue of A. The vector x is called an eigenvector

More information

Matrix Solutions to Linear Systems of ODEs

Matrix Solutions to Linear Systems of ODEs Matrix Solutions to Linear Systems of ODEs James K. Peterson Department of Biological Sciences and Department of Mathematical Sciences Clemson University November 3, 216 Outline 1 Symmetric Systems of

More information

6 Matrix Diagonalization and Eigensystems

6 Matrix Diagonalization and Eigensystems 14.102, Math for Economists Fall 2005 Lecture Notes, 9/27/2005 These notes are primarily based on those written by George Marios Angeletos for the Harvard Math Camp in 1999 and 2000, and updated by Stavros

More information

Chapter 3 Transformations

Chapter 3 Transformations Chapter 3 Transformations An Introduction to Optimization Spring, 2014 Wei-Ta Chu 1 Linear Transformations A function is called a linear transformation if 1. for every and 2. for every If we fix the bases

More information

Eigenpairs and Diagonalizability Math 401, Spring 2010, Professor David Levermore

Eigenpairs and Diagonalizability Math 401, Spring 2010, Professor David Levermore Eigenpairs and Diagonalizability Math 40, Spring 200, Professor David Levermore Eigenpairs Let A be an n n matrix A number λ possibly complex even when A is real is an eigenvalue of A if there exists a

More information

Jordan Canonical Form

Jordan Canonical Form Jordan Canonical Form Massoud Malek Jordan normal form or Jordan canonical form (named in honor of Camille Jordan) shows that by changing the basis, a given square matrix M can be transformed into a certain

More information

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora

Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora princeton univ. F 13 cos 521: Advanced Algorithm Design Lecture 14: SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Lecturer: Sanjeev Arora Scribe: Today we continue the

More information

Homogeneous Linear Systems of Differential Equations with Constant Coefficients

Homogeneous Linear Systems of Differential Equations with Constant Coefficients Objective: Solve Homogeneous Linear Systems of Differential Equations with Constant Coefficients dx a x + a 2 x 2 + + a n x n, dx 2 a 2x + a 22 x 2 + + a 2n x n,. dx n = a n x + a n2 x 2 + + a nn x n.

More information

Finite-Horizon Statistics for Markov chains

Finite-Horizon Statistics for Markov chains Analyzing FSDT Markov chains Friday, September 30, 2011 2:03 PM Simulating FSDT Markov chains, as we have said is very straightforward, either by using probability transition matrix or stochastic update

More information

EE16B - Spring 17 - Lecture 12A Notes 1

EE16B - Spring 17 - Lecture 12A Notes 1 EE6B - Spring 7 - Lecture 2A Notes Murat Arcak April 27 Licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4. International License. Sampling and Discrete Time Signals Discrete-Time

More information

Section 8.2 : Homogeneous Linear Systems

Section 8.2 : Homogeneous Linear Systems Section 8.2 : Homogeneous Linear Systems Review: Eigenvalues and Eigenvectors Let A be an n n matrix with constant real components a ij. An eigenvector of A is a nonzero n 1 column vector v such that Av

More information

Section 3: Complex numbers

Section 3: Complex numbers Essentially: Section 3: Complex numbers C (set of complex numbers) up to different notation: the same as R 2 (euclidean plane), (i) Write the real 1 instead of the first elementary unit vector e 1 = (1,

More information

Example. We can represent the information on July sales more simply as

Example. We can represent the information on July sales more simply as CHAPTER 1 MATRICES, VECTORS, AND SYSTEMS OF LINEAR EQUATIONS 11 Matrices and Vectors In many occasions, we can arrange a number of values of interest into an rectangular array For example: Example We can

More information

18.06 Problem Set 7 Solution Due Wednesday, 15 April 2009 at 4 pm in Total: 150 points.

18.06 Problem Set 7 Solution Due Wednesday, 15 April 2009 at 4 pm in Total: 150 points. 8.06 Problem Set 7 Solution Due Wednesday, 5 April 2009 at 4 pm in 2-06. Total: 50 points. ( ) 2 Problem : Diagonalize A = and compute SΛ 2 k S to prove this formula for A k : A k = ( ) 3 k + 3 k 2 3 k

More information

Markov Chains, Random Walks on Graphs, and the Laplacian

Markov Chains, Random Walks on Graphs, and the Laplacian Markov Chains, Random Walks on Graphs, and the Laplacian CMPSCI 791BB: Advanced ML Sridhar Mahadevan Random Walks! There is significant interest in the problem of random walks! Markov chain analysis! Computer

More information

Markov Chains and Spectral Clustering

Markov Chains and Spectral Clustering Markov Chains and Spectral Clustering Ning Liu 1,2 and William J. Stewart 1,3 1 Department of Computer Science North Carolina State University, Raleigh, NC 27695-8206, USA. 2 nliu@ncsu.edu, 3 billy@ncsu.edu

More information

Exercise Set 7.2. Skills

Exercise Set 7.2. Skills Orthogonally diagonalizable matrix Spectral decomposition (or eigenvalue decomposition) Schur decomposition Subdiagonal Upper Hessenburg form Upper Hessenburg decomposition Skills Be able to recognize

More information

Review problems for MA 54, Fall 2004.

Review problems for MA 54, Fall 2004. Review problems for MA 54, Fall 2004. Below are the review problems for the final. They are mostly homework problems, or very similar. If you are comfortable doing these problems, you should be fine on

More information

Numerical Linear Algebra Homework Assignment - Week 2

Numerical Linear Algebra Homework Assignment - Week 2 Numerical Linear Algebra Homework Assignment - Week 2 Đoàn Trần Nguyên Tùng Student ID: 1411352 8th October 2016 Exercise 2.1: Show that if a matrix A is both triangular and unitary, then it is diagonal.

More information

Copyright (c) 2006 Warren Weckesser

Copyright (c) 2006 Warren Weckesser 2.2. PLANAR LINEAR SYSTEMS 3 2.2. Planar Linear Systems We consider the linear system of two first order differential equations or equivalently, = ax + by (2.7) dy = cx + dy [ d x x = A x, where x =, and

More information

Solving Homogeneous Systems with Sub-matrices

Solving Homogeneous Systems with Sub-matrices Pure Mathematical Sciences, Vol 7, 218, no 1, 11-18 HIKARI Ltd, wwwm-hikaricom https://doiorg/112988/pms218843 Solving Homogeneous Systems with Sub-matrices Massoud Malek Mathematics, California State

More information

EIGENVALUE PROBLEMS. Background on eigenvalues/ eigenvectors / decompositions. Perturbation analysis, condition numbers..

EIGENVALUE PROBLEMS. Background on eigenvalues/ eigenvectors / decompositions. Perturbation analysis, condition numbers.. EIGENVALUE PROBLEMS Background on eigenvalues/ eigenvectors / decompositions Perturbation analysis, condition numbers.. Power method The QR algorithm Practical QR algorithms: use of Hessenberg form and

More information

MAT 1302B Mathematical Methods II

MAT 1302B Mathematical Methods II MAT 1302B Mathematical Methods II Alistair Savage Mathematics and Statistics University of Ottawa Winter 2015 Lecture 19 Alistair Savage (uottawa) MAT 1302B Mathematical Methods II Winter 2015 Lecture

More information

Math Ordinary Differential Equations

Math Ordinary Differential Equations Math 411 - Ordinary Differential Equations Review Notes - 1 1 - Basic Theory A first order ordinary differential equation has the form x = f(t, x) (11) Here x = dx/dt Given an initial data x(t 0 ) = x

More information

Math 215 HW #11 Solutions

Math 215 HW #11 Solutions Math 215 HW #11 Solutions 1 Problem 556 Find the lengths and the inner product of 2 x and y [ 2 + ] Answer: First, x 2 x H x [2 + ] 2 (4 + 16) + 16 36, so x 6 Likewise, so y 6 Finally, x, y x H y [2 +

More information

642:550, Summer 2004, Supplement 6 The Perron-Frobenius Theorem. Summer 2004

642:550, Summer 2004, Supplement 6 The Perron-Frobenius Theorem. Summer 2004 642:550, Summer 2004, Supplement 6 The Perron-Frobenius Theorem. Summer 2004 Introduction Square matrices whose entries are all nonnegative have special properties. This was mentioned briefly in Section

More information

Systems of Linear Differential Equations Chapter 7

Systems of Linear Differential Equations Chapter 7 Systems of Linear Differential Equations Chapter 7 Doreen De Leon Department of Mathematics, California State University, Fresno June 22, 25 Motivating Examples: Applications of Systems of First Order

More information

4. Linear transformations as a vector space 17

4. Linear transformations as a vector space 17 4 Linear transformations as a vector space 17 d) 1 2 0 0 1 2 0 0 1 0 0 0 1 2 3 4 32 Let a linear transformation in R 2 be the reflection in the line = x 2 Find its matrix 33 For each linear transformation

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Eigenvalues and Eigenvectors week -2 Fall 26 Eigenvalues and eigenvectors The most simple linear transformation from R n to R n may be the transformation of the form: T (x,,, x n ) (λ x, λ 2,, λ n x n

More information

Kernels of Directed Graph Laplacians. J. S. Caughman and J.J.P. Veerman

Kernels of Directed Graph Laplacians. J. S. Caughman and J.J.P. Veerman Kernels of Directed Graph Laplacians J. S. Caughman and J.J.P. Veerman Department of Mathematics and Statistics Portland State University PO Box 751, Portland, OR 97207. caughman@pdx.edu, veerman@pdx.edu

More information

LINEAR ALGEBRA SUMMARY SHEET.

LINEAR ALGEBRA SUMMARY SHEET. LINEAR ALGEBRA SUMMARY SHEET RADON ROSBOROUGH https://intuitiveexplanationscom/linear-algebra-summary-sheet/ This document is a concise collection of many of the important theorems of linear algebra, organized

More information

TMA Calculus 3. Lecture 21, April 3. Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013

TMA Calculus 3. Lecture 21, April 3. Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013 TMA4115 - Calculus 3 Lecture 21, April 3 Toke Meier Carlsen Norwegian University of Science and Technology Spring 2013 www.ntnu.no TMA4115 - Calculus 3, Lecture 21 Review of last week s lecture Last week

More information

Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions

Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions Linear Algebra, part 2 Eigenvalues, eigenvectors and least squares solutions Anna-Karin Tornberg Mathematical Models, Analysis and Simulation Fall semester, 2013 Main problem of linear algebra 2: Given

More information

Eigenvalues and Eigenvectors

Eigenvalues and Eigenvectors Contents Eigenvalues and Eigenvectors. Basic Concepts. Applications of Eigenvalues and Eigenvectors 8.3 Repeated Eigenvalues and Symmetric Matrices 3.4 Numerical Determination of Eigenvalues and Eigenvectors

More information

MAA704, Perron-Frobenius theory and Markov chains.

MAA704, Perron-Frobenius theory and Markov chains. November 19, 2013 Lecture overview Today we will look at: Permutation and graphs. Perron frobenius for non-negative. Stochastic, and their relation to theory. Hitting and hitting probabilities of chain.

More information

Math 3191 Applied Linear Algebra

Math 3191 Applied Linear Algebra Math 9 Applied Linear Algebra Lecture 9: Diagonalization Stephen Billups University of Colorado at Denver Math 9Applied Linear Algebra p./9 Section. Diagonalization The goal here is to develop a useful

More information

Eigenvalue and Eigenvector Homework

Eigenvalue and Eigenvector Homework Eigenvalue and Eigenvector Homework Olena Bormashenko November 4, 2 For each of the matrices A below, do the following:. Find the characteristic polynomial of A, and use it to find all the eigenvalues

More information

Study Guide for Linear Algebra Exam 2

Study Guide for Linear Algebra Exam 2 Study Guide for Linear Algebra Exam 2 Term Vector Space Definition A Vector Space is a nonempty set V of objects, on which are defined two operations, called addition and multiplication by scalars (real

More information

Symmetric and anti symmetric matrices

Symmetric and anti symmetric matrices Symmetric and anti symmetric matrices In linear algebra, a symmetric matrix is a square matrix that is equal to its transpose. Formally, matrix A is symmetric if. A = A Because equal matrices have equal

More information

MATH 583A REVIEW SESSION #1

MATH 583A REVIEW SESSION #1 MATH 583A REVIEW SESSION #1 BOJAN DURICKOVIC 1. Vector Spaces Very quick review of the basic linear algebra concepts (see any linear algebra textbook): (finite dimensional) vector space (or linear space),

More information

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices)

SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Chapter 14 SVD, Power method, and Planted Graph problems (+ eigenvalues of random matrices) Today we continue the topic of low-dimensional approximation to datasets and matrices. Last time we saw the singular

More information

6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities

6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities 6.207/14.15: Networks Lectures 4, 5 & 6: Linear Dynamics, Markov Chains, Centralities 1 Outline Outline Dynamical systems. Linear and Non-linear. Convergence. Linear algebra and Lyapunov functions. Markov

More information

MIT Final Exam Solutions, Spring 2017

MIT Final Exam Solutions, Spring 2017 MIT 8.6 Final Exam Solutions, Spring 7 Problem : For some real matrix A, the following vectors form a basis for its column space and null space: C(A) = span,, N(A) = span,,. (a) What is the size m n of

More information

Lecture 1: Review of linear algebra

Lecture 1: Review of linear algebra Lecture 1: Review of linear algebra Linear functions and linearization Inverse matrix, least-squares and least-norm solutions Subspaces, basis, and dimension Change of basis and similarity transformations

More information

Math Camp Notes: Linear Algebra II

Math Camp Notes: Linear Algebra II Math Camp Notes: Linear Algebra II Eigenvalues Let A be a square matrix. An eigenvalue is a number λ which when subtracted from the diagonal elements of the matrix A creates a singular matrix. In other

More information

Conceptual Questions for Review

Conceptual Questions for Review Conceptual Questions for Review Chapter 1 1.1 Which vectors are linear combinations of v = (3, 1) and w = (4, 3)? 1.2 Compare the dot product of v = (3, 1) and w = (4, 3) to the product of their lengths.

More information

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018

MATH 315 Linear Algebra Homework #1 Assigned: August 20, 2018 Homework #1 Assigned: August 20, 2018 Review the following subjects involving systems of equations and matrices from Calculus II. Linear systems of equations Converting systems to matrix form Pivot entry

More information

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra.

DS-GA 1002 Lecture notes 0 Fall Linear Algebra. These notes provide a review of basic concepts in linear algebra. DS-GA 1002 Lecture notes 0 Fall 2016 Linear Algebra These notes provide a review of basic concepts in linear algebra. 1 Vector spaces You are no doubt familiar with vectors in R 2 or R 3, i.e. [ ] 1.1

More information

AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Introduction to Automatic Control & Linear systems (time domain)

AUTOMATIC CONTROL. Andrea M. Zanchettin, PhD Spring Semester, Introduction to Automatic Control & Linear systems (time domain) 1 AUTOMATIC CONTROL Andrea M. Zanchettin, PhD Spring Semester, 2018 Introduction to Automatic Control & Linear systems (time domain) 2 What is automatic control? From Wikipedia Control theory is an interdisciplinary

More information

Homework sheet 4: EIGENVALUES AND EIGENVECTORS. DIAGONALIZATION (with solutions) Year ? Why or why not? 6 9

Homework sheet 4: EIGENVALUES AND EIGENVECTORS. DIAGONALIZATION (with solutions) Year ? Why or why not? 6 9 Bachelor in Statistics and Business Universidad Carlos III de Madrid Mathematical Methods II María Barbero Liñán Homework sheet 4: EIGENVALUES AND EIGENVECTORS DIAGONALIZATION (with solutions) Year - Is

More information

7. Symmetric Matrices and Quadratic Forms

7. Symmetric Matrices and Quadratic Forms Linear Algebra 7. Symmetric Matrices and Quadratic Forms CSIE NCU 1 7. Symmetric Matrices and Quadratic Forms 7.1 Diagonalization of symmetric matrices 2 7.2 Quadratic forms.. 9 7.4 The singular value

More information

Matrix-Exponentials. September 7, dx dt = ax. x(t) = e at x(0)

Matrix-Exponentials. September 7, dx dt = ax. x(t) = e at x(0) Matrix-Exponentials September 7, 207 In [4]: using PyPlot INFO: Recompiling stale cache file /Users/stevenj/.julia/lib/v0.5/LaTeXStrings.ji for module LaTeXString Review: Solving ODEs via eigenvectors

More information

Math 1553, Introduction to Linear Algebra

Math 1553, Introduction to Linear Algebra Learning goals articulate what students are expected to be able to do in a course that can be measured. This course has course-level learning goals that pertain to the entire course, and section-level

More information

spring, math 204 (mitchell) list of theorems 1 Linear Systems Linear Transformations Matrix Algebra

spring, math 204 (mitchell) list of theorems 1 Linear Systems Linear Transformations Matrix Algebra spring, 2016. math 204 (mitchell) list of theorems 1 Linear Systems THEOREM 1.0.1 (Theorem 1.1). Uniqueness of Reduced Row-Echelon Form THEOREM 1.0.2 (Theorem 1.2). Existence and Uniqueness Theorem THEOREM

More information

Lecture: Local Spectral Methods (1 of 4)

Lecture: Local Spectral Methods (1 of 4) Stat260/CS294: Spectral Graph Methods Lecture 18-03/31/2015 Lecture: Local Spectral Methods (1 of 4) Lecturer: Michael Mahoney Scribe: Michael Mahoney Warning: these notes are still very rough. They provide

More information

Linear Algebra Primer

Linear Algebra Primer Linear Algebra Primer David Doria daviddoria@gmail.com Wednesday 3 rd December, 2008 Contents Why is it called Linear Algebra? 4 2 What is a Matrix? 4 2. Input and Output.....................................

More information

ECEN 605 LINEAR SYSTEMS. Lecture 7 Solution of State Equations 1/77

ECEN 605 LINEAR SYSTEMS. Lecture 7 Solution of State Equations 1/77 1/77 ECEN 605 LINEAR SYSTEMS Lecture 7 Solution of State Equations Solution of State Space Equations Recall from the previous Lecture note, for a system: ẋ(t) = A x(t) + B u(t) y(t) = C x(t) + D u(t),

More information

Chapter 1. Vectors, Matrices, and Linear Spaces

Chapter 1. Vectors, Matrices, and Linear Spaces 1.7 Applications to Population Distributions 1 Chapter 1. Vectors, Matrices, and Linear Spaces 1.7. Applications to Population Distributions Note. In this section we break a population into states and

More information

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018

Lab 8: Measuring Graph Centrality - PageRank. Monday, November 5 CompSci 531, Fall 2018 Lab 8: Measuring Graph Centrality - PageRank Monday, November 5 CompSci 531, Fall 2018 Outline Measuring Graph Centrality: Motivation Random Walks, Markov Chains, and Stationarity Distributions Google

More information

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and

A matrix is a rectangular array of. objects arranged in rows and columns. The objects are called the entries. is called the size of the matrix, and Section 5.5. Matrices and Vectors A matrix is a rectangular array of objects arranged in rows and columns. The objects are called the entries. A matrix with m rows and n columns is called an m n matrix.

More information

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS

SPRING 2006 PRELIMINARY EXAMINATION SOLUTIONS SPRING 006 PRELIMINARY EXAMINATION SOLUTIONS 1A. Let G be the subgroup of the free abelian group Z 4 consisting of all integer vectors (x, y, z, w) such that x + 3y + 5z + 7w = 0. (a) Determine a linearly

More information

No class on Thursday, October 1. No office hours on Tuesday, September 29 and Thursday, October 1.

No class on Thursday, October 1. No office hours on Tuesday, September 29 and Thursday, October 1. Stationary Distributions Monday, September 28, 2015 2:02 PM No class on Thursday, October 1. No office hours on Tuesday, September 29 and Thursday, October 1. Homework 1 due Friday, October 2 at 5 PM strongly

More information

Chapter 3. Determinants and Eigenvalues

Chapter 3. Determinants and Eigenvalues Chapter 3. Determinants and Eigenvalues 3.1. Determinants With each square matrix we can associate a real number called the determinant of the matrix. Determinants have important applications to the theory

More information

NOTES ON LINEAR ODES

NOTES ON LINEAR ODES NOTES ON LINEAR ODES JONATHAN LUK We can now use all the discussions we had on linear algebra to study linear ODEs Most of this material appears in the textbook in 21, 22, 23, 26 As always, this is a preliminary

More information

ADI iterations for. general elliptic problems. John Strain Mathematics Department UC Berkeley July 2013

ADI iterations for. general elliptic problems. John Strain Mathematics Department UC Berkeley July 2013 ADI iterations for general elliptic problems John Strain Mathematics Department UC Berkeley July 2013 1 OVERVIEW Classical alternating direction implicit (ADI) iteration Essentially optimal in simple domains

More information

Final Exam Practice Problems Answers Math 24 Winter 2012

Final Exam Practice Problems Answers Math 24 Winter 2012 Final Exam Practice Problems Answers Math 4 Winter 0 () The Jordan product of two n n matrices is defined as A B = (AB + BA), where the products inside the parentheses are standard matrix product. Is the

More information